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Abstract : This paper applies belief functions-based copula quantile curves
model to capture dependence structure between crude oil and corn returns, and
quantify uncertainty of the corn returns at one step period. We employ the time-
varying copulas, including Gaussian, T and Clayton, which can be used to capture
dynamic correlations between variables. We forecast their correlation ahead of one
period, and the uncertainty of corn returns ahead of one period is measured under
p-th copula quantile curves. The empirical results show the range of corn returns
and its uncertainties under 5% and 95% copula quantile curves. In addition, the
time-varying T copula describes the dependence structure between crude oil and
corn returns quite well.
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1 Introduction

The copula method is widely used in finance and econometrics, particularly
time-varying copulas for studying dynamic dependence and predicting dependence
structure in the future (see Patton [1], Wu et al. [2] and Sriboonchitta et al. [3]).
However, with time-varying copulas, it is difficult to determine the forcing variable
for explaining the dynamic characteristics [1] [3] [5], and copulas cannot be used
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to forecast exchange rates, future prices and agricultural product prices, among
others. Fortunately, Bouye and Salmon [4] proposed copula p-th quantile curves
that can be used obtained the non-linear relationship between two variables for
the p-quantile. Chen et al. [6] introduced copula-based quantile autoregression
models that permit the estimated parameters to vary with quantiles, and forecast
one period ahead. However, a forecast cannot be trusted unless it is accompa-
nied by some measure of uncertainty. Generally, forecast uncertainty is described
by subjective probabilities or prediction intervals. Recently, Kanjanatarakul et
al. [11] proposed a method to quantify uncertainty on statistical forecasts using
the formalism of belief functions. So, we attempt to combine time-varying copula
p-th quantile curves with belief functions thereby achieving the purposes of fore-
casting dependence and uncertainty of one variable at one step period.

Rising biofuel production, particularly in the production of corn-based ethanol,
is likely to have made corn and crude oil markets more connected. Wu et al. [15]
found evidence of significant spillovers from crude oil prices to corn cash and
futures prices, and that these spillover effects are time-varying. Also, the corn
markets have become much more connected to crude oil markets after the intro-
duction of the Energy Policy Act of 2005. Natanelov et al. [16] found that the
interaction between crude oil and corn is relatively stronger through the biofuel
production linkage. Therefore, it is necessary that we study the dependence struc-
ture between corn and crude oil returns.

In this study, we combine the time-varying copula quantile curves with belief
functions to forecast the uncertainty of corn returns at t+1 period. To provide
insight on recognizing and forecasting the uncertainty of corn index returns, the
belief and plausibility functions are used to measure uncertainties. The purpose of
this paper is to apply belief function theory with copula to statistical forecasting
problems, as follows: (1) using time-varying copulas to replace static copulas in
copula quantile curves; (2) combining time-varying copula quantile curves with
belief and plausibility functions to forecast uncertainties of corn index returns.
Our study represents two main contributions. First, we use time-varying copula-
GARCH models to capture time-varying dependence between corn and crude oil
returns. The results show that non-normality and asymmetry are significant in
corn and crude oil returns, and the dependence structure is time-varying. We
find that the time-varying T copula exhibits a better explanatory ability than the
other dependence structures, and the dependence has a high degree of persistence
between crude oil and corn returns. Second, there are no previous papers using
belief functions-based copula quantile curves model to forecast the uncertainty of
the corn returns at one step period, this paper will fill this gap.

The paper is organized as follows. Section 2 briefly describes the data, copula
quantile curves and time-varying copulas. Section 3 conducts the belief functions-
based copula quantile curves model. Section 4 provides an application of the
model. Finally, section 5 offers a conclusion.
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Figure 1: Corn and crude oil indices

2 Data and methodology

2.1 Data

We study two sets of daily time series data: a corn index and a crude oil index,
for the period from January 2, 2008 to March 27, 2014. Each index contains 1537
observations. All data are obtained from Thomson Reuters ECOWIN. The asset
return of each index is calculated using the differences between its logarithmic
closing prices. The graphs of corn and crude oil indices are illustrated in Figure
1. It shows the corn and crude oil indices almost simultaneously reach peak and
trough, and there exists obvious rank correlation between them in big fluctuation
periods.

