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Abstract : Copulas are a general way of describing dependence between two
or more random variables. When we only have partial information about the
dependence, i.e., when several different copulas are consistent with our knowledge,
it is often necessary to select one of these copulas. A frequently used method of
selecting this copula is the maximum entropy approach, when we select a copula
with the largest entropy. However, in some cases, the maximum entropy approach
leads to an unreasonable selection – e.g., even if we know that the two random
variables are positively correlated, the maximum entropy approach completely
ignores this information. In this paper, we show how to properly modify the
maximum entropy approach so that it will lead to more reasonable results: by
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applying this approach not to the probabilities themselves, but to “second order”
probabilities – i.e., probabilities of different probability distributions.
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1 Maximum Entropy Approach to Selecting a
Copula: Description, Successes, and Limita-
tions

Copulas: brief reminder. In many practical situations, we know the cumulative
distribution functions F1(x1) = P (X1 ≤ x1) and F2(x2) = P (X2 ≤ x2) of the two
random variables X1 and X2, and we need to find the cumulative distribution
function (cdf) F (x1, x2) = P (X1 ≤ x1 &X2 ≤ x2) corresponding to their joint
distribution.

In general, a joint cdf can be described as F (x1, x2) = C(F1(x1), F2(x2)) for
some function C(u, v). This function is known as a copula; see, e.g., [2, 7].

Similarly, a multi-dimensional copula can be defined as a function C(u1, . . . , un)
for which

F (x1, . . . , xn)
def
= P (X1 ≤ x1 & . . . &Xn ≤ xn) = C(F1(x1), . . . , Fn(xn)).

Comment. From the mathematical viewpoint, a copula can be viewed as a cdf for
a joint distribution of two random variables U and V which are both uniformly
distributed on the interval [0, 1]. Similarly, a multi-D copula can be viewed as a
a joint distribution of n random variables U1, . . . , Un all of which are uniformly
distributed on the interval [0, 1].

When the copula is a differentiable function, we can determine the probability

density function (pdf) corresponding to this distribution, as c(u, v) =
∂2C(u, v)

∂u ∂v

or, in multi-D case, as c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1 . . . ∂un
.

Need to select a copula under uncertainty. In many practical situations, we
only have partial information about the joint probability distribution. In other
words, we have several copulas which are consistent with the given knowledge. In
this case, it is often desirable to select a single copula.

Maximum entropy (Laplace) approach. The general need for selecting prob-
abilities under partial knowledge has been recognized for a long time. The first
approach to this problem was Laplace’s Principle of Indifference, according to
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which, if we have no information about which of n alternatives are more probable

and which are less probable, it is reasonable to assign the same probability
1

n
to

each of these alternatives.

This principle can be naturally generalized to the continuous case, in which
case, out of all possible probability distributions, we select the one for which

the entropy S
def
= −

∫
f(x) · ln(f(x)) dx attains its largest possible value, where

f(x) is the probability density function; see, e.g., [3]. For the discrete case, this
optimization leads exactly to equal probabilities.

In terms of copulas, this means selecting a copula for which the entropy
−
∫
c(u, v) · ln(c(u, v)) du dv – or, in the multi-D case,

−
∫
c(u1, . . . , un) · ln(c(u1, . . . , un)) du1 . . . dun,

attains the largest possible value.

In many practical situations, the maximum entropy approach to select-
ing a copula works well. In many case, the maximum entropy approach works
well. For example, if we have no information about the dependence of the two
random variables, then maximizing the above integral under the constraint that
the overall probability is equal to 1 (i.e., that

∫
c(u, v) du dv = 1) leads to the

uniform distribution c(u, v) = 1. For this uniform distribution, C(u, v) = u · v;
thus, F (x1, x2) = F1(x1) · F2(x2).

In probabilistic terms, the above equality means that the variables X1 and X2

are independent. In other words, if we have no information about the dependence
between the random variables X1 and X2, i.e., we have no reason to believe that
these variables are positively correlated – or that they are negatively correlated –
then the maximum entropy approach suggests that we assume that these variables
are independent. This sounds reasonable.

