
EDITORIAL

This special issue is devoted to the applications of the theory of copulas
in probability and statistics to various important problems in econometrics.
From a mathematical viewpoint, copula (a Latin word for "link") should

be a very old and simple concept in probability theory. Indeed, a copula
is simply a multivariate distribution function (of a random vector) whose
marginals are uniform distributions on the unit interval [0; 1]. However, this
concept was emphasized only in Abe Sklar�s thesis (1959) in response to an
earlier question by Maurice Frechet concerning joint distributions with given
marginals.
So why such a simple concept turns out to be so essential in probabil-

ity and statistics, leading to more realistic models in almost all empirical
sciences, including economics, as we witness today?
In real analysis, or more speci�cally, in measure theory, we are almost

exclusively concerned with a product measure built from measures on factor
spaces. Lebesgue measure on R2 is simply the product measure of Lebesgue
measures on R. We might not have compelling reasons to seek other kinds
of measures on R2, built also from Lebesgue measure on R. More generally,
given two measure spaces (
1;A1; �1), (
2;A2; �2), are we concerned with
all possible measures on A1 
 A2 whose projections on A1;A2 are �1; �2,
respectively?
As we will see, the answer is de�nitely yes in the special case of probability

measures, for various reasons.
As far as random vectors (as a speci�c type of random elements) are con-

cerned, their probability laws on Rd are characterized by Lebesgue-Stieltjes
Theorem: there is an one-to-one and onto (a bijection) map between prob-
ability measures on B(Rd) and (multivariate) distribution functions on Rd.
This characterization theorem is very important for applications since it pro-
vides a simpler way to obtain statistical models. For example, a bivariate
(real-valued) random vector (X; Y ) with both X and Y being de�ned on
the same probability space (
;A; P ), is characterized by a joint distribu-
tion function H(:; :) : R2 ! [0; 1] where H(x; y) = P (X � x; Y � y),
in the sense that H determines the probability measure (law) of (X; Y )
on (R2;B(R2)). Statistically speaking, the joint distribution H contains
all information about (X; Y ). For example, the marginals are derived as
F (x) = P (X � x) = H(x;1), G(y) = P (Y � y) = H(1; y). Their
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associated probability measures on (R;B(R)), dF (x) and dG(y) are mar-
ginal measures of dH(x; y). However, unless X and Y are independent,
the "joint" probability measure dH(x; y) might not be the product measure
dF (x)
dG(y), or equivalently the relation between H(:; :) and its marginals
is H(x; y) = F (x)G(y) for all x; y 2 R.
It is the notion of "stochastic dependence" which is central in using

statistics to discover knowledge, at the service of science. But as H(x; y)
contains all information about the random evolution of (X;Y ), it should
provide information about the dependence between X and Y . Well, it suf-
�ces to calculate the conditional distribution, say, of Y given X, namely
FY jX=x(y) = P (Y � xjX = x), and compare with the unconditional distrib-
ution G(y). The result will tell us whether X and Y are independent or not.
In case where the result reveals that they are not independent, can we learn
more about "what kind of dependence structure they possess?". As we will
see, such a question turns out to be of great interest in applications. Here,
you might remember what mathematicians used to ask "If we are not doing
linear mathematics, what kinds of nonlinear mathematics we are doing?".
Since we do not have an answer to this, we just have two areas of math-
ematics: linear and nonlinear mathematics! Thanks to Sklar, we have an
answer to "If random variables are not (mutually) independent, what kind of
dependence they possess?". The answer is copulas! Each copula represents
one type of dependence. But why this important question was not asked
earlier than Maurice Frechet? and, in fact, even after Sklar got the answer
in 1959, it did not seem to "revolutionize" statistics until the 1990s? The
reasons are manyfold. First, based on "tradition", joint distributions are in
general given, such as multivariate Gaussian distributions, rather than need
to be built from given marginals. Secondly, we used to rely modeling on
conditional models, i.e., building the joint distributions from marginals and
conditional distributions. And thirdly, as far as dependence is concerned,
by tradition again, statisticians focus right away on quantifying dependence
rather than looking for the qualitative concept of dependence. Correlation
analysis dominated statistical analyses since the beginning. Even it is clear
that correlation is not causation, statistical analyses focus only on quanti-
fying relationship between variables. This resulted in looking mainly at one
type of dependence, namely linear dependence (quanti�ed by the Pearson
coe¢ cient correlation). Two exceptions are Kandell tau and Spearman rho,
quantifying two other types of dependence structures, namely comonotonic-
ity and counter-comonotonicity, respectively. But more importantly, without
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knowing how to capture (represent) a type of suspected dependence, statisti-
cians just go ahead to sssume independence, such as modeling relationships
between random shocks between various statistical models.
The appearance of copulas has changed all the above, leading to much

more realistic statistical modeling in applications, in all �elds where statistics
is the main tool for investigation. The point is this. We need innovation!
The "hidden" thing seems to be this. How to relate a joint distribution H

to is marginals F and G? In other words, can we pose the inverse problem:
Given F and G, what can be said about joint distributions which admit F
and G as marginals? Or more speci�cally, can we determine all possible such
joint distributions?
From a given joint distribution H(:; :) of (X;Y ), it is not obvious how to

"�nd" the type of dependence between X and Y . Now, since F and G are
nondecreasing,

H(x; y) = P (X � x; Y � y) = P (F (X) � F (x); G(Y ) � G(y))

and if F and G are continuous, then the random variable U = F (X),
V = G(Y ) are uniformly distributed on [0; 1], so that

H(x; y) = C(F (x); G(y))

where C denotes the joint distribution of (U; V ), i.e., C is a joint distri-
bution with uniform marginals on [0; 1]. C is called a (bivariate) copula. Of
course, the result is true for any dimensions n, but for simplicity, we just
consider the case n = 2. As a such joint distribution, when restricted to its
support [0; 1]2, a copula is de�ned as a function C : [0; 1]2 ! [0; 1] satisfying
the following axioms:
(i) C(u; 0) = C(0; v) = 0 for any u; v 2 [0; 1]
(ii) C(u; 1) = u, C(1; v) = v for any u; v 2 [0; 1]
(iii) For any u � u0; v � v0,

C(u0; v0)� C(u0; v)� C(u; v0) + C(u; v) � 0
The upshot is Sklar�s theorem which says that the above is in fact general.

If H is a bivariate distribution with marginals F and G, then there exists
a copula C such that, for all x; y 2

_

R, H(x; y) = C(F (x); G(y)). If F and
G are both continuous, then C is unique, otherwise, it is determined on the
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range R(F )�R(G). Conversely, if C is a copula, and F and G are marginal
distributions, then H(x; y) = C(F (x); G(y)) is a joint distribution having F
and G as its marginals.
As a result, we can extract the copula from the joint distribution: C(u; v) =

H(F�1(u); G�1(v)), where F�1 : [0; 1]! R is the quantile function F�1(u) =
inffx 2 R : F (x) � ug.
The implications of Sklar�s results are of the following types. In applica-

tions, if we have only two marginals F and G (estimated from data), then
to model the process generating the joint observations, we just need to "look
for" an appropriate copula. If we have a joint distribution, then extracting
its copula will reveal the type of dependence. Of course, the next task will be
"how to quantify a copula?", i.e., assessing the strength of the dependence
expressed by a copula.
Copula theory has become a norm in econometrics. This special issue

consists of a sample of important applications in econometrics using copula
methodology.
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