2.2 Copula quantile curves

Let FX|Y=y(.) be the conditional distribution of X given Y = y. The p ∈ [0, 1]

quantile of the distribution FX|Y=y(.) is defined as usual, namely F−1X|Y=y(p) =

inf{x ∈ R : FX|Y=y(x) ≥ p}.
We can express FX|Y=y(.) in terms of the copula C of (X,Y ), with X,Y being

continuous variables, as follows. First, recall that, if H(., .) denotes the joint
distribution function of (X,Y ) with marginal distributions,

F (x) = H(x,∞) = P (X ≤ x), G(y) = H(∞, y) = P (Y ≤ y), (2.1)
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then according to Skar’s theorem [12], there is a unique copula C such that, for
any x, y ∈ R,

H(x, y) = C(F (x), F (y)). (2.2)

Now,

FX|Y=y(x) = P (X ≤ x|Y = y) = lim
ε→0

P (X ≤ x|y ≤ Y ≤ y + ε) (2.3)

= lim
ε→0

P (X ≤ x, y ≤ Y ≤ y + ε)

P (y ≤ Y ≤ y + ε)

= lim
ε→0

P (X ≤ x, y ≤ Y ≤ y + ε)− P (X ≤ x, Y ≤ y)

P (Y ≤ y + ε)− P (Y ≤ y)

= lim
ε→0

H(x, y + ε)−H(x, y)

G(y + ε)−G(y)

= lim
ε→0

C(F (x), G(y + ε))− C(F (x), G(y))

G(y + ε)−G(y)

= lim
ε→0

(C(F (x), G(y + ε))− C(F (x), G(y))/ε

(G(y + ε)−G(y))/ε

=
∂C(u, v)

∂v
|u = F (x), v = G(y).

So, we can write FX|Y=y(x) = C1(F (x), G(y)), where C1 : [0, 1]× [0, 1]→ [0, 1]

is C1(u, v) = C(u,v)
∂v .

In terms of the partical derivative C1 of the copula C, the p−th copula quantile
curve of X given Y=y is defined by the implicit equation [4]

p = C1(F (x), G(y)) (2.4)

or more specifically, for given y, it is u = F (x) = C−11 (p,G(y)).
There are three copulas, Gaussian, T and Clayton copulas, which are used

in this study. Gaussian copula is tail independent, while the Student’s t copula
exhibits symmetric lower and upper tail dependence. We also use the Clayton
copula due to its ability to parameterize lower tail dependence across asset returns.
The first order partial derivative of the Gaussian copula is written as:

p = C1,gau(u, v; ρ) = Φ((Φ−1(u)− ρΦ−1(v))/
√

(1− ρ2)) (2.5)

with ρ the linear correlation and Φ the univariate Gaussian distribution. Then
p− th conditional quantile function of u given v can be given as:

u = C−11,gau(p, v; ρ) = Φ(ρΦ−1(v) +
√

(1− ρ2)Φ−1(p)), (2.6)

x = F−1(u) = F−1(Φ(ρΦ−1(G(y)) +
√

(1− ρ2)Φ−1(p))) = hgau(p, y; ρ). (2.7)

For financial data, a Gaussian copula may be not a good choice, because the
Gaussian copula cannot capture tail dependence. However, T and Clayton copulas
are better than Gaussian copula in terms of which can capture tail dependence.
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For T copula, the p − th copula quantile curve of u given v follows from Chen et
al. [6]:

u = C−1T (p, v; ρ, ν) = Tν(ρT−1ν (G(y)) + σ((G(y))T−1ν+1(p), (2.8)

x = F−1(u) = F−1(Tν(ρT−1ν (G(y)) + σ(G(y))T−1ν+1(p)) = hT (p, y; Θ), (2.9)

where σ(G(y)) =
√

[ν + T−1ν (G(y))2(1− ρ2)]/(ν + 1), Tν is student-t distribution

with the parameter degree of freedom ν, Θ is the parameter vector that includes
ρ and ν. Last, the p− th copula quantile curve of u given v of Clayton copula can
be expressed as

u = C−11,Cl(p, v; θ) = [(p−θ/(1+θ) − 1)v−θ + 1]−1/θ, (2.10)

x = F−1(u) = F−1([(p−θ/(1+θ) − 1)(G(y))−θ + 1]−1/θ) = hCl(p, y; θ). (2.11)

Bouye and Salmon [4] proposed copula quantile regression approach enables
us to examine the dependency between assets at any given quantile, including
extreme quantiles. We may in fact not often be interested in dependence strucure
between assets but are more interested in forecasting uncertainty of asset returns.
Thus, we make an attempt on constructing belief functions-based time-varying
copula quantile curves model. The time-varying copulas and belief functions are
illustrated next section below.

