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1 Introduction

The impulsive differential equations appear to a natural framework for math-
ematical modelings of several real world phenomena. For instance, systems with
impulse effects have applications in physics, in biotechnology, in population dy-
namics, in optimal control and so on. For an introduction to the theory of impulsive
systems, we refer the reader to see in [4]. In the framework of impulsive differ-
ential equations, some existence result of periodic solutions for impulsive periodic
control systems with parameter perturbation on finite dimensional space has been
studied by many authors in [2] and [6].

However, the investigation of the existence of periodic solutions for impulsive
periodic control systems with parameter perturbation on infinite dimensional space
have not been study. We apply the semigroup theory (see [1] and [5]) and fixed
point theorems (see [3] and [7]) for impulsive systems, we establish conditions for
ensuring that the system has a unique periodic solution.

The organization of this paper is as follows. Firstly, in Section 2, we intro-
duce some definition of impulsive evolution operator and prove the existence of
periodic solution for homogeneous linear impulsive periodic system by using fixed
point theorem and Fredholm alternative theorem. In Section 3, nonhomogeneous
linear impulsive periodic control system is investigated, we prove the existence of
periodic solution by using properties of compact operators and boundedness of
solution. Finally, in Section 4, we prove the existence of periodic solution for im-
pulsive periodic control system with parameter perturbation by using fixed point
theorems.
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2 Impulsive Evolution Operator and Homogeneous
Linear Impulsive Periodic System

Throughout this paper X will denote a Banach space with norm ‖ · ‖
X

and
L(X) denote the space of all bounded linear operators on X. Let PC([0, T0] ; X)
be the space of all functions x : [0, T0] → X, x(t) is continuous at t 6= τk, left
continuous at t = τk and the right limit x(τ+

k ) exists for k = 1, 2, . . . , σ, where
0 = τ0 < τ1 < τ2 < . . . < τσ−1 < τσ = T0 < ∞, which is a Banach space with the
norm

‖x‖PC = sup
t∈[0,T0]

‖x(t)‖
X

.

In this paper, we study the existence of periodic solutions for impulsive periodic
control systems with parameter perturbation on infinite dimensional space,





ẋ(t) = Ax(t) + u(t) + p(t, x, ξ), t 6= τk,

∆x(t) = Bkx(t) + ck + qk(x, ξ), t = τk, k ∈ N
(2.1)

where ∆x(τk) = x(τ+
k ) − x(τ−k ). Suppose that the system (2.1) satisfy the fol-

lowing assumptions (A1), (A2) and (A3).

(A1.1) 0 = τ0 < τ1 < τ2 < . . . < τk < . . . , τk → ∞ as k → ∞ and there exists
a positive integer σ such that τk+σ = τk + T0 for all k ∈ N.

(A1.2) A is the infinitesimal generator of a C0-semigroup {T (t), t ≥ 0} in X.

(A1.3) Bk ∈ L(X) such that Bk+σ = Bk for all k ∈ N.

(A2.1) u ∈ PC([0,∞) , X) such that u(t + T0) = u(t) for all t ≥ 0.

(A2.2) ck ∈ X such that ck+σ = ck for all k ∈ N.

(A3.1) For each ρ > 0 and x ∈ Bρ := {x ∈ X | ‖x‖X ≤ ρ}. p(·, x, ξ) ∈ PC([0,∞), X)
such that p(t + T0, x, ξ) = p(t, x, ξ) for all (t, x, ξ) ∈ [0,∞)× Bρ × [0, ξ0].

(A3.2) qk ∈ C(Bρ × [0, ξ0], X) such that qk+σ(x, ξ) = qk(x, ξ) for all k ∈ N and
(x, ξ) ∈ Bρ × [0, ξ0].

