Thai Journal of Mathematics Volume 11 (2013) Number 3: 741-750
http://thaijmath.in.cmu.ac.th

A Note on Homomorphisms and Anti-Homomorphisms on $*$-Ring ${ }^{1}$

Nadeem ur Rehman ${ }^{\dagger, 2}$, Abu Zaid Ansari ${ }^{\dagger}$ and Claus Haetinger ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Mathematics, Aligarh Muslim University
Aligarh-202002, India
e-mail : rehman100@gmail.com (N. Rehman)
ansari.abuzaid@gmail.com (A.Z. Ansari)
${ }^{\ddagger}$ Center of Exact and Technological Sciences - CETEC
Univates University Center 95900-000, Lajeado-RS, Brazil
e-mail : chaet@univates.br

Abstract

In this paper we describe generalized left $*$-derivation $F: R \rightarrow R$ in *-prime ring and prove that if F acts as homomorphism or anti-homomorphism on R, then either R is commutative or F is a right $*$-centralizer on R. Analogous results have been proved for generalized left $*$-biderivation and Jordan $*$-centralizer on R.

Keywords : semiprime (prime) ring; involution; generalized left $*$-derivation; generalized left *-biderivation; Jordan *-centralizer.
2010 Mathematics Subject Classification : 16N60; 16W10; 16W25; 16U80.

1 Introduction

Throughout the present paper R will denote an associative ring with center $Z(R)$. Recall that R is prime if $a R b=(0)$ implies that $a=0$ or $b=0$ and R is said to semiprime ring if $a R a=(0)$ implies that $a=0$. As usual $[x, y]$ will denote the commutator $x y-y x$. We shall make an extensive use of commutator identities; $[x, y z]=[x, y] z+y[x, z]$ and $[x y, z]=[x, z] y+x[y, z]$. Let S be a

[^0]nonempty subset of R. A function $f: R \rightarrow R$ is said to be a centralizing on S if $[f(x), x] \in Z(R)$ for all $x \in S$. In particular, if $[f(x), x]=0$ for all $x \in S$, f is said to be commuting on S. An additive mapping $*: R \rightarrow R$ is said to be an involution if it satisfies $(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$. A ring R equipped with involution $*$ is called a ring with involution or $*$-ring. An additive mapping $\delta: R \rightarrow R$ is called a derivation (resp. Jordan derivation) if $\delta(x y)=\delta(x) y+x \delta(y)\left(\right.$ resp. $\left.\delta\left(x^{2}\right)=\delta(x) x+x \delta(x)\right)$ holds for all $x, y \in R$. An additive mapping $H: R \rightarrow R$ is called a generalized derivation if there exists a derivation $\delta: R \rightarrow R$ such that $H(x y)=H(x) y+x \delta(y)$ holds for all $x, y \in R$. In 1990 Bresar and Vukman [1] introduced the concept of left derivation as follows: An additive mapping $d: R \rightarrow R$ is called left derivation if $d(x y)=x d(y)+y d(x)$ holds for all $x, y \in R$. They proved that a prime ring which admits a nonzero left derivation is commutative. Obviously in a commutative ring, derivations (resp. generalized derivations) act as a left derivations (resp. generalized left derivations). However in noncommutative ring, the case is quite different in general.

According to [2], an additive mapping $F: R \rightarrow R$ is called a generalized left derivation (resp. generalized Jordan left derivation) if there exists a left derivation (resp. Jordan left derivation) $d: R \rightarrow R$ such that $F(x y)=x F(y)+y d(x)$ (resp. $\left.F\left(x^{2}\right)=x F(x)+x d(x)\right)$ holds for all $x, y \in R$. In [3] Bresar and Vukman introduced the concept of $*$-derivation as follows: Let R be a $*$-ring. An additive mapping $\delta: R \rightarrow R$ is said to be a $*$-derivation on R if $\delta(x y)=\delta(x) y^{*}+x \delta(y)$ holds for all $x, y \in R$. An additive mapping $H: R \rightarrow R$ is called generalized *-derivation if there exists a $*$-derivation δ such that $H(x y)=H(x) y^{*}+x \delta(y)$ for all $x, y \in R$.