2.3 Time-varying copulas

The most dependence structures for financial data are not basically time-
invariant [1] [2] [3]. Time-varying copulas might be considered as the dynamic
generalizations of a Pearson correlation or Kendall’s tau; it is still difficult to find
causal variables to explain such dynamic characteristics [13]. We followed the
concept of Wu [2] by assuming that the dependence parameters rely on past de-
pendence and the previous historical information (ut−1−0.5)∗ (vt−1−0.5). Then,
some examples of time-varying copulas can be expressed as:

(1) time-varying Gaussian copula

ρ?t = ω + β ∗ ρ?t−1 + α ∗ (ut−1 − 0.5) ∗ (vt−1 − 0.5), (2.12)

where ρ?t = −ln[(1 − ρt)/(1 + ρt)], which is used to ensure that the correlation
falls within (-1, 1). In addition, the correlation parameter ρt in time-varying T
copula is used. The formula is consistent with the time-varying Gaussian copula
to capture dynamic characteristic, and the degree of freedom parameter is not
considered as time-varying.

(2) time-varying Clayton copula

τ?t = ω + β ∗ τ?t−1 + α ∗ (ut−1 − 0.5) ∗ (vt−1 − 0.5), (2.13)
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where τt is the rank correlation Kendall’s tau, and τ?t = −ln[(1 − τt)/(1 + τt)]
, which is similar with the correlation parameter in the time-varying Gaussian
copula.

Through the time-varying copulas, the dependence between corn and crude oil
returns can be predicted at t+1 period. Thus, the predicted values of corn returns
can be obtained by the different p-th copula quantile curves.

3 The belief functions-based copula quantile curves
model

The Dempster-Shafer theory (DST) was first developed by Dempster [7] and
Shafer [8]. DST offers an alternative to traditional probabilistic theory for the
mathematical representation of uncertainty. In general, belief function and its
dual, plausibility function are used to measure uncertainty. It is tempting to
consider Bel(A) resp. Pl(A), as lower, resp. upper, bound of the ”true” probability
of A. A detailed introduction about DST can be found in Shafer [8] [9]. The
definition of belief function is described as follows. Assume (H©, A) is a measurable

space, where A is a non-empty subset of 2H© closed under complementation and
countable union. A belief function Bel: A → [0, 1] is a belief function if and only
if it satisfies the following conditions: Bel(∅) = 0, Bel(H©) = 1, and for any k ≥ 2
and any collection A1, ..., Ak of elements of A,

Bel(∪ki=1Ai) ≥
∑

∅ 6=I⊆1,...,k
(−1)|I|+1Bel(∩i∈IAi). (3.1)

Also, a plausibility function can be defined as a function Pl : A → [0, 1] such
that Pl(∅) = 0, Pl(H©) = 1, and for any k ≥ 2 and any collection A1, ..., Ak of
elements of A,

Pl(∩ki=1Ai) ≤
∑

∅ 6=I⊆1,...,k
(−1)|I|+1Pl(∪i∈IAi). (3.2)

There exists a relationship betweenBel(A) and Pl(A),Bel(A) ≤ Pl(A), Pl(A) =
1−Bel(A), where A denotes the complement of A. The complete information about
the measure of belief in A can be represented by the interval [Bel(A), P l(A)], where
Pl(A) − Bel(A) is a natural expression of the ignorance concerning A. Recently,
a likelihood-based belief function was suggested by Denoeux [7], and this method
follows three basic principles: likelihood principle, compatibility with Bayesian in-
ference and least commitment principle [10] [11] [14]. On the basis of likelihood-
based belief function, a general approach to quantify uncertainty of statistical
forecasts using belief functions was proposed by Kanjanatarakul et al [11].

Forecasting model was conducted by using the belief functions with time-
varying copula quantile curves, and applied them to forecast the uncertainty under
given different conditional quantile scenarios. Take time-varying T copula as an
example, the belief function-based copula quantile curves model is introduced as
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follows:
Suppose that the random variable X at t+1 period can be written as