(A3.3) there exists a nonnegative function χ(ξ) such that

‖p(t, x, ξ)‖X ≤ χ(ξ), ‖qk(x, ξ)‖X ≤ χ(ξ) and lim
ξ→0

χ(ξ) = χ(0) = 0 (2.2)

for all k ∈ N and (t, x, ξ) ∈ [0,∞)× Bρ × [0, ξ0].
For the system (2.1), we give the following definition.
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Definition 2.1 Let Assumption (A1) hold. An operator value function U(t, s)
with values in L(X), defined on the triangle ∆ ≡ { 0 ≤ s ≤ t ≤ a } with
t, s ∈ (τk−1, τk] for all k ∈ N, given by

U(t, s) =





T (t− s), τk−1 ≤ s ≤ t ≤ τk,

T (t− τk)(I + Bk)T (τk − s), τk−1 < s ≤ τk < t ≤ τk+1,

T (t− τk)




k∏

j=i+1

(I + Bj)T (τj − τj−1)


 (I + Bi)T (τi − s),

for i < k, τi−1 < s ≤ τi < . . . < τk < t ≤ τk+1.

(2.3)

is called an impulsive evolution operator.

Proposition 2.2 Let assumption (A1) hold and {U(t, s), 0 ≤ s ≤ t ≤ a} be a
family of impulsive evolution operators. For each fixed T0 = τσ > 0, then the
following are satisfied :

(i) U(t, t) = I, the identity operator on X ;

(ii) U(t, s) = U(t, r)U(r, s) for all 0 ≤ s ≤ r ≤ t ≤ a ;

(iii) U(t + KT0, s + KT0) = U(t, s) for all K ∈ N and 0 ≤ s ≤ t ≤ T0 with
T0 ≤ a.

(iv) U(t, 0) = U(t̄, 0)[U(T0, 0)]M where t = t̄ + MT0 for all t̄ ∈ [0, T0] and
M ∈ N ∪ {0}.

Corollary 2.3 Let assumption (A1) hold and {U(t, s) : 0 ≤ s ≤ t ≤ a} be a
family of impulsive evolution operators, then

sup
0≤s≤t≤a

‖U(t, s)‖L(X) < ∞ for all a > 0.

Definition 2.4 A function x ∈ PC([0,∞) ; X) is said to be a mild solution of
the system (2.1) with initial condition x(0) = x0 if x is given by

x(t) = U(t, 0)x0 +
∫ t

0

U(t, s)[u(s) + p(s, x, ξ)]ds +
∑

0≤τk<t

U(t, τk)[ck + qk(x, ξ)].

(2.4)

Definition 2.5 A function x ∈ PC([0,∞) ; X) is said to be a periodic solution
of the system (2.1) if there exists T0 > 0 such that x(t + T0) = x(t) for all t ≥ 0.

Definition 2.6 Function x ∈ PC([0,∞) ; X) is said to be a T0-periodic solution
of the system (2.1) if x(t + T0) = x(t) for all t ≥ 0.
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First, we consider the homogeneous linear impulsive periodic system,




ẋ(t) = Ax(t), t 6= τk,

∆x(t) = Bkx(t), t = τk, k ∈ N.
(2.5)

where ∆x(τk) = x(τ+
k )− x(τ−k ) and satisfies the assumption (A1).

For the system (2.5), we give the following definition.

Definition 2.7 A function x ∈ PC([0,∞) ; X) is said to be a mild solution of
the system (2.5) with initial condition x(0) = x0 if x is given by

x(t) = U(t, 0)x0

where

U(t, 0) =





T (t), 0 ≤ t ≤ τ1,

T (t− τk)




k∏

j=1

(I + Bj)T (τj − τj−1)


 , τk < t ≤ τk+1,

(2.6)

for all k ∈ N.

Remark 2.8 If {T (t), t > 0} is a compact semigroup in X, then U(t, 0) is a
compact operator. Particularly, U(T0, 0) is also a compact operator.

Theorem 2.9 Let assumption (A1) hold. The system (2.5) has a periodic solu-
tion if and only if the operator U(T0, 0) has a fixed point x0 ∈ X.

Proof. Let x(t) be a periodic solution of system (2.5). Suppose x(0) = x0 be
the initial condition of system (2.5), then x(T0) = x(0) = x0. Since x(T0) =
U(T0, 0)x0, then x0 = U(T0, 0)x0. That is, the operator U(T0, 0) has a fixed
point x0 ∈ X. Conversely, assume that x0 be a fixed point of U(T0, 0). Use x0

as the initial condition of system (2.5), then the solution is x(t) = U(t, 0)x0 where
t = t̄+MT0 for all t̄ ∈ [0, T0] and M ∈ N∪{0}. By assumption and Proposition
2.2 (4), we have x(t) = x(t̄ + MT0) = U(t̄, 0)[U(T0, 0)]Mx0 = U(t̄, 0)x0 = x(t̄).
Hence x is a periodic solution of system (2.5). ¤

Theorem 2.10 Let assumption (A1) hold. Furthermore, assume that A is the
infinitesimal generator of a compact semigroup {T (t), t > 0} in X. Then system
(2.5) either has a unique trivial solution or have finitely many linearly independent
nontrivial periodic solutions in PC([0,∞) , X).