Similarly, in the multi-D case, for the probability density c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1 . . . ∂un
, we get a uniform distribution c(u1, . . . , un) = 1 for which

C(u1, . . . , un) = u1 · . . . · un and thus, F (x1, . . . , xn) = F1(x1) · . . . · Fn(xn). This
too is reasonable.

What if there is a positive (non-negative) dependence? Independence of
two events A and B means that the probability of A does not change if we know
B, i.e., that the conditional probability P (A |B) of A under the condition B is
equal to the probability P (A): P (A |B) = P (A).

Since P (A |B) =
P (A&B)

P (B)
, the condition P (A |B) = P (A) means that

P (A&B)

P (B)
= P (A), i.e., that P (A&B) = P (A) · P (B).

In some cases, we know that the presence of B increases the probability of
A, i.e., that A and B are positively dependent. In precise terms, this means that
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P (A |B) > P (A), i.e., that
P (A&B)

P (B)
> P (A) and P (A&B) > P (A) · P (B).

A more general case is non-negative dependence, when P (A&B) ≥ P (A) · P (B).
Similarly, we can consider the case of negative dependence, when P (A |B) <

P (A) and, thus, P (A&B) < P (A) ·P (B), or, more generally, non-positive depen-
dence, when P (A&B) ≤ P (A) · P (B).

In the case of copulas, non-negative dependence means that C(u, v) ≥ u · v,
and non-positive dependence means that C(u, v) ≤ u · v.

If we only know that the copula corresponds to non-negative dependence,
which copula should we select? If we only know that the copula corresponds to
non-positive dependence, which copula should we select?

Limitation of the maximum entropy approach. To solve both problems, we
can use the maximum entropy approach:

• in the first problem, out of all copulas which satisfy the constraint C(u, v) ≥
u · v for all u and v, we select the copula for which the entropy is the largest
(under this constraint);

• in the second problem, out of all copulas which satisfy the constraint
C(u, v) ≤ u · v for all u and v, we select the copula for which the entropy is
the largest (under this constraint).

One can easily see in both situations, we select the same product copula C(u, v) =
u · v corresponding to independence – since the product copula satisfies both con-
straints and has the largest entropy among all copulas – and thus, has the largest
entropy among all copulas which satisfy each of the two constraints.

This selection is counter-intuitive: we assumed, crudely speaking, that the cor-
relation between X1 and X2 is non-negative, and the maximum entropy approach
ignored this information altogether.

What we do in this paper. In this paper, we show how the maximum entropy
approach can be modified, so that we will get more reasonable conclusions.

2 How to Modify the Maximum Entropy Ap-
proach: Main Idea and Resulting Applications

Analysis of the problem. Let us recall that we are analyzing the probabilistic
models of real-world events. Before probabilistic models, scientists used deter-
ministic models. To come up a deterministic model, they had to select, from all
possible trajectories, the most probable one. In comparison with the resulting lim-
ited deterministic model, a probabilistic model is more adequate – it allows us to
take into account that for the same initial condition, several different trajectories
are possible.

Resulting idea. Let us use a similar idea to overcome the above-described limita-
tion of the maximum entropy approach. This limitation comes from the fact that
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we select a single probability distribution – or, in the copula case, a single copula.
A more adequate idea is to select the class of possible copulas – and to assign
probabilities to different copulas. To assign probabilities to different copulas, we
can again use the maximum entropy approach.

As a result, instead of a single copula, we get different copulas with different
probabilities. To find the resulting probability C(u, v), we can then use the formula
of complete probability, i.e., take the average over all possible copulas.

Let us apply this idea of using “second order” probabilities – i.e., probabilities
of different probability distributions – to our problems.

Let us apply this idea to the case of non-negative dependence. For each
u and v, we have max(u+ v− 1, 0) ≤ C(u, v) ≤ min(u, v). If we additionally know
that the variables are non-negatively dependent, then we also get C(u, v) ≥ u · v,
so u · v ≤ C(u, v) ≤ min(u, v).

