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Abstract : Graph algebras establish a connection between directed graphs with-
out multiple edges and special universal algebras of type (2,0). We say that a
graph G satisfies a term equation s ≈ t if the corresponding graph algebra A(G)
satisfies s ≈ t. A class of graph algebras V is called a graph variety if V = ModgΣ

where Σ is a subset of T (X) × T (X). A graph variety V ′ = ModgΣ
′

is called an

(x(yz))z with opposite loop and reverse arc graph variety if Σ
′

is a set of (x(yz))z
with opposite loop and reverse arc term equations. A term equation s ≈ t is called
an identity in a variety V if A(G) satisfies s ≈ t for all G ∈ V . An identity s ≈ t of
a variety V is called a hyperidentity of a graph algebra A(G), G ∈ V whenever the
operation symbols occuring in s and t are replaced by any term operations of A(G)
of the appropriate arity, the resulting identities hold in A(G). An identity s ≈ t of
a variety V is called an M -hyperidentity of a graph algebra A(G), G ∈ V whenever
the operation symbols occuring in s and t are replaced by any term operations in a
subgroupoid M of term operations of A(G) of the appropriate arity, the resulting
identities hold in A(G).

In this paper we characterize special M -hyperidentities in each (x(yz))z with
opposite loop and reverse arc graph variety.
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1 Introduction

An identity s ≈ t of terms s, t of any type τ is called a hyperidentity (M-
hyperidentity) of an algebra A if whenever the operation symbols occurring in s
and t are replaced by any term operations (any term operations in a subgroupoid
M of term operations) of A of the appropriate arity (see the meaning in [1] page
3), the resulting identity holds in A. Hyperidentities can be defined more precisely
by using the concept of a hypersubstitution, which was introduced by Denecke,
Lau, Pöschel and Schweigert in [2].

We fix a type τ = (ni)i∈I , ni > 0 for all i ∈ I, and operation symbols (fi)i∈I ,
where fi is ni − ary. Let Wτ (X) be the set of all terms of type τ over some fixed
alphabet X, and let Alg(τ) be the class of all algebras of type τ . Then a mapping

σ : {fi|i ∈ I} −→ Wτ (X)

which assigns to every ni−ary operation symbol fi an ni−ary term will be called
a hypersubstitution of type τ (for short, a hypersubstitution). By σ̂ we denote the
extension of the hypersubstitution σ to a mapping

σ̂ : Wτ (X) −→ Wτ (X).

The term σ̂[t] is defined inductively by

(i) σ̂[x] = x for any variable x in the alphabet X, and

(ii) σ̂[fi(t1, . . . , tni)] = σ(fi)
Wτ (X)(σ̂[t1], . . . , σ̂[tni ]).

Here σ(fi)
Wτ (X) on the right hand side of (ii) is the operation induced by σ(fi)

on the term algebra with the universe Wτ (X).
Graph algebras have been invented in [3] to obtain examples of nonfinitely

based finite algebras. To recall this concept, let G = (V,E) be a (directed) graph
with the vertex set V and the set of edges E ⊆ V × V . Define the graph algebra
A(G) corresponding to G with the underlying set V ∪ {∞}, where ∞ is a symbol
outside V , and with two basic operations, namely a nullary operation pointing to
∞ and a binary one denoted by juxtaposition, given for u, v ∈ V ∪ {∞} by

uv =

{
u, if (u, v) ∈ E,
∞, otherwise.

In [4], graph varieties had been investigated for finite undirected graphs in
order to get graph theoretic results (structure theorems) from universal algebra
via graph algebras. In [5], these investigations are extended to arbitrary (finite)
directed graphs where the authors ask for a graph theoretic characterization of
graph varieties, i.e., of classes of graphs which can be defined by identities for
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their corresponding graph algebras. The answer is a theorem of Birkhoff-type,
which uses graph theoretic closure operations. A class of finite directed graphs is
equational (i.e., a graph variety) if and only if it is closed with respect to finite
restricted pointed subproducts and isomorphic copies.

In [6–8], Ananpinitwatna and Poomsa-ard characterized special M-hyperidentity
in all biregular leftmost, in all (x(yz))z with loop and in all triregular leftmost
without loop and reverse arc graph varieties respectively. In [9], Krapeedang and
Poomsa-ard characterized the class of (x(yz))z with opposite loop and reverse arc
graph varieties. In [10], Ananpinitwatna and Poomsa-ard characterized identities
in (x(yz))z with opposite loop and reverse arc graph varieties. In [11], Tongmoon
and Poomsa-ard characterized hyperidentities in (x(yz))z with opposite loop and
reverse arc graph varieties.