Xt+1 = ĉ+

p−1∑
i=0

φ̂ixt−i +

q−1∑
i=0

ψ̂iεt−i + σ̂t+1h(p, Yt+1;ω, α, β, ν), (3.3)

where Yt+1 = ĉ+
p−1∑
i=0

φ̂iyt−i +
q−1∑
i=0

ψ̂iεt−i + σ̂t+1ηt+1, ηt+1 represents standardized

residuals that are from a known distribution, the estimates ĉ, φ̂i, ψ̂i, and σ̂t+1

for variables X and Y are from ARMA-GARCH model, respectively. Our model
can be constructed by minimizing and maximizing the X at t + 1 period; this is
subject to a contour function that is greater than or equal to a random value z
from uniform distribution [0, 1]. The detailed model can be expressed as:

xL(z, yt+1) = min
pl(ω,α,β,ν)≥z

{ĉ+

p−1∑
i=0

φ̂ixt−i +

q−1∑
i=0

ψ̂iεt−i + σ̂t+1h(p, yt+1;ω, α, β, ν)}

(3.4)
and

xU (z, yt+1) = max
pl(ω,α,β,ν)≥z

{ĉ+

p−1∑
i=0

φ̂ixt−i +

q−1∑
i=0

ψ̂iεt−i + σ̂t+1h(p, yt+1;ω, α, β, ν)},

(3.5)
where pl is the likeliood ratio from past data, the pl is defined as follows

pl(ω, α, β, ν) =
L(ω, α, β, ν;x, y)

L(ω̂, α̂, β̂, ν̂;x, y)
. (3.6)

We independently randomize ηt+1 and z N times (for example, 1000 times).
Then the N pairs of lower and upper bounds of the predicted value X can be
estimated under the given conditional quantile p. The quantities BelXp (A) and

PlXp (A) are approximated by:

B̂el
X

p (A) =
1

N
#{i ∈ {1, ..., N}|[xL(zi, yt+1,i), x

U (zi, yt+1,i)] ⊆ A} (3.7)

and

P̂ l
X

p (A) =
1

N
#{i ∈ {1, ..., N}|[xL(zi, yt+1,i), x

U (zi, yt+1,i)] ∩A 6= ∅}, (3.8)

where A is the real line, we may define the lower and upper predictive cdfs of X
as, respectively,

FLp (x) = BelXp ((−∞, x]), (3.9)

FUp (x) = PlXp ((−∞, x]), (3.10)
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Table 1: Data Description and Statistics

Returns mean min. max. s.d. skew. kur. K-S
Corn 0.00 -0.23 0.21 0.03 0.26** 11.56*** 3.60***
Crude oil 0.00 -0.10 1.12 0.02 -0.07* 5.45*** 3.15***

Note: *, ** and *** denote rejection of the null hypothesis at the 10%,
5%, and 1% levels, respectively. For mean and skewness, the hypotheses
are: mean and skewness= 0. For Kurtosis, the hypothesis is Kurtosis
= 3. For Kolmogorov-Smirnov(K-S), the hypothesis is that the variable
follows a normal distribution.

for any x ∈ R. Both of the functions BelXp (A) and PlXp (A) describe the uncer-

tainties of X on the event A, given the conditional quantile p. BelXp (A) presents a

degree of belief that supports event A, while PlXp (A) presents the degree to which

one fails to doubt A. Therefore, we use the belief interval [BelXp (A),PlXp (A)] to
describe the uncertainty of the predicted Xt+1.

4 An application

Before we apply the time-varying copula-GARCH model to study the relation-
ship between corn and crude oil returns, we first represent the descriptive statistics
of the indices in Table 1. From Table 1, we find that the mean return of each index
is not significantly different from zero. The estimate of the skewness of corn re-
turn is strongly significantly positive, while the estimate of the skewness of crude
oil return is strongly significantly negative. The estimates of the kurtosis, the
flattening coefficient of the distribution, are significantly positive for both indices,
implying that the distributions of the returns of all the indices are fatter than a
normal distribution. The results of the (KS) normality tests and the tests for the
skewness and kurtosis coefficients confirm that the distributions of the returns of
both indices are not normal.

Figure 2 shows the normal Q-Q plots of corn and crude oil returns. if the corn
and crude oil returns come from normal populations whose distributions differ only
by a shift inlocation, the points should lie along a straight line that is displaced
either up or down from the theoretical reference straight line. We can find that the
normal Q-Q plots indicate departures from normality, and they are heavy-tailed.
It is seen to be that the skewed student-t marginals are more appropriate in our
study.

We select an ARMA (1, 0)-GARCH (1, 1) time series filter with skewed
student-t innovation distribution, as the marginal distributions. By estimating
ARMA(1, 0)-GARCH(1, 1) model, the standardized residuals can be obtained by
normalizing residuals. Figure 3 and Figure 4 show the empirical densities of stan-
dardized residuals. It can be seen that skewed student-t densities (sstd) fit very
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Figure 2: Q-Q plots of corn and crude oil returns

well, and it outperforms the normal densities.

