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Abstract : We used the multivariate t copula, which can capture the tail de-
pendence to modeling the dependence structure of the risk in portfolio analysis.
Multivariate t copula based on GARCH model was used to explain portfolio risk
structure for high-dimensional asset allocation issue. With this method we used
the Monte Carlo simulation and the results of multivariate t copula to estimate
the expected shortfall of the portfolio. Finally, we obtained the optimal weighted
for conditional Value-at-Risk (CVaR) model with the assumption of multivariate
distribution to illustrate the potential model risk among portfolios returns.
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1 Introduction

The goal of portfolio optimization is to find the portfolio with highest re-
turns. In this case the selection of the optimal portfolio depends on the underly-
ing assumption on behavior of the assets and the choice on a measure of risk. In
Markowitz (1952), the dependence between financial returns is totally explained by
the linear correlation coefficient and efficient portfolios are the conventional mean
variance optimization model. Generally, correlation is used to explain dependence
between random variables in the linear regression, but it may be inappropriate
for the financial analysis (see, Ang & Bekaert [3], Das & Uppal [15], Patton [16]
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and Hu [14]). They found that the performance of a portfolio based on depen-
dence structure is better than a portfolio based on normal distribution model. The
dependency among key factors in portfolios have to be considered. An incorrect
model for dependence can lead to the loss of portfolios and missspecification to
evaluate the liability. Several studies indicated the superiority of copula to model
dependence. The reason they ignore to use correlation approach because of its
failure to capture the tail dependency (see, Artzner et al., [4] and Szego [12]) and
extreme events. Copulas can be easily used to obtain multivariate distributions
and offer much more flexibility than the conventional one (see, Embrechts et al.
[19] and Lee and Long [20].

Harvey and Siddique [21], who considered multivariate GARCH model with
skewness, same as in Sriboonchitta et al. [7] who applied the time-varying cop-
ula based on GARCH model to predict the agriculture price. More studies from
Chang et al. [6], who constructed dynamic portfolio of crude oil, soybean and
corn by GARCH and ARJI models to estimate value at risk (VaR). This model
allows for time-varying conditional correlation, but they cannot exhibit asymme-
tries in asymptotic tail dependence. To fix this loop hole, we introduce an optional
approach to modeling the dependence structure of multivariate data by using an
appropriate Student’s t based on copula theory.

In this paper we are using a multivariate t copula, which is applied to port-
folio optimization in financial risk management. Multivariate t copula have been
used extensively in the context of modeling multivariate financial return data, and
have been shown the superior to the normal copula (see, Chan and Kroese [13]).
Similarly, the works from Kole et al. [11] provided the test of fit to select the
right copula for a portfolio consisting of stocks, bonds and real estate, the result
clearly showed that Student’s t copula passes the tests with success and dominated
Gaussian and Gumbel copulas.

To determine the portfolio risk management, the conventional portfolio Value-
at-Risk (VaR) model with the assumption of normal joint distribution, which is
wildly used in empirical studies, shows considerable biased due to model specifi-
cation error (see, Miller and Liu, [18]). VaR is has been criticized for not being
diversified risk measure. From Pflug [17], CVaR has been proved to be a coherent
risk measure. For more application about VaR and CVaR, we refer the reader to
the studies from Rockafellar and Uryasev [9], Acerbi and Tasche [1, 2].

The approach for minimizing CVaR and optimization problems with CVaR
constraints can be found in Sriboonchitta et al. [8], Rockafellar and Uryasev [10],
Chekhlov et al. (2000), Pflug [17]. They found that optimization with CVaR is
much more efficient in the empirical studies.

In this study, we are also considers whether a more accurate CVaR or ex-
pected shortfall estimation under the t copulas based joint distributions could be
illustrated. t copulas allowed the researcher to construct flexible multivariate dis-
tributions showing various patterns of tail behavior, expanding the characters of
tails independence to dependence. Thus, multivariate t copula may be considered
for measuring the risk of portfolio investment.

This study focused on returns of securities in the Stock Exchange of Thailand
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(SET ). With this method, we measure the risk of a high-dimensional stock returns
portfolio. Thus, the main contributes of this paper can be summarize in two folds.
First, we emphasize that the multivariate t copula can illustrate the asymmetric
dependence structure and evaluate the complex nonlinear relations among financial
portfolio management. Second, we use stock returns in high-dimensions with the
minimum lost to show the weight of assets in portfolios.