In this paper we characterize special M -hyperidentities in each (x(yz))z with
opposite loop and reverse arc graph variety.

2 Terms, Identities and Graph Varieties

Dealing with terms for graph algebras, the underlying formal language has to
contain a binary operation symbol (juxtaposition) and a symbol for the constant
∞ (denoted by ∞, too).

Definition 2.1. The set T (X) of all terms over the alphabet

X = {x1, x2, x3, . . .}

is defined inductively as follows:

(i) every variable xi, i = 1, 2, 3, . . . , and ∞ are terms;

(ii) if t1 and t2 are terms, then t1t2 is a term;

(iii) T (X) is the set of all terms which can be obtained from (i) and (ii) in finitely
many steps.

Terms built up from the two-element set X2 = {x1, x2} of variables are thus binary
terms. We denote the set of all binary terms by T (X2). The leftmost variable of
a term t is denoted by L(t) and rightmost variable of a term t is denoted by R(t).
A term, in which the symbol ∞ occurs is called a trivial term.

Definition 2.2. For each non-trivial term t of type τ = (2, 0) one can define
a directed graph G(t) = (V (t), E(t)), where the vertex set V (t) is the set of all
variables occurring in t and the edge set E(t) is defined inductively by

E(t) = ϕ if t is a variable and E(t1t2) = E(t1) ∪ E(t2) ∪ {(L(t1), L(t2))}

where t = t1t2 is a compound term.
L(t) is called the root of the graph G(t), and the pair (G(t), L(t)) is the rooted

graph corresponding to t. Formally, we assign the empty graph ϕ to every trivial
term t.
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Definition 2.3. A non-trivial term t of type τ = (2, 0) is called (x(yz))z with op-
posite loop and reverse arc term if and only if G(t) is a graph with V (t) = {x, y, z}
and E(t) = E ∪ (∪X∈E′X), where E = {(x, y), (x, z), (y, z)}, E′ ⊂ {U, V,W},
E′ ̸= ϕ and U = {(y, x), (z, z)}, V = {(z, x), (y, y)}, W = {(z, y), (x, x)}. A term
equation s ≈ t is called (x(yz)))z with opposite loop and reverse arc equation if s
and t are (x(yz))z with opposite loop and reverse arc terms

Definition 2.4. We say that a graph G = (V,E) satisfies an identity s ≈ t if
the corresponding graph algebra A(G) satisfies s ≈ t (i.e. we have s = t for every
assignment V (s)∪ V (t) → V ∪ {∞}), and in this case, we write G |= s ≈ t. Given
a class G of graphs and a set Σ of identities (i.e., Σ ⊂ T (X)×T (X)) we introduce
the following notation:

G |= Σ if G |= s ≈ t for all s ≈ t ∈ Σ, G |= s ≈ t if G |= s ≈ t for all G ∈ G,
G |= Σ if G |= Σ for all G ∈ G, IdG = {s ≈ t | s, t ∈ T (X), G |= s ≈ t},
ModgΣ = {G | G is a graph and G |= Σ}, Vg(G) = ModgIdG.

Vg(G) is called the graph variety generated by G and G is called graph variety if
Vg(G) = G. G is called equational if there exists a set Σ′ of identities such that
G = ModgΣ′. Obviously Vg(G) = G if and only if G is an equational class.

3 (x(yz))z with Opposite Loop and Reverse Arc
Graph Varieties and Identities

All (x(yz))z with opposite loop and reverse arc graph varieties were character-
ized in [9] which found that K = {K0,K1,K3, . . . ,K8}, where

K0 = Modg{(x(yz))z ≈ (x(yz))z},
K1 = Modg{((xx)(y(zy)))z ≈ (x((yy)(zx)))z},
K2 = Modg{((xx)(y(zy)))z ≈ (x((yx)(zz)))z},
K3 = Modg{(x((yy)(zx)))z ≈ (x((yx)(zz)))z},
K4 = Modg{((xx)(y(zy)))z ≈ ((xx)((yy)((zx)y)))z},
K5 = Modg{(x((yy)(zx)))z ≈ ((xx)((yy)((zx)y)))z},
K6 = Modg{(x((yx)(zz)))z ≈ ((xx)((yx)((zy)z)))z},
K7 = Modg{((xx)((yy)((zx)y)))z ≈ ((xx)(((yx)y)(((zx)y)z)))z},
K8 = Modg{((xx)(y(zy)))z ≈ (x((yy)(zx)))z, ((xx)(y(zy)))z ≈ (x(yx)(zz)))z}

are all (x(yz))z with opposite loop and reverse arc graph varieties.
In [10], Ananpinitwatna and Poomsa-ard characterized identities in all (x(yz))z

with opposite loop and reverse arc graph varieties which found that if s ≈ t is a
trivial equation (i.e. s and t are both trivial or L(s) = L(t), G(s) = G(t)), then
s ≈ t is an identity in every (x(yz))z with opposite loop and reverse arc graph
varieties. Otherwise the common properties are L(s) = L(t) and V (s) = V (t).
For other properties we need some notation about terms. For any non-trivial term
t and x ∈ V (t), let
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Ax(t) = {x′ ∈ V (t) | x′ is an in-neighbor of x in G(t)},