Let S be a subring of a ring R. A mapping $B: R \times R \rightarrow R$ is said to be symmetric if $B(x, y)=B(y, x)$ for all $x, y \in R$. Following [4], a biadditive map $B: R \times R \rightarrow R$ is called a biderivation on S if it is a derivation in each argument, i.e., for every $x \in S$, maps $y \mapsto B(x, y)$ and $y \mapsto B(y, x)$ are derivations of S into R (viz. [5], where biderivations satisfying some special properties are studied). Typical examples are mappings of the form $(x, y) \mapsto c[x, y]$ where c is an element of the center of R. The notion of biderivation arises naturally in the study of additive commuting maps, since every commuting additive map $f: S \rightarrow R$ gives to rise a biderivation of S. Namely, linearization of the $[f(x), x]=0$ for all $x \in S$ yields that $[f(x), y]=[x, f(y)]$ for all $x, y \in S$. Therefore, we note that the map $(x, y) \mapsto$ $[f(x), y]$ is a biderivation. The concept of biderivation was introduced by Maska [6]. Further, Bresar [4] showed that every biderivation B of a noncommutative prime ring R is of the form $B(x, y)=\lambda[x, y]$ for some $\lambda \in C$, the extended centroid of R. In 2011 Shakir [7] introduced the concept of left biderivations and generalized left biderivations, which are defined as follows: a biadditive mapping $B: R \times R \rightarrow R$ is called a left biderivation (resp. Jordan left biderivation) if $B(x y, z)=x B(y, z)+$ $y B(x, z)$ and $B(z, x y)=x B(z, y)+y B(z, x)\left(\right.$ resp. $\left.B\left(x^{2}, z\right)=2 x B(x, z)\right)$ and $\left.B\left(z, x^{2}\right)=2 x B(z, x)\right)$ hold for all $x, y, z \in R$. A biadditive mapping $G: R \times R \rightarrow R$ is called a generalized left biderivation (resp. generalized Jordan left biderivation) if there exists a left biderivation (Jordan left biderivation) $B: R \times R \rightarrow R$ such that $G(x y, z)=x G(y, z)+y B(x, z)$ and $G(z, x y)=x G(z, y)+y B(z, x)($ resp.
$G\left(x^{2}, z\right)=x G(x, z)+x B(x, z)$ and $\left.G\left(z, x^{2}\right)=x G(z, x)+x B(z, x)\right)$ hold for all $x, y, z \in R$.

2 Generalized Left *-Derivation

Motivated by the definition of $*$-derivation and generalized $*$-derivation, we introduce the notions of left $*$-derivation and generalized left $*$-derivation as follows: let R be a $*$-ring. An additive mapping $d: R \rightarrow R$ is said to be a left $*$-derivation if $d(x y)=x^{*} d(y)+y d(x)$ for all $x, y \in R$. An additive mapping $F: R \rightarrow R$ is said to be a generalized left $*$-derivation if there exists a left $*$-derivation d such that $F(x y)=x^{*} F(y)+y d(x)$ for all $x, y \in R$. The concept of generalized left $*$-derivations cover the concept of left $*$-derivations. Moreover, a generalized left $*$-derivation with $d=0$ includes the concept of right $*$-centralizer (or right *-multiplier) i.e., an additive mapping $T: R \rightarrow R$ satisfying $T(x y)=x^{*} T(y)$ for all $x, y \in R$. Bell and Kappe [8] discussed derivations acting as a homomorphism or an anti-homomorphism on a nonzero right ideal of a prime ring. Recall that an additive mapping f from a ring R into itself is said to act as a homomorphism or as an anti-homomorphism on S, an additive subgroup of R, if for each pair $x, y \in S$, either $f(x y)=f(x) f(y)$ or $f(x y)=f(y) f(x)$ holds. Certainly the concept of mappings acting as a homomorphism on S can be defined in similar way. In [7], Shakir proved some results taking generalized left derivation of a prime ring R which acts either as s homomorphism or as an anti-homomorphism on a certain well behaved subset of R. The aim of the present section is to extend the previous results in the setting of generalized left $*$-derivation which acts either as a homomorphism or as an anti-homomorphism on prime $*-$ ring R. More precisely, we prove the following:

Theorem 2.1. Let R be $a *$-prime ring. Suppose that $F: R \rightarrow R$ is a generalized left $*$-derivation with associated left $*$-derivation on R.
(i) If F acts as a homomorphism on R, then either R is commutative or F is right $*$-centralizer on R.
(ii) If F acts as an anti-homomorphism on R, then either R is commutative or F is right *-centralizer on R.