The remainder of this paper is organized as follows: Section 2 provides the
theoretical background of GARCH model and multivariate t-copula, while Section
3 shows the empirical application to stock market. Section 4 reports the empirical
results, and final Section gives conclusions.

2 Theoretical Background

2.1 GARCH

GARCH model was proposed by Bollerslev (1986), which can relaxed the assump-
tion that volatility is constant overtime, because GARCH can capture the char-
acteristics of financial time series data (heteroscedasticity and volatility). If the
data indicate a skewness or heavy tail, we can choose an innovation that support
these information. Thus, ARMA(p,q) and GARCH(k,l) are defined by

rt = µ+

p∑
i=1

φirt−i +

q∑
i=1

ψiεt−i + εt,

εt = σt · νt,

σ2
t = ω +

k∑
i=1

αiε
2
i−t +

l∑
i=1

βiσ
2
t−i,

where

n∑
i=1

φi < 1, ω > 0, αi, ωi ≥ 0 and

k∑
i=1

αi +

l∑
i=1

βi ≤ 1, νt is an standardized

residual of a chosen innovation. In this case, we used t distribution because the
data was considered as a heavy tail distribution, which well defined for the financial
time series data.

2.2 Multivariate t Copula

In contrast to Gaussian copulas, copulas extracted from multivariate t-distribution
(called t-copulas) exhibit tail dependence. Copula is a way to construct a joint
distribution function. The joint distribution function can define by

H(x1, x2, · · · , xn) = C(u1, u2, · · · , un), (2.1)

where ui = FXi(xi), i = 1, 2, · · · , n, where FXi(·) are distribution functions.
By Sklar’s Theorem, if FXi(·), for all i = 1, · · · , n are continuous, the n cop-
ula function C(u1, u2, · · · , un) is unique. The high-dimensional copula is a high-
dimensional distribution function with uniform marginals on space [0, 1]n. The
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multivariate t distribution with degrees of freedom ν = n−1, µ is the mean vector
and Σ as a positive definite dispersion matrix, t distributed as t ∼ tn(ν, µ,Σ), has
density written as

f(x) =

Γ[(ν + n)/2]

(
1 +

1

ν
(x− µ)

∑−1
(x− µ)T

)−(ν+n)/2

Γ(ν/2)
√

(νπ)n|
∑
|

, (2.2)

and the correlation matrix define by

Σ =


1 ρu1,u2

· · · ρu1,un

ρu2,u1
1 · · · ρu2,un

...
...

. . .
...

ρun,1 aun,2 · · · 1

 where ρij ∈ [−1, 1] and i, j = {1, · · · , n},

(2.3)

where Γ : α > 0 → Γ(α) =
∫∞

0
xα−1e−xdx. In the same line as Gaussian

random vectors, general random vectors whose multivariate distributions are t-
distributions have the stochastic representation as

X = µ+

√
ν

S
Z, (2.4)

where S distributed as χ2(ν), Z ∼ N(0,Σ) and S and Z are independent.
Thus, the t-copulas with distribution function defined as

Cnν,Σ =

∫ T−1
ν (u1)

−∞
· · ·
∫ T−1

ν (un)

−∞
f(x)dx, (2.5)

where T−1
v is the quantile function of univariate distribution T1(ν, 0, 1). Thus,

the high-dimensional copula density is (see, Demarta and McNeil [22]).

cnν,Σ(tν(x1), · · · , tν(xn)) = |Σ|−1/2
Γ(
ν + 2

2
)

Γ(
ν

2
)

[
Γ(
ν

2
)

Γ(
ν + 1

2
)

]n(1 + ζ
′
Σ−1ζ
ν

)− ν+n2
n∏
i=1

(
1 +

ζ2i
2

)− ν+1
2

,

(2.6)

where ζ = (T−1
ν (u1), · · · , T−1

ν (un)) is the t-student univariate vector inverse
distribution functions.
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3 Simulated data for risk management

3.1 Equally weighted portfolio for Var and CVar

Using the t copulas, we can simulate returns for time series data in high dimensions
for the next period to describe the correlation structure. Suppose, we would like
to calculate the empirical VaR and CVaR of and equally weighted portfolio with
n assets. Then, the equations given by

Min ES = E[r|r ≤ rα], (3.1a)

subject to ri = w[r(1,t+1) + r(2,t+1) + · · ·+ rn,t+1], (3.1b)

w1 = w2 = · · · = wn =
1

n
, (3.1c)

0 ≤ wi ≤ 1, i = 1, 2, · · · , n,

where rα is the lower α− quantile, and ri,t+1 is the return on individual asset
at time t+ 1.