A
′

x(t) = {x′ ∈ V (t) | x′ is an out-neighbor of x in G(t)},

A
′′

x(t) = {x′ ∈ V (t) | x′ is an in-neighbor and an out-neighbor of x in G(t)},

A0
x(t) = {x}, A1

x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ A′
x(t) which has z

such that (x, z), (z, x), (x′, z) ∈ E(t) or x′ ∈ Ax(t) which has z′, z′′ such that
(x, z′), (z′, x), (x′, z′) ∈ E(t) or (x, z′′), (z′′, x), (z′′, x′) ∈ E(t)},

A2
x(t) =

∪
y∈A1

x(t)
A1

y(t),. . . , An
x(t) =

∪
y∈An−1

x (t) A
1
y(t), A∗

x(t) =
∪∞

i=0 A
i
x(t),

B0
x(t) = {x}, B1

x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ Ax(t) which has
z such that (x, z), (z, x), (x′, z) ∈ E(t) or x′ ∈ A′

x(t) which has z′ such that
(x, z′), (z′, x), (z′, x′) ∈ E(t)},

B2
x(t) =

∪
y∈B1

x(t)
B1

y(t),. . . , Bn
x (t) =

∪
y∈Bn−1

x (t) B
1
y(t), B∗

x(t) =
∪∞

i=0 B
i
x(t),

C0
x(t) = {x}, C1

x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ A′
x(t) which has z, z′

such that (x, z), (z, x), (x′, z) ∈ E(t) or (x, z′), (z′, x), (z′, x′) ∈ E(t) or x′ ∈ Ax(t)
which has z′′ such that (x, z′′), (z′′, x), (z′′, x′) ∈ E(t)},

C2
x(t) =

∪
y∈C1

x(t)
C1

y(t),. . . , Cn
x (t) =

∪
y∈Cn−1

x (t) C
1
y(t), C∗

x(t) =
∪∞

i=0 C
i
x(t),

D0
x(t) = {x}, D1

x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ Ax(t) which has z such
that (x, z), (z, x), (x′, z) ∈ E(t)} ,

D2
x(t) =

∪
y∈D1

x(t)
D1

y(t),. . . , Dn
x (t) =

∪
y∈Dn−1

x (t) D
1
y(t), D∗

x(t) =
∪∞

i=0 D
i
x(t),

F 0
x (t) = {x}, F 1

x (t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ Ax(t) which has
z such that (x, z), (z, x), (z, x′) ∈ E(t) or x′ ∈ A′

x(t) which has z′ such that
(x, z′), (z′, x), (x′, z′) ∈ E(t)},

F 2
x (t) =

∪
y∈F 1

x (t)
F 1
y (t),. . . , Fn

x (t) =
∪

y∈Fn−1
x (t) F

1
y (t), F ∗

x (t) =
∪∞

i=0 F
i
x(t),

H0
x(t) = {x}, H1

x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t) or x′ ∈ A′
x(t) which has z such

that (x, z), (z, x), (z, x′) ∈ E(t)},

H2
x(t) =

∪
y∈H1

x(t)
H1

y (t),. . . , Hn
x (t) =

∪
y∈Hn−1

x (t) H
1
y (t), H∗

x(t) =
∪∞

i=0 H
i
x(t),

I0x(t) = {x}, I1x(t) = {x′ ∈ V (t) | x′ ∈ A
′′

x(t)},

I2x(t) =
∪

y∈I1
x(t)