Proof. (i) Since F acts as a homomorphism on $R, F(x y)=F(x) F(y)$ for all $x, y \in R$ and also from the definition of generalized left $*$-derivation, we have $F(x y)=x^{*} F(y)+y d(x)$ for all $x, y \in R$, where d is a left $*$-derivation of R.
This yields that

$$
\begin{align*}
F(x y z)=F(x(y z)) & =x^{*} F(y z)+y z d(x) \tag{2.1}\\
& =x^{*} F(y) F(z)+y z d(x) \text { for all } x, y, z \in R .
\end{align*}
$$

On the other hand

$$
\begin{align*}
F(x y z)=F((x y) z) & =F(x y) F(z) \tag{2.2}\\
& =x^{*} F(y) F(z)+y d(x) F(z) \text { for all } x, y, z \in R .
\end{align*}
$$

Now, combining the relations (2.1) and (2.2), we obtain $x^{*} F(y) F(z)+y z d(x)=$ $x^{*} F(y) F(z)+y d(x) F(z)$ for all $x, y, z \in R$. This yields that $y(z d(x)-d(x) F(z))=$ 0 for all $x, y, z \in R$. Multiplying left side by $z d(x)-d(x) F(z)$ to the above relation, we obtain $(z d(x)-d(x) F(z)) y(z d(x)-d(x) F(z))=0$ for all $x, y, z \in R$. Then primeness of R forces that

$$
\begin{equation*}
z d(x)-d(x) F(z)=0 \text { for all } x, z \in R \tag{2.3}
\end{equation*}
$$

Replacing x by $x y$ in the above relation, we get

$$
z d(x y)-d(x y) F(z)=0 \text { for all } x, y, z \in R
$$

This implies that

$$
z x^{*} d(y)+z y d(x)-x^{*} d(y) F(z)-y d(x) F(z)=0 \text { for all } x, y, z \in R .
$$

Using relation (2.3) in the above relation, we find that

$$
z x^{*} d(y)+z y d(x)-x^{*} z d(y)-y z d(x)=0 \text { for all } x, y, z \in R
$$

This yields that

$$
\left[z, x^{*}\right] d(y)+[z, y] d(x)=0 \text { for all } x, y, z \in R .
$$

In particular, replacing z by x^{*} in the above relation, we find that

$$
\left[x^{*}, y\right] d(x)=0 \text { for all } x, y \in R .
$$

Putting $y z$ for y in the above relation, we get

$$
\left[x^{*}, y\right] z d(x)=0 \text { for all } x, y \in R
$$

i.e., $\left[x^{*}, y\right] R d(x)=(0)$ for all $x, y \in R$. Now, consider $A=\left\{x \in R \mid\left[x^{*}, y\right]=\right.$ $0\}$ for all $y \in R$ and $B=\{x \in R \mid d(x)=0\}$. Then, each of A and B are additive subgroups of R and R is the set theoretic union of A and B. But a group can not be set theoretic union of its two proper subgroups. Hence, either $A=R$ or $B=R$. If $A=R$ then, $\left[x^{*}, y\right]=0$ for all $x, y \in R$. Replacing x by x^{*} in the above relation, we get $[x, y]=0$ for all $x, y \in R$. Therefore, R is commutative. Again, if $B=R$ then $d=0$ on R. Hence, we get the required result.
(ii) Suppose that F acts as an anti-homomorphism on R. Then $F(x y)=F(y) F(x)$ for all $x, y \in R$ and also $F(x y)=x^{*} F(y)+y d(x)$ for all $x, y \in R$. Combining the above two relations, we get $x^{*} F(y)+y d(x)=F(y) F(x)$ for all $x, y \in R$. Replacing y by $x y$ in the above relation, we obtain for all $x, y \in R$

$$
x^{*} F(x y)+x y d(x)=F(x y) F(x)
$$

i.e.,

$$
x^{*} F(y) F(x)+x y d(x)=x^{*} F(y) F(x)+y d(x) F(x)
$$

This implies that

$$
\begin{equation*}
x y d(x)=y d(x) F(x) \text { for all } x, y \in R \tag{2.4}
\end{equation*}
$$

