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1 Introduction

Throughout the present paper R will denote an associative ring with center
Z(R). Recall that R is prime if aRb = (0) implies that a = 0 or b = 0 and R
is said to semiprime ring if aRa = (0) implies that a = 0. As usual [x, y] will
denote the commutator xy − yx. We shall make an extensive use of commutator
identities; [x, yz] = [x, y]z + y[x, z] and [xy, z] = [x, z]y + x[y, z]. Let S be a
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nonempty subset of R. A function f : R → R is said to be a centralizing on S
if [f(x), x] ∈ Z(R) for all x ∈ S. In particular, if [f(x), x] = 0 for all x ∈ S,
f is said to be commuting on S. An additive mapping ∗ : R → R is said to
be an involution if it satisfies (xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ R. A
ring R equipped with involution ∗ is called a ring with involution or ∗-ring. An
additive mapping δ : R → R is called a derivation (resp. Jordan derivation) if
δ(xy) = δ(x)y + xδ(y) (resp. δ(x2) = δ(x)x + xδ(x)) holds for all x, y ∈ R. An
additive mapping H : R → R is called a generalized derivation if there exists a
derivation δ : R → R such that H(xy) = H(x)y + xδ(y) holds for all x, y ∈ R. In
1990 Bresar and Vukman [1] introduced the concept of left derivation as follows:
An additive mapping d : R → R is called left derivation if d(xy) = xd(y) + yd(x)
holds for all x, y ∈ R. They proved that a prime ring which admits a nonzero left
derivation is commutative. Obviously in a commutative ring, derivations (resp.
generalized derivations) act as a left derivations (resp. generalized left derivations).
However in noncommutative ring, the case is quite different in general.

According to [2], an additive mapping F : R → R is called a generalized left
derivation (resp. generalized Jordan left derivation) if there exists a left derivation
(resp. Jordan left derivation) d : R → R such that F (xy) = xF (y) + yd(x)
(resp. F (x2) = xF (x) + xd(x)) holds for all x, y ∈ R. In [3] Bresar and Vukman
introduced the concept of ∗-derivation as follows: Let R be a ∗-ring. An additive
mapping δ : R → R is said to be a ∗-derivation on R if δ(xy) = δ(x)y∗ + xδ(y)
holds for all x, y ∈ R. An additive mapping H : R → R is called generalized
∗-derivation if there exists a ∗-derivation δ such that H(xy) = H(x)y∗ + xδ(y) for
all x, y ∈ R.

Let S be a subring of a ring R. A mapping B : R × R → R is said to be
symmetric if B(x, y) = B(y, x) for all x, y ∈ R. Following [4], a biadditive map
B : R×R → R is called a biderivation on S if it is a derivation in each argument,
i.e., for every x ∈ S, maps y 7→ B(x, y) and y 7→ B(y, x) are derivations of S into
R (viz. [5], where biderivations satisfying some special properties are studied).
Typical examples are mappings of the form (x, y) 7→ c[x, y] where c is an element of
the center of R. The notion of biderivation arises naturally in the study of additive
commuting maps, since every commuting additive map f : S → R gives to rise a
biderivation of S. Namely, linearization of the [f(x), x] = 0 for all x ∈ S yields
that [f(x), y] = [x, f(y)] for all x, y ∈ S. Therefore, we note that the map (x, y) 7→
[f(x), y] is a biderivation. The concept of biderivation was introduced by Maska [6].
Further, Bresar [4] showed that every biderivation B of a noncommutative prime
ring R is of the form B(x, y) = λ[x, y] for some λ ∈ C, the extended centroid of R.
In 2011 Shakir [7] introduced the concept of left biderivations and generalized left
biderivations, which are defined as follows: a biadditive mapping B : R×R → R is
called a left biderivation (resp. Jordan left biderivation) if B(xy, z) = xB(y, z) +
yB(x, z) and B(z, xy) = xB(z, y) + yB(z, x)(resp. B(x2, z) = 2xB(x, z)) and
B(z, x2) = 2xB(z, x)) hold for all x, y, z ∈ R. A biadditive mappingG : R×R → R
is called a generalized left biderivation (resp. generalized Jordan left biderivation)
if there exists a left biderivation (Jordan left biderivation) B : R × R → R such
that G(xy, z) = xG(y, z) + yB(x, z) and G(z, xy) = xG(z, y) + yB(z, x)

(
resp.
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G(x2, z) = xG(x, z) + xB(x, z) and G(z, x2) = xG(z, x) + xB(z, x)
)
hold for all

x, y, z ∈ R.