Proof. Since U(T0, 0) : X → X is a compact linear operator, then by applying
Fredholm alternative theorem (see[3]), we obtain U(T0, 0) satisfy Fredholm alterna-
tive that either (a) or (b) holds: (a)The homogenous equations [I−U(T0, 0)]x = 0
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have only the trivial solution x = 0. That is, U(T0, 0) has only a unique fixed
point x = 0 ( i.e., by theorem 2.9, this means that system (2.5) has a unique triv-
ial solution). (b)The homogenous equations [I − U(T0, 0)]x = 0 have nontrivial
solutions, then all of linearly independent nontrivial solutions are finite. Sup-
pose all of nontrivial solutions x1

0
, x2

0
, . . . , xm

0
be such that [I −U(T0, 0)]xi

0
= 0,

i = 1, 2, . . . , m. So x1
0
, x2

0
, . . . , xm

0
are fixed points of U(T0, 0) . Again by Theo-

rem 2.9, this means that system (2.5) have periodic solutions, say x1, x2, . . . , xm

where xi are the solutions of system (2.5) corresponding to initial conditions
xi(0) = xi

0
, i = 1, 2, . . . , m. Hence the number of linearly independent nontrivial

periodic solutions of system (2.5) are finite. ¤

3 Nonhomogeneous Linear Impulsive Periodic Con-
trol System

We consider the following nonhomogeneous linear impulsive periodic control
system,





ẋ(t) = Ax(t) + u(t), t 6= τk,

∆x(t) = Bkx(t) + ck, t = τk, k ∈ N
(3.1)

where ∆x(τk) = x(τ+
k )−x(τ−k ) and A is the infinitesimal generator of a compact

semigroup {T (t), t > 0} in X. Suppose that system (3.1) satisfy the assumptions
(A1) and (A2).

For system (3.1), we give the following definition.

Definition 3.1 A function x ∈ PC([0,∞) , X) is said to be a mild solution of
system (3.1) with initial condition x(0) = x0 if x is given by

x(t) = U(t, 0)x0 +
∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck, (3.2)

for all k ∈ N.

To be able to apply the method in Pazy [5], we also need the following lemma.

Lemma 3.2 ([5]) Consider the nonhomogeneous initial value problem




ẋ(t) = Ax(t) + u(t), t > 0;

x(0) = x0.
(3.3)

If u ∈ L1([0, T0], X), then for every x0 ∈ X the initial value problem (3.3) has
a unique solution which satisfies

x(t) = T (t)x0 +
∫ t

0

T (t− s)u(s)ds, 0 ≤ t ≤ T0. (3.4)



112 Thai J. Math. 4(2006)/ S. Hinpang, X. Xiang and P. Sattayatham

Theorem 3.3 If assumptions (A1) and (A2) hold, then system (3.1) has a unique
mild solution x ∈ PC([0, T0], X).

Proof. For t ∈ [0, τ1], Lemma 3.2 implies that system

ẋ(t) = Ax(t) + u(t), 0 ≤ t ≤ τ1, x(0) = x0, (3.5)

has a unique mild solution on I1 = [0, τ1] which satisfies

x1(t) = T (t)x0 +
∫ t

0

T (t− s)u(s)ds, t ∈ [0, τ1]. (3.6)

Now, define

x1(τ1) = T (τ1)x0 +
∫ τ1

0

T (τ1 − s)u(s)ds, (3.7)

so that x1(·) is left continuous at τ1.
Next, on I2 = (τ1, τ2], consider system

ẋ(t) = Ax(t) + u(t), τ1 < t ≤ τ2, x1(τ+
1 ) = (I + B1)x1(τ1) + c1, (3.8)