Replacing y by $z y$ in the last relation, we get

$$
x z y d(x)=z y d(x) F(x) \text { for all } x, y, z \in R
$$

Using relation (2.4) in the above relation, we obtain

$$
x z y d(x)=z x y d(x) \text { for all } x, y, z \in R .
$$

This yields that $[x, z] y d(x)=0$ for all $x, y, z \in R$. Now, applying similar techniques as used in the last paragraph of the proof of (i) yields the required result.

We immediately get the following corollary from the above theorem:
Corollary 2.2. Let R be a*-prime ring. Suppose that $d: R \rightarrow R$ is a left *-derivation on R.
(i) If d acts as a homomorphism on R, then either R is commutative or d is right $*$-centralizer on R.
(ii) If d acts as an anti-homomorphism on R, then either R is commutative or d is right $*$-centralizer on R.

3 Generalized Left *-Biderivation

Motivated by the definition of left biderivation and generalized left biderivation, we introduce the concept of left $*$-biderivation and generalized left *-biderivation which state as follows: A biadditive mapping $B: R \times R \rightarrow R$ is said to be a left $*$-biderivation if $B(x y, z)=x^{*} B(y, z)+y B(x, z)$ and $B(x, y z)=$ $y^{*} B(x, z)+z B(x, y)$ for all $x, y, z \in R$. A biadditive mapping $G: R \times R \rightarrow R$ is said to be generalized left $*$-biderivation if there exists a left $*$-biderivation B on R such that $G(x y, z)=x^{*} G(y, z)+y B(x, z)$ and $G(x, y z)=y^{*} G(x, z)+z B(x, y)$ for all $x, y, z \in R$. If G is generalized left $*$-biderivation on R, and if $G(x y, z)=$ $G(x, z) G(y, z)$ and $G(x, y z)=G(x, y) G(x, z) \quad(\operatorname{resp} . G(x y, z)=G(y, z) G(x, z)$ and $G(x, y z)=G(z, x) G(y, x))$ for all $x, y, z \in R$, then G is said to be generalized left $*$-biderivation which acts as homomorphism (resp. anti-homomorphism) on S. In this section we study the notion of generalized left $*$-biderivation which acts as homomorphism or as an anti-homomorphism on S.

We begin our discussion with the following well known lemma due to Bresar [9]:
Lemma 3.1 ([9, Lemma 2.4]). Let $G_{1}, G_{2}, \ldots, G_{n}$ be additive groups, R a semiprime ring. Suppose that mappings $S: G_{1} \times G_{2} \times \cdots \times G_{n} \rightarrow R$ and $T: G_{1} \times G_{2} \times \cdots \times$ $G_{n} \rightarrow R$ are additive in each argument. If $S\left(a_{1}, a_{2}, \ldots, a_{n}\right) x T\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$ for all $x \in R, a_{i} \in G_{i} i=1,2, \ldots, n$, then $S\left(a_{1}, a_{2}, \ldots, a_{n}\right) x T\left(b_{1}, b_{2}, \ldots, b_{n}\right)=0$ for all $x \in R, a_{i}, b_{i} \in G_{i}, i=1,2, \ldots, n$.

Theorem 3.2. Let R be $a *$-prime ring. Suppose that R admits a generalized left *-biderivation $G: R \times R \rightarrow R$ with associated left $*$-biderivation $B: R \times R \rightarrow R$.
(i) If G acts as a homomorphism on R, then either R is commutative or G is right $*$-bicentralizer on R.
(ii) If G acts as an anti-homomorphism on R, then either R is commutative or G is right *-bicentralizer on R.