In this case, the set of possible values of C(u, v) is the interval [u ·v,min(u, v)].
To select a probability distribution on this interval, we will use the Maximum
Entropy approach. Since we have no information about which values from this in-
terval are more probable and which values are less probable, the maximum entropy
approach results in a uniform distribution on this interval.

For a uniform distribution on an interval [a, b], its expected value is equal to

the interval’s midpoint
a+ b

2
. Thus, in our case, we get the following copula:

C(u, v) =
u · v + min(u, v)

2
.

Comment. This formula indeed defines a copula, since it is a convex combination
of two copulas, and it is known that a convex combination of copulas is always a
copula; see, e.g., [2, 7].

Discussion. One can see that, in contrast to the usual maximum entropy ap-
proach, the resulting copula is different from the independent case – and reflects
the fact that we have non-negative dependence.

Non-negative dependence: multi-D case. In case of several random events,
non-negative dependence means that P (A1 & . . . &An) ≥ P (A1) · . . . · P (An). In
particular, for a multi-D copula, this means that C(u1, . . . , un) ≥ u1 · . . . · un.

In general, a multi-D copula satisfies the inequality

max(u1 + . . .+ un − (n− 1), 0) ≤ C(u1, . . . , un) ≤ min(u1, . . . , un).

Thus, copulas corresponding to non-negative dependence satisfy the inequality

u1 · . . . · un ≤ C(u1, . . . , un) ≤ min(u1, . . . , un).

The set of possible values of C(u1, . . . , un) form an interval

[u1 · . . . · un,min(u1, . . . , un)].
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The above maximum entropy approach results in a uniform distribution on this
interval. Thus, we get the following copula:

C(u1, . . . , un) =
u1 · . . . · un + min(u1, . . . , un)

2
.

What if we have non-positive dependence. In the case of non-positive
dependence, the condition C(u, v) ≤ u · v implies that max(u + v − 1, 0) ≤
C(u, v) ≤ u · v. In this case, the set of possible values of C(u, v) is the inter-
val [max(u+ v − 1, 0), u · v]. Here also, the maximum entropy approach results in
a uniform distribution on this interval. Thus, we get the following copula:

C(u, v) =
max(u+ v − 1, 0) + u · v

2
.

Here also, the resulting copula is different from the independent case – and
reflects the fact that we have non-positive dependence.

Comment on multi-D case. In the multi-D case, non-positive dependence means
C(u1, . . . , un) ≤ u1 ·. . .·un. Thus, possible values of C(u1, . . . , un) form an interval

[max(u1 + . . .+ un − (n− 1), 0), u1 · . . . · un].

The above maximum entropy approach results in a uniform distribution on this
interval. Thus, we get the following expected value

C(u1, . . . , un) =
max(u1 + . . .+ un − (n− 1), 0) + u1 · . . . · un

2
.

However, in contrast to the case of n = 2, the lower bound

max(u1 + . . .+ un − (n− 1), 0)

is not a copula, and thus, its use does not necessarily lead to a joint probability
distribution.

General comment. It is worth mentioning that in the case when we have no
information about the dependence, i.e., when we only know that C(u, v) belongs to
the interval [max(u+v−1, 0),min(u, v)], the modified maximum entropy approach
leads to

C(u, v) =
max(u+ v − 1, 0) + min(u, v)

2
,

which is general, different from the copula C(u, v) = u · v which results from the
usual maximum entropy approach.
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3 How to Describe Strong Positive Dependence?
Weak Positive Dependence? A Natural Idea

How to describe strong and weak positive dependence? Main idea.
The above idea shows that for the case of positive dependence, the “average”
dependence is described by the copula

Cav(u, v) =
u · v + min(u, v)

2
.

The larger the value C(u, v), the larger the dependence.
It is reasonable to say that strong dependence means that C(u, v) is larger

than this average value, while weak positive dependence means that C(u, v) is
smaller than this average.

Let us analyze which copulas correspond to these notions.

Copula corresponding to strong positive dependence. In the case of strong
positive dependence, we have

u · v + min(u, v)

2
≤ C(u, v) ≤ min(u, v).