Since x1 ∈ X, we can use Lemma 3.2 again to get a unique mild solution on (τ1, τ2]
which satisfying

x2(t) = T (t− τ1) [(I + B1)x1(τ1) + c1] +
∫ t

τ1

T (t− s)u(s)ds. (3.9)

Now, define x2(τ2) accordingly so that x2(·) is left continuous at τ2.
It is easily seen that Lemma 3.2 can be applied to interval (τ1, τ2] to verify

that x2(τ2) ∈ X. It is also easily seen that this procedure can be repeated on
Ik = (τk−1, τk], k = 3, 4, . . . , σ (τσ = T0) to get a mild solutions

xk(t) = T (t− τk−1) [(I + Bk−1)xk−1(τk−1) + ck−1] +
∫ t

τk−1

T (t− s)u(s)ds.

for t ∈ (τk−, τk] and define xk(τk) accordingly with xk(·) left continuous at τk and
xk(τk) ∈ X, k = 1, 2, . . . , σ.

Thus we obtain x ∈ PC([0, T0], X) is a unique mild solution of system (3.1)
and given by.

x(t) =





x1(t), 0 ≤ t ≤ τ1,

xk(t), τk−1 < t ≤ τk, k = 2, 3, . . . , σ.

¤
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Next, by mathematical induction to show that (3.2) is satisfied on [0, T0]. First,
(3.2) is satisfied on [0, τ1]. If (3.2) is satisfied on (τk−1, τk], then for t ∈ (τk, τk+1],

x(t) = xk+1(t) = T (t− τk) [(I + Bk)xk(τk) + ck] +
∫ t

τk

T (t− s)u(s)ds

= T (t− τk)(I + Bk)x(τk) + T (t− τk)ck +
∫ t

τk

T (t− s)u(s)ds

= T (t− τk)(I + Bk)
[
U(τk, 0)x0 +

∫ τk

0

U(τk, s)u(s)ds +
∑

0≤τi<τk

U(τk, τi)ci

]

+T (t− τk)ck +
∫ t

τk

T (t− s)u(s)ds

= U(t, 0)x0 +
∫ τk

0

U(t, s)u(s)ds +
∫ t

τk

U(t, s)u(s)ds

+
∑

0≤τi<τk
U(t, τi)ci + U(t, τk)ck

= U(t, 0)x0 +
∫ t

0

U(t, s)u(s)ds +
∑

0≤τi<t

U(t, τi)ci.

Thus (3.2) is also true on (τk, τk+1]. Therefore (3.2) is true on [0, T0].

If x(t) is T0-periodic solution of system (3.1), then we have x(T0) = x(0) ; namely,

[I − U(T0, 0)]x(0) =
∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck. (3.10)

We consider into 2 cases.

Case 1 : [I − U(T0, 0)]−1exists

Theorem 3.4 Let assumptions (A1) and (A2) hold. Assume that [I−U(T0, 0)]−1

exists and system (2.5) has no nontrivial periodic solution , then system (3.1) has
a unique T0-periodic solution

xT0
(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)u(s) ds

+
∑

0≤τk<T0

U(T0, τk)ck


 +

∫ t

0

U(t, s)u(s)ds

+
∑

0≤τk<t

U(t, τk)ck. (3.11)
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Proof. Suppose that [I − U(T0, 0)]−1 exists and system (2.5) has only trivial
solution. Then (3.10) gives

x(0) = [I − U(T0, 0)]−1




∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck


 := x0.

Substitute x(0) = x0 into equation (3.2), we get

x(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)u(s) ds

+
∑

0≤τk<T0

U(T0, τk)ck


 +

∫ t

0

U(t, s)u(s)ds

+
∑

0≤τk<t

U(t, τk)ck. (3.12)

which is a mild solution of system (3.1).
Next, we want to show that a mild solution is unique and is T0-periodic.