I1y (t),. . . , Inx (t) =
∪

y∈In−1
x (t) I

1
y (t), I∗x(t) =

∪∞
i=0 I

i
x(t). Then

all identities in each (x(yz))z with opposite loop and reverse arc graph variety are
characterized in the following table:
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Table 1. The properties of identities in each graph variety.
Variety Properties of s and t.
K1 (i) for any x ∈ V (s), there exists y ∈ A∗

x(s) such that
(y, y) ∈ E(s) iff there exists z ∈ A∗

x(t) such that (z, z) ∈ E(t),
(ii) for any x, y ∈ V (s) with x ̸= y, (x, y) ∈ E(s) or
(y, x) ∈ E(s) and, there exists y′ ∈ A∗

y(s), x′ ∈ A∗
x(s) such

that (y′, y′) ∈ E(s) and (x′, x′) ∈ E(s)
iff (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there exists y′′ ∈ A∗

y(t),
x′′ ∈ A∗

x(t) such that (y′′, y′′) ∈ E(t) and (x′′, x′′) ∈ E(t)
K2 (i) for any x ∈ V (s), there exists y ∈ B∗

x(s) such that
(y, y) ∈ E(s) iff there exists z ∈ B∗

x(t) such that (z, z) ∈ E(t),
(ii) for any x, y ∈ V (s) with x ̸= y, (x, y) ∈ E(s) or
(y, x) ∈ E(s) and, there exists y′ ∈ B∗

y(s), x′ ∈ B∗
x(s) such

that (y′, y′) ∈ E(s) and (x′, x′) ∈ E(s)
iff (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there exists y′′ ∈ B∗

y(t),
x′′ ∈ B∗

x(t) such that (y′′, y′′) ∈ E(t) and (x′′, x′′) ∈ E(t)
K3 (i) for any x ∈ V (s), there exists y ∈ C∗

x(s) such that
(y, y) ∈ E(s) iff there exists z ∈ C∗

x(t) such that (z, z) ∈ E(t),
(ii) for any x, y ∈ V (s) with x ̸= y, (x, y) ∈ E(s) or
(y, x) ∈ E(s) and, there exists y′ ∈ C∗

y (s), x′ ∈ C∗
x(s) such

that (y′, y′) ∈ E(s) and (x′, x′) ∈ E(s)
iff (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there exists y′′ ∈ C∗

y (t),
x′′ ∈ C∗

x(t) such that (y′′, y′′) ∈ E(t) and (x′′, x′′) ∈ E(t)
K4 (i) for any x ∈ V (s), there exists y ∈ D∗

x(s) such that
(y, y) ∈ E(s) iff there exists z ∈ D∗

x(t) such that (z, z) ∈ E(t),
(ii) for any x, y ∈ V (s) with x ̸= y, (x, y) ∈ E(s) or
(y, x) ∈ E(s) and, there exists y′ ∈ D∗

y(s), x′ ∈ D∗
x(s) such

that (y′, y′) ∈ E(s) and (x′, x′) ∈ E(s)
iff (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there exists y′′ ∈ D∗

y(t),
x′′ ∈ D∗

x(t) such that (y′′, y′′) ∈ E(t) and (x′′, x′′) ∈ E(t)
K5 (i) for any x ∈ V (s), there exists y ∈ F ∗

x (s) such that
(y, y) ∈ E(s) iff there exists z ∈ F ∗

x (t) such that (z, z) ∈ E(t),
(ii) for any x, y ∈ V (s) with x ̸= y, (x, y) ∈ E(s) or
(y, x) ∈ E(s) and, there exists y′ ∈ F ∗

y (s), x′ ∈ F ∗
x (s) such

that (y′, y′) ∈ E(s) and (x′, x′) ∈ E(s)
iff (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there exists y′′ ∈ F ∗

y (t),
x′′ ∈ F ∗

x (t) such that (y′′, y′′) ∈ E(t) and (x′′, x′′) ∈ E(t)
K6 (i) for any x ∈ V (s), there exists y ∈ H∗

x(s) such that
(y, y) ∈ E(s) iff there exists z ∈ H∗

x(t) such that (z, z) ∈ E(t),
(ii) for any x, y ∈ V (s) with x ̸= y, (x, y) ∈ E(s) or
(y, x) ∈ E(s) and, there exists y′ ∈ H∗

y (s), x′ ∈ H∗
x(s) such

that (y′, y′) ∈ E(s) and (x′, x′) ∈ E(s)
iff (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there exists y′′ ∈ H∗

y (t),
x′′ ∈ H∗

x(t) such that (y′′, y′′) ∈ E(t) and (x′′, x′′) ∈ E(t)
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Table 1. (Continue).
Variety Properties of s and t.
K7 (i) for any x ∈ V (s), there exists y ∈ Ix(s) such that

(y, y) ∈ E(s) iff there exists z ∈ Ix(t) such that (z, z) ∈ E(t),
(ii) for any x, y ∈ V (s) with x ̸= y, (x, y) ∈ E(s) or
(y, x) ∈ E(s) and, there exists S ⊂ E(s) such that if G ∈ K7

and h is a homomorphism from G(s) into G, then
(h(x), h(y)) ∈ E iff (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there
exists S′ ⊂ E(t) such that if G′ ∈ K7 and h is a
homomorphism from G(s) into G′, then (h′(x), h′(y)) ∈ E′