Proof. (i) By the definition of generalized left *-biderivation, we have $G(x y, z)=$ $x^{*} G(y, z)+y B(x, z)$ for all $x, y, z \in R$. Since G acts as homomorphisms on R, then $G(x y, z)=G(x, z) G(y, z)$ for all $x, y, z \in R$. Now, consider

$$
\begin{aligned}
G(x y w, z) & =G(x(y w), z) \\
& =x^{*} G(y w, z)+y w B(x, z) \\
& =x^{*} G(y, z) G(w, z)+y w B(x, z) \text { for all } x, y, z, w \in R .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
G(x y w, z) & =G((x y) w, z) \\
& =G(x y, z) G(w, z) \\
& =x^{*} G(y, z) G(w, z)+y B(x, z) G(w, z) \text { for all } x, y, z, w \in R .
\end{aligned}
$$

Now, combining the above two relations, we get $y w B(x, z)-y B(x, z) G(w, z)=0$ for all $x, y, z, w \in R$. This can be written as $y(w B(x, z)-B(x, z) G(w, z))=0$ for all $x, y, z, w \in R$. Now, multiplying left side by $w B(x, z)-B(x, z) G(w, z)$ to the above relation and using primeness of R, we obtain

$$
\begin{equation*}
w B(x, z)-B(x, z) G(w, z)=0 \text { for all } x, z, w \in R \tag{3.1}
\end{equation*}
$$

Replacing x by $x y$ in the above relation, we get $w B(x y, z)-B(x y, z) G(w, z)=0$ for all $x, y, z, w \in R$. This implies that $w x^{*} B(y, z)+w y B(x, z)-x^{*} B(y, z) G(w, z)-$ $y B(x, z) G(w, z)=0$ for all $x, y, z, w \in R$. Using relation (3.1) in the above relation, we get $w x^{*} B(y, z)+w y B(x, z)-x^{*} w B(y, z)-y w B(x, z)=0$ for all $x, y, z, w \in R$. This can be written as $\left[x^{*}, w\right] B(y, z)+[y, w] B(x, z)=0$ for all $x, y, z, w \in R$. In particular, putting $w=x^{*}$ in the above relation, we get $\left[y, x^{*}\right] B(x, z)=0$ for all $x, y, z \in R$. Replacing y by $y r$ in the above relation, we get $\left[y, x^{*}\right] r B(x, z)=0$ for all $x, y, z, r \in R$. Then by Lemma 3.1, we get $\left[y, x^{*}\right] r B(t, z)=0$ for all $x, y, z, r, t \in R$. Primeness of R forces that either $\left[x^{*}, y\right]=0$ or $B(t, z)=0$ for all $x, y, z, t \in R$. If $\left[x^{*}, y\right]=0$ for all $x, y \in R$. Replacing x by x^{*}, we get that R is commutative and if $B(t, z)=0$ for all $t, z \in R$, then G is right $*$-bicentralizer on R.
(ii) Since G acts as an anti-homomorphism on $R, G(x y, z)=G(y, z) G(x, z)$ for all $x, y, z \in R$ and also we have $G(x y, z)=x^{*} G(y, z)+y B(x, z)$ for all $x, y, z \in R$. Now, combining the above two relations, we get $x^{*} G(y, z)+y B(x, z)=$ $G(y, z) G(x, z)$ for all $x, y, z \in R$. Replacing y by $x y$ in the above relation, we get

$$
x^{*} G(x y, z)+x y B(x, z)=G(x y, z) G(x, z) \text { for all } x, y, z \in R
$$

This implies that
$x^{*} G(y, z) G(x, z)+x y B(x, z)=x^{*} G(y, z) G(x, z)+y B(x, z) G(x, z)$ for all $x, y, z \in R$.
That is,

$$
\begin{equation*}
x y B(x, z)=y B(x, z) G(x, z) \text { for all } x, y, z \in R . \tag{3.2}
\end{equation*}
$$

Replacing y by $t y$ in the above relation, we get

$$
x t y B(x, z)=\operatorname{ty} B(x, z) G(x, z) \text { for all } x, y, z, t \in R
$$

Using (3.2) in the above, we obtain

$$
x \operatorname{ty} B(x, z)=\operatorname{txy} B(x, z) \text { for all } x, y, z, t \in R .
$$

This implies that

$$
[x, t] y B(x, z)=0 \text { for all } x, y, z, t \in R .
$$

Now, using Lemma 3.1, we get

$$
[x, t] y B(s, z)=0 \text { for all } x, y, z, t, s \in R
$$

Using primeness of R, we get either R is commutative or G is right $*$-bicentralizer on R.