Suppose that y(t) = x(t + T0) is a mild solution of system (3.1).
By Proposition 2.2(3), we obtain

y(t) = x(t + T0) = U(t + T0, 0)x0 +
∫ t+T0

0

U(t + T0, s)u(s)ds

+
∑

0≤τk<t+T0

U(t + T0, τk)ck

= U(t + T0, T0)U(T0, 0)x0 +
∫ T0

0

U(t + T0, s)u(s)ds +
∑

0≤τk<T0

U(t + T0, τk)ck

+
∫ t+T0

T0

U(t + T0, s)u(s)ds +
∑

T0≤τk<t+T0

U(t + T0, τk)ck

= U(t, 0)U(T0, 0)x0 +
∫ T0

0

U(t + T0, T0)U(T0, s)u(s)ds

+
∑

0≤τk<T0

U(t + T0, T0)U(T0, τk)ck +
∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck

= U(t, 0)U(T0, 0)x0 + U(t, 0)
∫ T0

0

U(T0, s)u(s)ds + U(t, 0)
∑

0≤τk<T0

U(T0, τk)ck

+
∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck
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= U(t, 0)


U(T0, 0)x0 +

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck




+
∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck

= U(t, 0)x(T0) +
∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck

= U(t, 0)y(0) +
∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck.

This implies that y(t) is also a solution. By Corollary 3.2 implies that y(t) =
x(t + T0) = x(t) for all t ≥ 0. So x(t) is a T0-periodic solution of system (3.1),
which is exactly (3.11). This completes the proof. ¤

Case 2 : [I − U(T0, 0)]−1 does not exists

In this case, system (2.5) has nontrivial T0-periodic solutions. Let us construct
the following adjoint equation of system (2.5),





ẏ(t) = −A∗y, t 6= τk,

−∆y(t) = B∗
ky(t), t = τk, k = 1, 2, . . . , σ

(3.13)

where A∗ is the adjoint operator of A, 0 < τ1 < τ2 < . . . < τσ−1 < τσ = T0

and ∆y(τk) = y(τ+
k ) − y(τ−k ). Suppose that system (3.13) satisfies the following

assumption (A4).

(A4.1) A∗ is the infinitesimal generator of the adjoint semigroup {T ∗(t), t ≥ 0} in
X∗;

(A4.2) B∗
k ∈ L(X∗) such that B∗

k+σ = B∗
k for all k ∈ N.

Definition 3.5 A function y ∈ PC([0, T0], X) is said to be a periodic solution of
system (3.13) with initial condition y(T0) = y(0) := y0 if y is given by

y(t) = U∗(T0, t)y0, 0 ≤ t ≤ T0, (3.14)

where

U∗(T0, t) =





T ∗(T0 − t), τσ−1 < t ≤ τσ = T0,

T ∗(τi − t)(I + B∗
i )




k∏

j=i+1

(I + Bj)T (τj − τj−1)



∗

T ∗(T0 − τk),

0 ≤ τi−1 < t ≤ τi ≤ τσ = T0,

(3.15)

for all i = 1, 2, . . . , σ − 1.



116 Thai J. Math. 4(2006)/ S. Hinpang, X. Xiang and P. Sattayatham

Theorem 3.6 Let assumptions (A1) and (A2) hold. Furthermore, assume that
X is a Hilbert space and u ∈ L1

loc([0,∞) , X). If system (2.5) have m linearly
independent periodic solutions x1, x2, . . . , xm with 1 ≤ m ≤ n where xi are peri-
odic solutions of system (2.5) corresponding to initial conditions xi(0) = xi

0 for all
i = 1, 2, . . . , m, then

(i) the adjoint system (3.13) also have m linearly independent T0−periodic so-
lutions y1, y2, . . . , ym;

(ii) system (3.1) has a T0-periodic solution if and only if

〈 y , z 〉 = 0, (3.16)

where 〈 y , z 〉 the pairing of an element y ∈ X∗ with an element z ∈ X such
that

[I − U∗(T0, 0)]y = 0 (3.17)

and z :=
∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck, or if and only if

∫ T0

0

〈 y(s), u(s) 〉ds +
∑

0≤τk<T0

〈 y(τk), ck 〉 = 0. (3.18)

Furthermore, let xa(t) be a particular T0-periodic solution of system (3.1), then
each T0-periodic solution of system (3.1) has the form

x(t) = xa(t) +
m∑

i=1

αix
i(t),

where αi, i = 1, 2, . . . , m are constants.