2 Generalized Left ∗-Derivation

Motivated by the definition of ∗-derivation and generalized ∗-derivation, we in-
troduce the notions of left ∗-derivation and generalized left ∗-derivation as follows:
let R be a ∗-ring. An additive mapping d : R → R is said to be a left ∗-derivation
if d(xy) = x∗d(y) + yd(x) for all x, y ∈ R. An additive mapping F : R → R
is said to be a generalized left ∗-derivation if there exists a left ∗-derivation d
such that F (xy) = x∗F (y) + yd(x) for all x, y ∈ R. The concept of generalized
left ∗-derivations cover the concept of left ∗-derivations. Moreover, a generalized
left ∗-derivation with d = 0 includes the concept of right ∗-centralizer (or right
∗-multiplier) i.e., an additive mapping T : R → R satisfying T (xy) = x∗T (y) for
all x, y ∈ R. Bell and Kappe [8] discussed derivations acting as a homomorphism
or an anti-homomorphism on a nonzero right ideal of a prime ring. Recall that
an additive mapping f from a ring R into itself is said to act as a homomorphism
or as an anti-homomorphism on S, an additive subgroup of R, if for each pair
x, y ∈ S, either f(xy) = f(x)f(y) or f(xy) = f(y)f(x) holds. Certainly the con-
cept of mappings acting as a homomorphism on S can be defined in similar way.
In [7], Shakir proved some results taking generalized left derivation of a prime
ring R which acts either as s homomorphism or as an anti-homomorphism on a
certain well behaved subset of R. The aim of the present section is to extend the
previous results in the setting of generalized left ∗-derivation which acts either as
a homomorphism or as an anti-homomorphism on prime ∗-ring R. More precisely,
we prove the following:

Theorem 2.1. Let R be a ∗-prime ring. Suppose that F : R → R is a generalized
left ∗-derivation with associated left ∗-derivation on R.

(i) If F acts as a homomorphism on R, then either R is commutative or F is
right ∗-centralizer on R.

(ii) If F acts as an anti-homomorphism on R, then either R is commutative or
F is right ∗-centralizer on R.

Proof. (i) Since F acts as a homomorphism on R, F (xy) = F (x)F (y) for all
x, y ∈ R and also from the definition of generalized left ∗-derivation, we have
F (xy) = x∗F (y) + yd(x) for all x, y ∈ R, where d is a left ∗-derivation of R.
This yields that

F (xyz) = F (x(yz)) = x∗F (yz) + yzd(x)
= x∗F (y)F (z) + yzd(x) for all x, y, z ∈ R.

(2.1)

On the other hand

F (xyz) = F ((xy)z) = F (xy)F (z)
= x∗F (y)F (z) + yd(x)F (z) for all x, y, z ∈ R.

(2.2)
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Now, combining the relations (2.1) and (2.2), we obtain x∗F (y)F (z) + yzd(x) =
x∗F (y)F (z)+yd(x)F (z) for all x, y, z ∈ R. This yields that y

(
zd(x)−d(x)F (z)

)
=

0 for all x, y, z ∈ R. Multiplying left side by zd(x)−d(x)F (z) to the above relation,
we obtain

(
zd(x) − d(x)F (z)

)
y
(
zd(x) − d(x)F (z)

)
= 0 for all x, y, z ∈ R. Then

primeness of R forces that

zd(x)− d(x)F (z) = 0 for all x, z ∈ R. (2.3)

Replacing x by xy in the above relation, we get

zd(xy)− d(xy)F (z) = 0 for all x, y, z ∈ R.

This implies that

zx∗d(y) + zyd(x)− x∗d(y)F (z)− yd(x)F (z) = 0 for all x, y, z ∈ R.

Using relation (2.3) in the above relation, we find that

zx∗d(y) + zyd(x)− x∗zd(y)− yzd(x) = 0 for all x, y, z ∈ R.

This yields that

[z, x∗]d(y) + [z, y]d(x) = 0 for all x, y, z ∈ R.

In particular, replacing z by x∗ in the above relation, we find that

[x∗, y]d(x) = 0 for all x, y ∈ R.