Similarly, we conclude that we have a uniform distribution on this interval and
thus, the resulting copula is equal to its midpoint

C(u, v) =
1

4
· u · v +

3

4
·min(u, v).

We can similarly consider very strong (= stronger than strong), for which we
get

C(u, v) =
1

8
· u · v +

7

8
·min(u, v),

and somewhat strong (= between average and strong), for which we get

C(u, v) =
3

8
· u · v +

5

8
·min(u, v),

Copula corresponding to weak positive dependence. In the case of weak
positive dependence, we have

u · v ≤ C(u, v) ≤ u · v + min(u, v)

2
.

Similarly, we conclude that we have a uniform distribution on this interval and
thus, the resulting copula is equal to its midpoint

C(u, v) =
3

4
· u · v +

1

4
·min(u, v).
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We can similarly consider very weak (= weaker than weak), for which we get

C(u, v) =
7

8
· u · v +

1

8
·min(u, v),

and somewhat weak (= between average and weak), for which we get

C(u, v) =
5

8
· u · v +

3

8
·min(u, v),

Copulas corresponding to strong and weak negative dependence. Simi-
larly, for negative dependence, the further away the value C(u, v) is from u · v –
i.e., in this case, the smaller C(u, v) – the larger the dependence.

Thus, strong negative dependence means that

max(u+ v − 1, 0) ≤ C(u, v) ≤ max(u+ v − 1, 0) + u · v
2

and thus, the average is equal to the midpoint of the corresponding interval:

C(u, v) =
3

4
·max(u+ v − 1, 0) +

1

4
· u · v.

Weak negative dependence means that

max(u+ v − 1, 0) + u · v
2

≤ C(u, v) ≤ u · v

and thus, the average is equal to the midpoint of the corresponding interval:

C(u, v) =
1

4
·max(u+ v − 1, 0) +

3

4
· u · v.

Similarly, we can have very strong negative correlation

C(u, v) =
7

8
·max(u+ v − 1, 0) +

1

8
· u · v,

somewhat strong negative correlation

C(u, v) =
5

8
·max(u+ v − 1, 0) +

3

8
· u · v,

very weak negative correlation

C(u, v) =
1

8
·max(u+ v − 1, 0) +

7

8
· u · v,

and somewhat weak negative correlation

C(u, v) =
3

8
·max(u+ v − 1, 0) +

5

8
· u · v.
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Comment. Similar formulas can be obtained in the multi-D case. For example,
strong positive dependence corresponds to

C(u1, . . . , un) =
1

4
· u1 · . . . · un +

3

4
·min(u1, . . . , un);

very strong positive dependence corresponds to

C(u1, . . . , un) =
1

8
· u1 · . . . · un +

7

8
·min(u1, . . . , un);

and somewhat strong positive dependence corresponds to

C(u1, . . . , un) =
3

8
· u1 · . . . · un +

5

8
·min(u1, . . . , un).

Relation to Hurwicz optimism-pessimism criterion. The resulting formu-
las are similar to another way of selecting an alternative under uncertainty: the
optimism-pessimism criterion proposed by a Nobelist L. Hurwicz [1, 5, 6]: when
we only know bounds u and u on a value u (for which the larger the value, the
better for us), then we should select the value α · u+ (1− α) · u, where α ∈ [0, 1]
describes the decision maker’s degree of optimism:

• the value α = 1 characterizes an optimist who only takes into account the
best-case scenario, with value u, and ignores the possibility of the worst-case
situations;

• the value α = 0 characterizes a pessimist who only takes into account the
worst-case scenario, with value u, and ignores the possibility of the best-case
situations;

• finally, values α between 0 and 1 characterize realists who take into account
that both good and bad situations are possible.

For the case of positive dependence, if we apply Hurwicz criterion instead of max-
imum entropy, we get

C(u, v) = α ·min(u, v) + (1− α) · u · v.

The above maximum entropy description of positive dependence corresponds to
α = 1/2, strong positive to α = 3/4, etc.

Comment. Similar operations were described in [4].
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