Upon selection, we use a maximum log-likelihood estimation method to esti-
mate time-varying copulas. The results of the estimated parameters are shown in
Table 2. In terms of the values of AIC and BIC, the T copula exhibits a better
explanatory ability than the other dependence structures. Also, the autoregressive
parameter was close to 1, which implies a high degree of persistence in the depen-
dence structure between crude oil and corn returns. Moreover, with T copula, the
predicted correlation between crude oil and corn returns equals 0.24 at t+1 period.
Figure 5 describes the correlation estimates from time-varying Gaussian, T and
Clayton copulas. The linear correlations are captured by time-varying Gaussian
and T copulas, and the nonlinear correlations, Kendall’s tau, are measured by
time-varying Clayton copula. Basically, they have the same shape, and generally
decreased as the degree of the energy crisis is less.

Let the predicted correlation and the estimator of degree of freedom be known
as the information, then the marginal distribution and the growth rate of corn
index can be obtained given different quantiles and the marginal distribution of
oil index. We extracted 1000 random numbers of crude oil returns at t+1 period
by using ARMA(1, 0)-GARCH(1, 1) with skewed student-t distribution, and the
correlation and degree of freedom are fixed at t+1 period as well. Then the
different p− th copula quantile curves and the forecasting values of corn index can
be performed by formulas (2.8) and (2.9). Figure 6 shows the p − th T copula
quantile curves and the growth rates of corn index (for p=0.05, 0.1, 0.2,. . . , 0.9,
0.95 from bottom to top). We can find that the different quantiles have different
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Figure 3: Empirical density of standardized residuals of ARMA-GARCH
model for corn returns
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Figure 4: Empirical density of standardized residuals of ARMA-GARCH
model for crude oil returns
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Table 2: The results of time-varying copulas

Copulas ω β α ν logL AIC BIC
Gaussian 0.001 0.98*** 0.24** — 62.10 -118 -122

(0.002) (0.006) (0.09)
T 0.001 0.98*** 0.27* 15.23* 65.42 -123 -129

(0.002) (0.006) (0.10) (6.24)
Clayton 0.28*** 0.92*** -1.76*** — 51.14 -115 -120

(0.08) (0.03) (0.50)

Note: Signif. codes are as follows: 0 *** 0.001 ** 0.01 * 0.05 .0.1. The
numbers in the parentheses are the standard deviations.

0 500 1000 1500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Time−varying Gaussian

C
or

re
la

tio
n

0 500 1000 1500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Time−varying T

C
or

re
la

tio
n

0 500 1000 1500

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Time−varying Clayton

K
en

da
ll'

s 
ta

u

Figure 5: Correlation estimates from time-varying copulas
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Figure 6: The different pth copula quantile curves and both of growth rates
at t+1 period

curve. With the increasing of the quantiles, the growth rates of corn index increase
in general as well. If the quantiles are greater than 0.8, the growth rates of corn
index are always positive regardless of what the growth rates of crude oil index is.
While the growth rates of corn keep negative if the quantiles are less than 0.3.

Figure 7 plots the cumulative belief and plausibility of the growth rate of the
corn index under 5% and 95% copula quantiles, respectively. First, the growth rate
ranges of the corn index drop in [-8%, 0] and [0, 8%], conditional on the 5% and 95%
copula quantile curves, respectively. Second, the cumulative belief/plausibility
measures the uncertainties at many points, in terms of the belief function. For
instance, the growth rate of the corn index conditional on the 5% copula quantile
curve is less than -2%, the believability of which is 0.38, while the plausibility of
this event is 0.62. Similarly, at 95% copula quantile curve, Bel([0, 2%]) equals to
0.41, and Pl([0, 2%]) equals to 0.66, then Bel((2%,+8%]) is 0.34.

5 Conclusions

This paper demonstrates the model of measuring uncertainties in terms of be-
lief functions. The approach uses the time-varying copulas to capture the dynamic
dependence structure, and then applies the belief functions-based copula quantile
curves to measure uncertainties at t+1 period. For time-varying copulas, we can-
not guarantee that the causal variables are appropriate in explaining the dynamic
characteristics between variables, which means the predicted value has the prop-
erty of uncertainty. Then, we proposed a belief functions-based copula quantile
curves model to describe the uncertainty information. In addition, we applied
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Figure 7: The cumulative belief/plausibility of the growth rate of the corn
index under 5% and 95% copula quantiles

this function to the empirical data, demonstrating the feasibility of the model.
This methodology may also be used in several contexts, such as vine copulas or
Value-at-Risk computation in a non-normal framework.
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