3.2 Optimal portfolio with minimum risk via t copula

To make multivariate t copula useful, we use the Monte Carlo simulation to es-
timate the expected shortfall of an optimal weighted portfolio. After that, the
optimal portfolio weights of the selected assets are constructed under minimize
expected shortfalls with respect to maximize returns. The method for calculating
the expected shortfall can be summarized into four steps. First, we use t copula to
simulate events which length is sample size N. Second, we plug the random number
into inverse functions of the probability distributions often random variables, such
as the skewed generalized error distribution in this study, and employ the mean
and variance equations of the ARMA-GARCH model to get the N values of each
variable at period t+1. Third, at the beginning we set the weights to each variable
equally. Finally, the investor need to minimize her portfolio (P) with respect to
her expected returns given by:

Min ES = E[r|r ≤ rα], (3.2)

subject to

ri = w1r(1,t+1) + w2r(2,t+1) + · · ·+ wnrn,t+1, (3.3a)

w1 + w2 + · · ·+ wn = 1, (3.3b)

0 ≤ wi ≤ 1, where i = 1, 2, · · · , n,

where rα is the lower α− quantile, and ri,t+1 is the return on individual asset
at time t+ 1.
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4 Application to the stock market

4.1 Data and Statistical test

In this paper, we used the stock returns in SET50 index. We applied this method
to several companies which have big market capitalization, high volatility and
high market value. There are Airports Of Thailand Public Company Limited
(AOT), Bankok Bank Public Company Limited (BBL), The Siam Commercial
Bank Public Company Limited (SCB), and The Siam Cement Public Company
Limited (SCC). All the weekly data are extracted from Datastream from March
2009 until Jan 2014 with a total of 260 observations for each selected companies.
Thus, innovation for GARCH model was used by t distribution. we checked all
growth rate values are stationary by using Augmented Dickey-Fuller (ADF) and
Phillip-Perron (PP) tests shown in table 1.

Table 1: Summary statistics

AOT BBL SCB SCC

Mean 0.0097 0.0033 0.0039 0.0055
Median 0.0048 0.0000 0.0000 0.0045
Maximum 0.2863 0.1476 0.1457 0.1650
Minimum -0.1235 -0.1039 -0.1322 -0.1304
SD. 0.0511 0.0374 0.0417 0.0401
Skewness 0.9340 0.3276 0.2089 0.2502
Kurtosis 6.2145 3.5271 3.9875 4.4801
ADF-test -15.7446 -16.7535 -17.6415 -16.9495
PP-test -15.7446 -16.7535 -17.6415 -16.9419
JB 149.7406 7.66217 12.4560 26.4453
Obs. 260 260 260 260

All values are the log return.

4.2 ARMA-GARCH process

For each data series, we use the ARMA-GARCH process to estimate the marginals
and we have shown that all the marginals are follow t distributions. We select the
optimal lag for ARMA(p,q) by using Akaike information criterion (AIC) and found
that the returns on AOT, BBL, SCB and SCC satisfiedARMA(3, 2), ARMA(1, 1),
ARMA(1, 1), and ARMA(5, 4) with GARCH(1, 1) respectively. Table 2 gives the
solutions of the estimated parameter

We used the Kolmogorov-Smirnov test (KS-test) to ensure the marginals are
uniform distribution in (0, 1) and Box-Ljung test to confirm residuals are indepen-
dent and identically distributed random variables (i.i.d). The results show that
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Table 2: Estimates of ARMA-GARCH parameters for raw returns.

AOT BBL SCB SCC

C 0.0310 0.0004 0.0008 0.0022
(0.0034) (0.0006) (0.0007) (0.0017)

AR(1) -1.8987 0.8326 0.7735 -0.0759
(0.0678) (0.2328) (0.1793) (0.0692)

AR(2) -0.8755 - - 1.1640
(0.1322) - - (0.0324)

AR(3) 0.0267 - - 0.0795
(0.06633) - - (0.0856)

AR(4) - - - -0.9194
- - - (0.0342)

AR(5) - - - -0.1094
- - - (0.0645)

MA(1) 1.9942 -0.8744 -0.8453 0.0091
(0.0187) (0.2015) (0.1495) (0.0179)

MA(2) 1.0000 - - -1.1668
(0.0190) - - (0.0197)

MA(3) - - - 0.0278
- - - (0.0172)

MA(4) - - - 0.9784
- - - (0.0190)

K 0.0001 0.0012 0.0011 0.0001
(0.0001) (0.0008) (0.0004) (0.0001)