Corollary 3.3. Let R be $a *$-prime ring. Suppose that R admits a left $*$-biderivation $B: R \times R \rightarrow R$.
(i) If B acts as a homomorphism on R, then either R is commutative or B is right *-bicentralizer on R.
(ii) If B acts as an anti-homomorphism on R, then either R is commutative or B is right $*$-bicentralizer on R.

4 Jordan *-Centralizer

Following [10], an additive mapping $T: R \rightarrow R$ is called a left (resp. right) centralizer of R if $T(x y)=T(x) y$ (resp. $T(x y)=x T(y)$) holds for all $x, y \in R$. An additive mapping $T: R \rightarrow R$ is called a Jordan left (resp. right) centralizer of R if $T\left(x^{2}\right)=T(x) x$ (resp. $\left.T\left(x^{2}\right)=x T(x)\right)$ holds for all $x \in R$. Obviously, every left (resp. right) centralizer is a Jordan left (resp. right) centralizer. The converse is in general not true. In [10], Zalar proved that every Jordan left (resp. right) centralizer on a 2 -torsion-free semiprime ring is a left (resp. right) centralizer. Recall that an additive mapping $T: R \rightarrow R$ is said to be left Jordan $*$-centralizer (resp. right Jordan $*$-centralizer) if it satisfies $T\left(x^{2}\right)=T(x) x^{*}$ (resp. $T\left(x^{2}\right)=$ $x^{*} T(x)$) for all $x \in R$, a *-ring. If T is both left as well right then T is said to be Jordan $*$-centralizer on a $*$-ring R. In the present section our aim is to study the behavior of Jordan $*$-centralizer which acts as a homomorphism or an anti-homomorphism on R.

For developing the proof of the main theorem we require the following lemma essentially proved in [11]:

Lemma 4.1 ([11, Proposition 2.1]). Let R be a 2-torsion free semiprime ring with involution $*$. Suppose that $T: R \rightarrow R$ is an additive mapping satisfying $T\left(x^{2}\right)=T(x) x^{*}$ for all $x \in R$. Then $T(x y)=T(y) x^{*}$ for all $x, y \in R$.

Theorem 4.2. Let R be a*-ring. Suppose that $T: R \rightarrow R$ is a Jordan *centralizer on R.
(i) If R is semiprime and T acts as a homomorphism on R, then T maps R into $Z(R)$.
(ii) If R is prime and T acts as an anti-homomorphism on R, then either $T=0$ or T is an involution map.

Proof. (i) Given that

$$
\begin{equation*}
T(x y)=T(x) T(y) \text { for all } x, y \in R \tag{4.1}
\end{equation*}
$$

and also we have $T\left(x^{2}\right)=T(x) x^{*}$ for all $x \in R$. Then, using Lemma 4.1, we get $T(x y)=T(y) x^{*}$ for all $x, y \in R$. Combining the last expression with (4.1), we get

$$
\begin{equation*}
T(x) T(y)=T(y) x^{*} \text { for all } x, y \in R \tag{4.2}
\end{equation*}
$$

Replacing y by $z y$ in the above relation, we find that

$$
T(x) T(z y)=T(z y) x^{*} \text { for all } x, y, z \in R
$$

This implies that $T(x) T(y) z^{*}=T(y) z^{*} x^{*}$ for all $x, y, z \in R$. Using relation (4.2) in the previous relation, we obtain $T(y) x^{*} z^{*}=T(y) z^{*} x^{*}$ for all $x, y, z \in R$. This can be written as $T(y)\left[x^{*}, z^{*}\right]=0$ for all $x, y, z \in R$. Replacing x by x^{*} and z by z^{*} in the above relation, we obtain $T(y)[x, z]=0$ for all $x, y, z \in R$. Putting $t x$ in place of x in the above relation, we obtain

$$
\begin{equation*}
T(y) t[x, z]=0 \text { for all } x, y, z, t \in R \tag{4.3}
\end{equation*}
$$