Putting yz for y in the above relation, we get

[x∗, y]zd(x) = 0 for all x, y ∈ R.

i.e., [x∗, y]Rd(x) = (0) for all x, y ∈ R. Now, consider A = {x ∈ R|[x∗, y] =
0} for all y ∈ R and B = {x ∈ R|d(x) = 0}. Then, each of A and B are additive
subgroups of R and R is the set theoretic union of A and B. But a group can
not be set theoretic union of its two proper subgroups. Hence, either A = R or
B = R. If A = R then, [x∗, y] = 0 for all x, y ∈ R. Replacing x by x∗ in the above
relation, we get [x, y] = 0 for all x, y ∈ R. Therefore, R is commutative. Again, if
B = R then d = 0 on R. Hence, we get the required result.

(ii) Suppose that F acts as an anti-homomorphism on R. Then F (xy) = F (y)F (x)
for all x, y ∈ R and also F (xy) = x∗F (y) + yd(x) for all x, y ∈ R. Combining the
above two relations, we get x∗F (y)+yd(x) = F (y)F (x) for all x, y ∈ R. Replacing
y by xy in the above relation, we obtain for all x, y ∈ R

x∗F (xy) + xyd(x) = F (xy)F (x)

i.e.,
x∗F (y)F (x) + xyd(x) = x∗F (y)F (x) + yd(x)F (x)



A Note on Homomorphisms and Anti-Homomorphisms on ∗-Ring 745

This implies that
xyd(x) = yd(x)F (x) for all x, y ∈ R. (2.4)

Replacing y by zy in the last relation, we get

xzyd(x) = zyd(x)F (x) for all x, y, z ∈ R.

Using relation (2.4) in the above relation, we obtain

xzyd(x) = zxyd(x) for all x, y, z ∈ R.

This yields that [x, z]yd(x) = 0 for all x, y, z ∈ R. Now, applying similar
techniques as used in the last paragraph of the proof of (i) yields the required
result.

We immediately get the following corollary from the above theorem:

Corollary 2.2. Let R be a ∗-prime ring. Suppose that d : R → R is a left
∗-derivation on R.

(i) If d acts as a homomorphism on R, then either R is commutative or d is
right ∗-centralizer on R.

(ii) If d acts as an anti-homomorphism on R, then either R is commutative or
d is right ∗-centralizer on R.

3 Generalized Left ∗-Biderivation

Motivated by the definition of left biderivation and generalized left
biderivation, we introduce the concept of left ∗-biderivation and generalized left
∗-biderivation which state as follows: A biadditive mapping B : R × R → R is
said to be a left ∗-biderivation if B(xy, z) = x∗B(y, z) + yB(x, z) and B(x, yz) =
y∗B(x, z) + zB(x, y) for all x, y, z ∈ R. A biadditive mapping G : R × R → R is
said to be generalized left ∗-biderivation if there exists a left ∗-biderivation B on
R such that G(xy, z) = x∗G(y, z) + yB(x, z) and G(x, yz) = y∗G(x, z) + zB(x, y)
for all x, y, z ∈ R. If G is generalized left ∗-biderivation on R, and if G(xy, z) =
G(x, z)G(y, z) and G(x, yz) = G(x, y)G(x, z) ( resp. G(xy, z) = G(y, z)G(x, z)
and G(x, yz) = G(z, x)G(y, x)) for all x, y, z ∈ R, then G is said to be generalized
left ∗-biderivation which acts as homomorphism (resp. anti-homomorphism) on
S. In this section we study the notion of generalized left ∗-biderivation which acts
as homomorphism or as an anti-homomorphism on S.

We begin our discussion with the following well known lemma due to Bresar
[9]:

Lemma 3.1 ([9, Lemma 2.4]). Let G1, G2, . . . , Gn be additive groups, R a semiprime
ring. Suppose that mappings S : G1 ×G2 × · · · ×Gn → R and T : G1 ×G2 × · · · ×
Gn → R are additive in each argument. If S(a1, a2, . . . , an)xT (a1, a2, . . . , an) = 0
for all x ∈ R, ai ∈ Gi i = 1, 2, . . . , n, then S(a1, a2, . . . , an)xT (b1, b2, . . . , bn) = 0
for all x ∈ R, ai, bi ∈ Gi, i = 1, 2, . . . , n.
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Theorem 3.2. Let R be a ∗-prime ring. Suppose that R admits a generalized left
∗-biderivation G : R×R → R with associated left ∗-biderivation B : R×R → R.

(i) If G acts as a homomorphism on R, then either R is commutative or G is
right ∗-bicentralizer on R.

(ii) If G acts as an anti-homomorphism on R, then either R is commutative or
G is right ∗-bicentralizer on R.