GARCH(1) 0.8633 0.0001 0.0395 0.7934
(0.0947) (0.6024) (0.2061) (0.1030)

ARCH(1) 0.0730 0.1569 0.3199 0.1426
(0.0523) (0.1234) (0.1384) (0.0708)

DoF 8.7515 12.857 10.2490 5.5719
(3.4256) (8.7887) (6.8386) (2.1589)

LogL 430.6423 490.3632 469.6514 492.3380

() standard error is in parenthesis, C and K are constant terms
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Table 3: KS Test and p-value of Box-Ljung Test (Q-Test)

AOT BBL SCB SCC

KS 0.3956 0.4439 0.5724 0.0537
Q(5) 0.9292 0.9988 0.9956 0.7984
Q(10) 0.8179 0.9991 0.9939 0.8167
Q(15) 0.8562 0.9923 0.9796 0.9165
Q(20) 0.8366 0.9841 0.9822 0.9381

at given lag with significant level 0.05, these stocks satisfied all the requirements.
Table 3 exhibits the results of the test

We can compare the residuals and the corresponding conditional standard
deviations of four stocks extracted from their raw returns. The Fig. 1 clearly
illustrates heteroskedasticity present in the filtered residuals. Having the model
residuals from each return series, standardize the residuals by the corresponding
conditional standard deviation. The returns reveals that the standardized residuals
are now approximately i.i.d.

4.3 t copulas parameter estimation

Table 4 shows that the solutions of multivariate t copula parameters. We can
use these values to construct efficient portfolio and find optimal plans for best
expected returns with minimum loss.

Table 4: Empirical t copulas parameters (ρ̂)

AOT BBL SCB SCC

AOT 1.0000 0.4608 0.5252 0.4700
BBL 0.4608 1.0000 0.8053 0.6330
SCB 0.5252 0.8053 1.0000 0.6398
SCC 0.4700 0.6330 0.6398 1.0000

ν̂ = 9.4558
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Figure 1: : Variation in volatility and auto-correlation plots
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4.4 Experimental results

Table 4 exhibits the expected returns, VaR and CVaR at levels of 1%, 5% and 10%
with equally weighted. We notice that the estimated CVaR converges to -0.0573,
-0.0704 and -0.1019 at 10%, 5% and 1% levels in period t+ 1, respectively.

Table 5: Expected shortfall of equally weighted portfolios

Expected Returns VaR CVaR

10% 0.0024 -0.0383 -0.0573
5 % 0.0024 -0.0515 -0.0704
1 % 0.0024 -0.0810 -0.1019

We used the Monte Carlo simulation to generate a set of 1,000,000 samples
described in section 3. Then, given significant level of 5%, we optimize the portfolio
by using the mean-CVaR model and obtained the efficient frontier of the portfolio
under various expected returns, as shown in Fig. 2.

Finally, we also obtained the optimal weight of the portfolios varies to the ES.
Table 6 shown some of the results of optimal weight with the expected returns in
the frontier.
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Figure 2: : The efficient frontiers of CVaR under mean
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Table 6: Optimal weighted portfolios for ES 5 %

Portfolios w1 w2 w3 w4 Returns

1 0.1685 0.4541 0.0000 0.3773 0.0018
2 0.1754 0.4923 0.0320 0.3004 0.0021
3 0.1767 0.5010 0.0885 0.2338 0.0024
4 0.1795 0.5075 0.1458 0.1672 0.0026
5 0.1815 0.5163 0.2019 0.1003 0.0029
6 0.1839 0.5249 0.2579 0.0333 0.0031
7 0.1531 0.4616 0.3853 0.0000 0.0034
8 0.0915 0.3242 0.5843 0.0000 0.0036
9 0.0293 0.1875 0.7832 0.0000 0.0039
10 0.0000 0.0000 1.0000 0.0000 0.0042

5 conclusions

In this paper, we estimates the risk in portfolio management by using CVaR
and applied mean-CVaR model to optimize portfolio. We used the t copulas
to described dependence structure between individual stock returns affects the
returns of portfolio. We conducted our analysis in two steps. First, we examined
the dependence structure of stock returns obtained from ARMA-GARCH process.
Second, we studied how the dependence structure of the stock returns affects
portfolio optimization. We used an optimization technique to allocate risk in the
portfolio. It is reasonable to conclude that t copulas can described dependency
structure of the asset in the portfolio management.

Acknowledgement(s) : The authors thank Prof. Dr. Hung T. Nguyen for his
helpful comments and suggestions.
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