K8 (i) for any x ∈ V (s), there exists y ∈ A∗
x(s) ∪B∗

x(s) such
that (y, y) ∈ E(s) iff there exists z ∈ A∗

x(t) ∪B∗
x(t) such

that (z, z) ∈ E(t),
(ii) for any x, y ∈ V (s) with x ̸= y, (x, y) ∈ E(s) or
(y, x) ∈ E(s) and, there exists y′ ∈ A∗

y(s) ∪B∗
y(s),

x′ ∈ A∗
x(s) ∪B∗

x(s) such that (y′, y′) ∈ E(s) and (x′, x′) ∈
E(s) iff (x, y) ∈ E(s) or (y, x) ∈ E(s) and, there exists
y′′ ∈ A∗

y(t) ∪B∗
y(t), x′′ ∈ A∗

x(t) ∪B∗
x(t) such that

(y′′, y′′) ∈ E(t) and (x′′, x′′) ∈ E(t)

4 Hypersubstitution and ProperHypersubstitution

Let K be a graph variety. Now we want to formulate precisely the concept of
a graph hypersubstitution for graph algebras.

Definition 4.1. A mapping σ : {f,∞} → T (X2), where X2 = {x1, x2} and f is
the operation symbol corresponding to the binary operation of a graph algebra is
called graph hypersubstitution if σ(∞) = ∞ and σ(f) = s ∈ T (X2). The graph
hypersubstitution with σ(f) = s is denoted by σs.

Definition 4.2. An identity s ≈ t is a K graph hyperidentity iff for all graph
hypersubstitutions σ, the equations σ̂[s] ≈ σ̂[t] are identities in K.

If we want to check that an identity s ≈ t is a hyperidentity in K we can
restrict our consideration to a (small) subset of HypG - the set of all graph hyper-
substitutions.

In [12], the following relation between hypersubstitutions was defined:

Definition 4.3. Two graph hypersubstitutions σ1, σ2 are called K-equivalent iff
σ1(f) ≈ σ2(f) is an idetity in K. In this case we write σ1 ∼K σ2.

The following lemma was proved in [13].

Lemma 4.4. If σ̂1[s] ≈ σ̂1[t] ∈ IdK and σ1 ∼K σ2 then, σ̂2[s] ≈ σ̂2[t] ∈ IdK.
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Therefore, it is enough to consider the quotient set HypG/ ∼K.
In [14], it was shown that any non-trivial term t over the class of graph algebras

has a uniquely determined normal form term NF (t) and there is an algorithm to
construct the normal form term to a given term t. Without difficulties, we can
show that G(NF (t)) = G(t), L(NF (t)) = L(t).

The following definition was given in [15].

Definition 4.5. The graph hypersubstitution σNF (t), is called normal form graph
hypersubstitution. Here NF (t) is the normal form of the binary term t.

Since for any binary term t the rooted graphs of t and NF (t) are the same,
we have t ≈ NF (t) ∈ IdK. Then for any graph hypersubstitution σt with σt(f) =
t ∈ T (X2), one obtains σt ∼K σNF (t).

In [15], all rooted graphs with at most two vertices were considered. Then
we formed the corresponding binary terms and used the algorithm to construct
normal form terms. The result is given in the following table.

Table 2. Normal form terms.

normal form term graph hypers normal form term graph hypers

x1x2 σ0 x1 σ1

x2 σ2 x1x1 σ3

x2x2 σ4 x2x1 σ5

(x1x1)x2 σ6 (x2x1)x2 σ7

x1(x2x2) σ8 x2(x1x1) σ9

(x1x1)(x2x2) σ10 (x2(x1x1))x2 σ11

x1(x2x1) σ12 x2(x1x2) σ13

(x1x1)(x2x1) σ14 (x2(x1x2))x2 σ15

x1((x2x1)x2) σ16 x2((x1x1)x2) σ17

(x1x1)((x2x1)x2) σ18 (x2((x1x1)x2))x2 σ19

Let MG be the set of all normal form graph hypersubstitutions. Then we get,

MG = {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}.

We define the product of two normal form graph hypersubstitutions in MG as
follows.

Definition 4.6. The product σ1N ◦N σ2N of two normal form graph hypersubsti-
tutions is defined by (σ1N ◦N σ2N )(f) = NF (σ̂1N [σ2N (f)]).