Proof. (i) By the definition of generalized left ∗-biderivation, we have G(xy, z) =
x∗G(y, z) + yB(x, z) for all x, y, z ∈ R. Since G acts as homomorphisms on R,
then G(xy, z) = G(x, z)G(y, z) for all x, y, z ∈ R. Now, consider

G(xyw, z) = G(x(yw), z)
= x∗G(yw, z) + ywB(x, z)
= x∗G(y, z)G(w, z) + ywB(x, z) for all x, y, z, w ∈ R.

On the other hand

G(xyw, z) = G((xy)w, z)
= G(xy, z)G(w, z)
= x∗G(y, z)G(w, z) + yB(x, z)G(w, z) for all x, y, z, w ∈ R.

Now, combining the above two relations, we get ywB(x, z)− yB(x, z)G(w, z) = 0
for all x, y, z, w ∈ R. This can be written as y

(
wB(x, z)−B(x, z)G(w, z)

)
= 0 for

all x, y, z, w ∈ R. Now, multiplying left side by wB(x, z) − B(x, z)G(w, z) to the
above relation and using primeness of R, we obtain

wB(x, z)−B(x, z)G(w, z) = 0 for all x, z, w ∈ R. (3.1)

Replacing x by xy in the above relation, we get wB(xy, z)−B(xy, z)G(w, z) = 0 for
all x, y, z, w ∈ R. This implies that wx∗B(y, z) +wyB(x, z)− x∗B(y, z)G(w, z)−
yB(x, z)G(w, z) = 0 for all x, y, z, w ∈ R. Using relation (3.1) in the above relation,
we get wx∗B(y, z)+wyB(x, z)−x∗wB(y, z)−ywB(x, z) = 0 for all x, y, z, w ∈ R.
This can be written as [x∗, w]B(y, z) + [y, w]B(x, z) = 0 for all x, y, z, w ∈ R. In
particular, putting w = x∗ in the above relation, we get [y, x∗]B(x, z) = 0 for all
x, y, z ∈ R. Replacing y by yr in the above relation, we get [y, x∗]rB(x, z) = 0
for all x, y, z, r ∈ R. Then by Lemma 3.1, we get [y, x∗]rB(t, z) = 0 for all
x, y, z, r, t ∈ R. Primeness of R forces that either [x∗, y] = 0 or B(t, z) = 0 for all
x, y, z, t ∈ R. If [x∗, y] = 0 for all x, y ∈ R. Replacing x by x∗, we get that R is
commutative and if B(t, z) = 0 for all t, z ∈ R, then G is right ∗-bicentralizer on
R.

(ii) Since G acts as an anti-homomorphism on R, G(xy, z) = G(y, z)G(x, z)
for all x, y, z ∈ R and also we have G(xy, z) = x∗G(y, z) + yB(x, z) for all
x, y, z ∈ R. Now, combining the above two relations, we get x∗G(y, z)+yB(x, z) =
G(y, z)G(x, z) for all x, y, z ∈ R. Replacing y by xy in the above relation, we get

x∗G(xy, z) + xyB(x, z) = G(xy, z)G(x, z) for all x, y, z ∈ R.
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This implies that

x∗G(y, z)G(x, z)+xyB(x, z) = x∗G(y, z)G(x, z)+yB(x, z)G(x, z) for all x, y, z ∈ R.

That is,
xyB(x, z) = yB(x, z)G(x, z) for all x, y, z ∈ R. (3.2)

Replacing y by ty in the above relation, we get

xtyB(x, z) = tyB(x, z)G(x, z) for all x, y, z, t ∈ R.

Using (3.2) in the above, we obtain

xtyB(x, z) = txyB(x, z) for all x, y, z, t ∈ R.

This implies that
[x, t]yB(x, z) = 0 for all x, y, z, t ∈ R.

Now, using Lemma 3.1, we get

[x, t]yB(s, z) = 0 for all x, y, z, t, s ∈ R.

Using primeness of R, we get either R is commutative or G is right ∗-bicentralizer
on R.

Corollary 3.3. Let R be a ∗-prime ring. Suppose that R admits a left ∗-biderivation
B : R×R → R.

(i) If B acts as a homomorphism on R, then either R is commutative or B is
right ∗-bicentralizer on R.

(ii) If B acts as an anti-homomorphism on R, then either R is commutative or
B is right ∗-bicentralizer on R.