Replacing t by st in the above relation, we get

$$
\begin{equation*}
T(y) s t[x, z]=0 \text { for all } x, y, z, t, s \in R . \tag{4.4}
\end{equation*}
$$

Multiplying left side by s in (4.3), we obtain

$$
\begin{equation*}
s T(y) t[x, z]=0 \text { for all } x, y, z, t, s \in R . \tag{4.5}
\end{equation*}
$$

Now, combining (4.4) and (4.5), we get

$$
\begin{equation*}
[T(y), s] t[x, z]=0 \text { for all } x, y, z, t, s \in R . \tag{4.6}
\end{equation*}
$$

In particular, putting $s=z$ and $x=T(y)$ we find that

$$
\begin{equation*}
[T(y), z] t[T(y), z]=0 \text { for all } y, z, t \in R \tag{4.7}
\end{equation*}
$$

Semiprimeness of R forces that $[T(y), z]=0$ for all $y, z \in R$. Hence, T maps R into $Z(R)$. Hence, we get the required result.
(ii) Now consider the case when T acts as an anti-homomorphism on R.

$$
\begin{equation*}
T(x y)=T(y) T(x) \text { for all } x, y \in R \tag{4.8}
\end{equation*}
$$

Also, we have $T\left(x^{2}\right)=T(x) x^{*}$ for all $x \in R$. Then, using Lemma 4.1, we get $T(x y)=T(y) x^{*}$ for all $x, y \in R$. Combining the last expression with (4.8), we get

$$
\begin{equation*}
T(y) T(x)=T(y) x^{*} \text { for all } x, y \in R \tag{4.9}
\end{equation*}
$$

This can be written as $T(y)\left(T(x)-x^{*}\right)=0$ for all $x, y \in R$. Replacing y by $z y$ in the above expression, we get $T(y) z^{*}\left(T(x)-x^{*}\right)=0$ for all $x, y \in R$. Replacing z by z^{*} and using the primeness of R, we get either $T=0$ or T is an involution.

In conclusion, it is tempting to conjecture as follows:
Conjecture 4.3. Let R be a *-semiprime ring. Suppose that $T: R \rightarrow R$ is a Jordan $*$-centralizer on R and acts as an anti-homomorphism on R, then $T=0$.

Acknowledgement : The authors are greatly indebted to the referee for his/her valuable suggestions which have improved the paper immensely.

References

[1] M. Bresar, J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990) 7-16.
[2] M. Ashraf, S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45 (2) (2008) 253-261.
[3] M. Bresar, J. Vukman, On some additive mappings in rings with involution, Aequationes Math. 38 (1989) 178-185.
[4] M. Bresar, On generalized biderivations and related maps. J. Algebra 172 (1995) 764-786.
[5] J. Vukman, Two results concerning symmetric biderivations on prime rings, Aequationes Math. 40 (1990) 181-189.
[6] Gy. Maska, Remark on symmetric biadditive functions having non-negative diagonalization, Glasnik Matematicki 15 (1980) 279-280.
[7] S. Ali, On generalized left derivations in rings and Banach algebras, Aequationes Math. 81 (2011) 209-226.
[8] H.E. Bell, L.E. Kappe, Ring in which derivations satisfying certain algebraic conditions, Acta Math. Hungar. 53 (1989) 339-340.
[9] M. Bresar, Jordan mappings of semiprime rings, J. Algebra 127 (1989) 218228.
[10] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991) 609-614.
[11] N. Rehman, A.Z. Ansari, Additive mappings of semiprime rings with involution, The Alig. Bull. Math. 30 (1-2) (2011) 1-7.
(Accepted 19 July 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ This research is supported by UGC, India, Grant No. 36-8/2008(SR).
 ${ }^{2}$ Corresponding author.