The concept of a proper hypersubstitution of a class of algebras was introduced
in [13].
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Definition 4.7. A hypersubstitution σ is called proper with respect to a class K
of algebras if σ̂[s] ≈ σ̂[t] ∈ IdK for all s ≈ t ∈ IdK.

The following lemma was proved in [15].

Lemma 4.8. For each non-trivial term s, (s ̸= x ∈ X) and for all u, v ∈ X, we
have

E(σ̂6[s]) = E(s) ∪ {(u, u)|(u, v) ∈ E(s)},

E(σ̂8[s]) = E(s) ∪ {(v, v)|(u, v) ∈ E(s)},

and

E(σ̂12[s]) = E(s) ∪ {(v, u)|(u, v) ∈ E(s)}.

By the similar way we prove that,

E(σ̂10[s]) = E(s) ∪ {(u, u), (v, v)|(u, v) ∈ E(s)}.

Let PMK be the set of all proper graph hypersubstitutions with respect to the
class K. In [11] it was found out that,

PMK1 = PMK2 = PMK3 = PMK4 = PMK6 = PMK8 = {σ0, σ6, σ8, σ10, σ12}
and PMK5 = PMK7 = {σ0, σ6, σ8, σ10, σ12, σ14}.

5 Special M-hyperidentities

We know that a graph identity s ≈ t is a graph hyperidentity, if σ̂[s] ≈ σ̂[t]
is a graph identity for all σ ∈ MG . Let M be a subgroupoid of MG . Then, a
graph identity s ≈ t is an M -graph hyperidentity (M -hyperidentity), if σ̂[s] ≈ σ̂[t]
is a graph identity for all σ ∈ M . In [1], Denecke and Wismath defined special
subgroupoid of MG as the following.

Definition 5.1.

(i) A hypersubstitution σ ∈ Hyp(τ) is said to be leftmost if for every i ∈ I,
the first variable in σ̂[fi(x1, . . . , xni)] is x1. Let Left(τ) be the set of all
leftmost hypersubstitutions of type τ .

(ii) A hypersubstitution σ ∈ Hyp(τ) is said to be outermost if for every i ∈ I,
the first variable in σ̂[fi(x1, . . . , xni)] is x1 and the last variable is xni . Let
Out(τ) be the set of all outermost hypersubstitutions of type τ .

(iii) A hypersubstitution σ ∈ Hyp(τ) is said to be rightmost if for every i ∈ I,
the last variable in σ̂[fi(x1, . . . , xni)] is xni . Let Right(τ) be the set of all
rightmost hypersubstitutions of type τ . Note that Out(τ) = Right(τ) ∩
Left(τ).
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(iv) A hypersubstitution σ ∈ Hyp(τ) is called regular if for every i ∈ I, each of
the variables x1, . . . , xni occurs in σ̂[fi(x1, . . . , xni)]. Let Reg(τ) be the set
of all regular hypersubstitutions of type τ .

(v) A hypersubstitution σ ∈ Hyp(τ) is called symmetrical if for every i ∈ I,
there is a permutation si on the set {1, . . . , ni} such that σ̂[fi(x1, . . . , xni)] =
fi(xsi(1), . . . , xsi(ni)). Let D(τ) be the set of all symmetrical hypersubstitu-
tions of type τ .

(vi) We will call a hypersubstitution σ of type τ a pre-hypersubstitution if for
every i ∈ I, the term σ(fi) is not a variable. Let Pre(τ) be the set of all
pre-hypersubstitutions of type τ .

From Definition 5.1, we have:

MLeft = {σ0, σ1, σ3, σ6, σ8, σ10, σ12, σ14, σ16, σ18}.
MRight = {σ0, σ2, σ4, σ6, σ7, σ8, σ10, σ11, σ13, σ15, σ16, σ17, σ18, σ19}.
MOut = {σ0, σ6, σ8, σ10, σ16, σ18}.
MReg = {σ0, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}.
MD = {σ0, σ5}.
MPre = {σ0, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}.

Definition 5.2. Let V be a graph variety of type τ , and let s ≈ t be an identity of
V. Let M be a subgroupoid of Hyp(τ). Then s ≈ t is called an M -hyperidentity
with respect to V, if for every σ ∈ M , σ̂[s] ≈ σ̂[t] is an identity of V.