4 Jordan ∗-Centralizer

Following [10], an additive mapping T : R → R is called a left (resp. right)
centralizer of R if T (xy) = T (x)y (resp. T (xy) = xT (y)) holds for all x, y ∈ R.
An additive mapping T : R → R is called a Jordan left (resp. right) centralizer of
R if T (x2) = T (x)x (resp. T (x2) = xT (x)) holds for all x ∈ R. Obviously, every
left (resp. right) centralizer is a Jordan left (resp. right) centralizer. The converse
is in general not true. In [10], Zalar proved that every Jordan left (resp. right)
centralizer on a 2-torsion-free semiprime ring is a left (resp. right) centralizer.
Recall that an additive mapping T : R → R is said to be left Jordan ∗-centralizer
(resp. right Jordan ∗-centralizer) if it satisfies T (x2) = T (x)x∗ (resp. T (x2) =
x∗T (x)) for all x ∈ R, a ∗-ring. If T is both left as well right then T is said
to be Jordan ∗-centralizer on a ∗-ring R. In the present section our aim is to
study the behavior of Jordan ∗-centralizer which acts as a homomorphism or an
anti-homomorphism on R.

For developing the proof of the main theorem we require the following lemma
essentially proved in [11]:
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Lemma 4.1 ([11, Proposition 2.1]). Let R be a 2-torsion free semiprime ring
with involution ∗. Suppose that T : R → R is an additive mapping satisfying
T (x2) = T (x)x∗ for all x ∈ R. Then T (xy) = T (y)x∗ for all x, y ∈ R.

Theorem 4.2. Let R be a ∗-ring. Suppose that T : R → R is a Jordan ∗-
centralizer on R.

(i) If R is semiprime and T acts as a homomorphism on R, then T maps R
into Z(R).

(ii) If R is prime and T acts as an anti-homomorphism on R, then either T = 0
or T is an involution map.

Proof. (i) Given that

T (xy) = T (x)T (y) for all x, y ∈ R. (4.1)

and also we have T (x2) = T (x)x∗ for all x ∈ R. Then, using Lemma 4.1, we get
T (xy) = T (y)x∗ for all x, y ∈ R. Combining the last expression with (4.1), we get

T (x)T (y) = T (y)x∗ for all x, y ∈ R. (4.2)

Replacing y by zy in the above relation, we find that

T (x)T (zy) = T (zy)x∗ for all x, y, z ∈ R.

This implies that T (x)T (y)z∗ = T (y)z∗x∗ for all x, y, z ∈ R. Using relation (4.2)
in the previous relation, we obtain T (y)x∗z∗ = T (y)z∗x∗ for all x, y, z ∈ R. This
can be written as T (y)[x∗, z∗] = 0 for all x, y, z ∈ R. Replacing x by x∗ and z by
z∗ in the above relation, we obtain T (y)[x, z] = 0 for all x, y, z ∈ R. Putting tx in
place of x in the above relation, we obtain

T (y)t[x, z] = 0 for all x, y, z, t ∈ R. (4.3)

Replacing t by st in the above relation, we get

T (y)st[x, z] = 0 for all x, y, z, t, s ∈ R. (4.4)

Multiplying left side by s in (4.3), we obtain

sT (y)t[x, z] = 0 for all x, y, z, t, s ∈ R. (4.5)

Now, combining (4.4) and (4.5), we get

[T (y), s]t[x, z] = 0 for all x, y, z, t, s ∈ R. (4.6)

In particular, putting s = z and x = T (y) we find that

[T (y), z]t[T (y), z] = 0 for all y, z, t ∈ R. (4.7)
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Semiprimeness of R forces that [T (y), z] = 0 for all y, z ∈ R. Hence, T maps R
into Z(R). Hence, we get the required result.

(ii) Now consider the case when T acts as an anti-homomorphism on R.

T (xy) = T (y)T (x) for all x, y ∈ R. (4.8)

Also, we have T (x2) = T (x)x∗ for all x ∈ R. Then, using Lemma 4.1, we get
T (xy) = T (y)x∗ for all x, y ∈ R. Combining the last expression with (4.8), we get

T (y)T (x) = T (y)x∗ for all x, y ∈ R. (4.9)

This can be written as T (y)(T (x)− x∗) = 0 for all x, y ∈ R. Replacing y by zy in
the above expression, we get T (y)z∗(T (x)− x∗) = 0 for all x, y ∈ R. Replacing z
by z∗ and using the primeness of R, we get either T = 0 or T is an involution.

In conclusion, it is tempting to conjecture as follows:

Conjecture 4.3. Let R be a ∗-semiprime ring. Suppose that T : R → R is a
Jordan ∗-centralizer on R and acts as an anti-homomorphism on R, then T = 0.

Acknowledgement : The authors are greatly indebted to the referee for his/her
valuable suggestions which have improved the paper immensely.
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