For any (x(yz))z with opposite loop and reverse arc graph variety K and for
any s ≈ t ∈ IdK. We want to characterize the property of s and t such that
s ≈ t is an MLeft-hyperidentity, MRight-hyperidentity, MOut-hyperidentity, MReg-
hyperidentity, MD-hyperidentity and MPre-hyperidentity with respect to K for all
(x(yz))z with opposite loop and reverse arc graph varieties K. For any term s
we see that s ≈ s is an M -hyperidentity with respect to K for all (x(yz))z with
opposite loop and reverse arc graph varieties K and for all special subgroupoid M
of MG .

At first we consider the MD-hyperidentity. Let K be any (x(yz))z with opposite
loop and reverse arc graph variety and for any s ≈ t ∈ IdK. Since MD = {σ0, σ5},
we see that if s and t are trivial terms, then s ≈ t is an MD-hyperidentity with
respect to K. For the case s and t are non-trivial terms, we have s ≈ t is an
MD-hyperidentity with respect to K if and only if σ̂5[s] ≈ σ̂5[t] ∈ IdK.

For MLeft-hyperidentity. Let K be any (x(yz))z with opposite loop and reverse
arc graph variety and for any s ≈ t ∈ IdK. Since MLeft = {σ0, σ1, σ3, σ6, σ8, σ10,
σ12, σ14, σ16, σ18}, we see that if s and t are trivial terms, then s ≈ t is an MLeft-
hyperidentity with respect to K if and only if L(s) = L(t). Now we consider
the case s and t are non-trivial and different terms. We characterize MLeft-
hyperidentity with respect to all (x(yz))z with opposite loop and reverse arc graph
varieties as the following theorem:
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Theorem 5.3. Let s and t be non-trivial and different terms and let Ki, i ∈
{1, 2, 3, . . . , 8} be (x(yz))z with opposite loop and reverse arc graph varieties. If
s ≈ t ∈ IdKi, then s ≈ t is an MLeft-hyperidentity with respect to Ki.

Proof. Consider for K1. If σ ∈ {σ0, σ6, σ8, σ10, σ12}, then σ is a proper hyper-
substitution. Hence σ̂[s] ≈ σ̂[t] ∈ IdK1. Since σ̂1[s] = L(s) = L(t) = σ̂1[t]
and σ̂3[s] = L(s)L(s) = L(t)L(t) = σ̂3[t], we have σ̂1[s] ≈ σ̂1[t] ∈ IdK1 and
σ̂3[s] ≈ σ̂3[t] ∈ IdK1. By Table 2, we have σ10∼K1σ14∼K1σ16∼K1σ18. We get
that σ̂[s] ≈ σ̂[t] ∈ IdK1 for all σ ∈ {σ14, σ16, σ18}. Hence, s ≈ t is an MLeft-
hyperidentity with respect to K1.

The proof of Ki, i ∈ {2, 3, . . . , 8} are similar to the proof of K1.

For MOut-hyperidentity. Let K be any (x(yz))z with opposite loop and reverse
arc graph variety and for any s ≈ t ∈ IdK. Since MOut = {σ0, σ6, σ8, σ10, σ16, σ18},
we see that if s and t are trivial terms, then s ≈ t is an MOut-hyperidentity with
respect to K. For the case s and t are non-trivial and different terms, since MOut ⊂
MLeft, so we can check that it has the same results as MLeft-hyperidentity.

For MReg-hyperidentity. Let K be any (x(yz))z with opposite loop and reverse
arc graph variety and for any s ≈ t ∈ IdK. Since MReg = {σ0, σ5, σ6, σ7, σ8, σ9,
σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}, we see that if s and t are trivial terms,
then s ≈ t is an MReg-hyperidentity with respect to K. For the case s and t are
non-trivial and different terms, we have the following theorem:

Theorem 5.4. Let s and t be non-trivial and different terms and let Ki, i ∈
{1, 2, 3, . . . , 8} be (x(yz))z with opposite loop and reverse arc graph varieties. If
s ≈ t ∈ IdKi, then s ≈ t is an MReg-hyperidentity with respect to Ki if and only
if σ̂5[s] ≈ σ̂5[t] ∈ IdKi.

Proof. Consider for K1. If s ≈ t is an MReg-hyperidentity with respect to K1, then
σ̂5[s] ≈ σ̂5[t] is an identity in K1. Conversely, assume that s ≈ t is an identity in
K1 and that σ̂5[s] ≈ σ̂5[t] is an identity in K1. We have to prove that s ≈ t is
closed under all graph hypersubstitutions from MReg.

If σ is a proper, then we get σ̂[s] ≈ σ̂[t] ∈ IdK1. Hence, we get that σ̂[s] ≈
σ̂[t] ∈ IdK1 for all σ ∈ {σ0, σ6, σ8, σ10, σ12}. By assumption, σ̂5[s] ≈ σ̂5[t] is an
identity in K1. Since σ10∼K1σ14∼K1σ16∼K1σ18, we get that σ̂[s] ≈ σ̂[t] ∈ IdK1

for all σ ∈ {σ14, σ16, σ18}.
Since σ6◦Nσ5 = σ7, σ8◦Nσ5 = σ9, σ10◦Nσ5 = σ11, σ12◦Nσ5 = σ13, σ̂5[s] ≈

σ̂5[t] ∈ IdK1 and σ6, σ8, σ10, σ12 are proper, we have that σ̂7[s] ≈ σ̂7[t], σ̂9[s] ≈
σ̂9[t], σ̂11[s] ≈ σ̂11[t], σ̂13[s] ≈ σ̂13[t] are identities in K1. Since σ11∼K1σ15∼K1σ17∼K1

σ19, we get that σ̂[s] ≈ σ̂[t] ∈ IdK1 for all σ ∈ {σ15, σ17, σ19}.
The proof of K ∈ {K2,K3, . . . ,K8} are similar to the proof of K1.

For MPre-hyperidentity. Let K be any (x(yz))z with opposite loop and reverse
arc graph variety and for any s ≈ t ∈ IdK. Since MPre = {σ0, σ3, σ4, σ5, σ6, σ7, σ8,
σ9, σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}, we see that if s and t are trivial
terms, then s ≈ t is an MPre-hyperidentity with respect to K if and only if they
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have the same leftmost and the same rightmost. For the case s and t are non-trivial
and different terms, since MReg = MPre − {σ3, σ4}, we have the same results as
MReg-hyperidentity.

For MRight-hyperidentity. Let K be any (x(yz))z with opposite loop and re-
verse arc graph variety and for any s ≈ t ∈ IdK. Since MRight = {σ0, σ2, σ4, σ6, σ7,
σ8, σ10, σ11, σ13, σ15, σ16, σ17, σ18, σ19}, we see that if s and t are trivial terms, then
s ≈ t is an MRight-hyperidentity with respect to K if and only if they have the
same rightmost variables. For the case s and t are non-trivial and different terms,
we characterize MRight-hyperidentity with respect to each (x(yz))z with opposite
loop and reverse arc graph variety as the following theorem:

Theorem 5.5. Let s and t be non-trivial and different terms and let Ki, i ∈
{1, 2, 3, . . . , 8} be (x(yz))z with opposite loop and reverse arc graph varieties. If
s ≈ t ∈ IdKi, then s ≈ t is an MRight-hyperidentity with respect to Ki if and only
if σ̂7[s] ≈ σ̂7[t] ∈ IdKi and σ̂13[s] ≈ σ̂13[t] ∈ IdKi.

Proof. Consider for K1, let s ≈ t is an MRight-hyperidentity with respect to K1.
We have σ̂7[s] ≈ σ̂7[t] ∈ IdK1 and σ̂13[s] ≈ σ̂13[t] ∈ IdK1. Conversely, assume
that s ≈ t is an identity in K1, σ̂7[s] ≈ σ̂7[t] ∈ IdK1 and σ̂13[s] ≈ σ̂13[t] ∈
IdK1. We have to prove that s ≈ t is closed under all graph hypersubstitutions
from MRight. If σ ∈ {σ0, σ6, σ8, σ10}, then σ is a proper graph hypersubstitu-
tion. Hence, σ̂[s] ≈ σ̂[t] ∈ IdK1. By assumption, σ̂7[s] ≈ σ̂7[t] ∈ IdK1 and
σ̂13[s] ≈ σ̂13[t] ∈ IdK1. Hence, R(s) = L(σ̂7[s]) = L(σ̂7[t]) = R(t). Since
σ̂2[s] = R(s) = R(t) = σ̂2[t] and σ̂4[s] = R(s)R(s) = R(t)R(t) = σ̂4[t], we
have σ̂2[s] ≈ σ̂2[t] ∈ IdK1 and σ̂4[s] ≈ σ̂4[t] ∈ IdK1. Since σ10 ◦ σ7 = σ11 and
σ10 is a proper graph hypersubstitution, we have σ̂11[s] ≈ σ̂11[t] ∈ IdK1. Since
σ10∼K1

σ16∼K1
σ18 and σ11∼K1

σ15∼K1
σ17∼K1

σ19, we get that σ̂[s] ≈ σ̂[t] ∈ IdK1

for all σ ∈ {σ15, σ16, σ17, σ18, σ19}. Hence, s ≈ t is an MRight-hyperidentity with
respect to K1. The proof of other Ki graph variety are similar to the proof of
K1.
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