Proof. (i) Suppose system (2.5) have m linearly independent periodic solutions
x1, x2, . . . , xm with 1 ≤ m ≤ n where xi are periodic solutions of system (2.5)
corresponding to initial conditions xi(0) = xi

0
, for all i = 1, 2, . . . , m. By Theorem

2.9, this means that the equations

[I − U(T0, 0)]xi
0

= 0 (3.19)

have fixed points x1
0
, x2

0
, . . . , xm

0
. Then from Theorem 8.6-3 [3], we know that the

following adjoint equations of (3.19)

[I − U∗(T0, 0)]yi
0

= 0 (3.20)

also have m linearly independent solutions y1
0
, y2

0
, . . . , ym

0
. So y1

0
, y2

0
, . . . , ym

0

are fixed points of U∗(T0, 0) . Again by Theorem 2.9, this means that system
(3.13) have T0-periodic solutions, say y1, y2, . . . , ym where yi are T0-periodic
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solutions of system (3.13) corresponding to initial conditions yi(0) = yi
0
, for all

i = 1, 2, . . . ,m.

(ii) System (3.1) has a T0-periodic solution x(t) if and only if the equation

[I − U(T0, 0)]x(0) =
∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck := z (3.21)

has a solution x(0). It follows from Theorem 8.5-1 [3], that the above condition is
equivalent to

〈 y , z 〉 = 0, (3.22)

for all y ∈ X∗ satisfying

[I − U∗(T0, 0)]y = 0 (3.23)

From equation (3.22), we obtain

〈 y , z 〉 = 0 ⇔ 〈 y,

∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck 〉 = 0

⇔
∫ T0

0

〈 y, U(T0, s)u(s) 〉ds +
∑

0≤τk<T0

〈 y, U(T0, τk)ck 〉 = 0

⇔
∫ T0

0

〈 U∗(T0, s)y, u(s) 〉ds +
∑

0≤τk<T0

〈 U∗(T0, τk)y, ck 〉 = 0

⇔
∫ T0

0

〈 y(s), u(s) 〉ds +
∑

0≤τk<T0

〈 y(τk), ck 〉 = 0,

from which we immediately have (3.18). This completes the proof. ¤

The following theorem guarantee the existence of periodic solution. The proof
is based on boundedness property.

Theorem 3.7 If system (3.1) has a bounded solution, then it has at least one
T0-periodic solution.

Proof. Assume that x(t) is a bounded solution of system (3.1). Then for any
t ≥ 0, we have

x(t) = U(t, 0)x0 +
∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck,

where x(0) = x0 and

x(T0) = U(T0, 0)x0 +
∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck.
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Define z :=
∫ T0

0

U(T0, s)u(s)ds +
∑

0≤τk<T0

U(T0, τk)ck, then

x(T0) = U(T0, 0)x0 + z.

We know that the function x(t + T0) is also a solution of system (3.1) for
t ∈ [0, T0] and its value at t = 0 is x(T0). So

x(t + T0) = U(t, 0)x(T0) +
∫ t

0

U(t, s)u(s)ds +
∑

0≤τk<t

U(t, τk)ck

and
x(2T0) = U(T0, 0)x(T0) + z = U2(T0, 0)x0 + [U(T0, 0) + I]z.

Proceeding by this way, we get

x(mT0) = Um(T0, 0)x0 +
m−1∑

i=0

U i(T0, 0)z for all m ∈ N. (3.24)

By contradiction, we assume that (3.1) has no T0-periodic solution. This means
that the periodicity condition

x(T0) = U(T0, 0)x0 + z = x0 (3.25)

has no solution, i.e., the equation

[I − U(T0, 0)]x = z (3.26)

has no solution. Then from Theorem 8.5-1 [3], we know that there is y ∈ X∗ such
that

[I − U∗(T0, 0)]y = 0 and 〈 y , z〉 6= 0. (3.27)

The first condition means that U∗(T0, 0)y = y, hence

U∗m

(T0, 0)y = y, for all m ∈ N. (3.28)

Assume that 〈 y , z〉 = γ 6= 0. Then from equation (3.24), we have

〈 y , x(mT0) 〉 = 〈 y , Um(T0, 0)x0 〉+
m−1∑

i=0

〈 y , U i(T0, 0)z〉

= 〈U∗m

(T0, 0)y , x0 〉+
m−1∑

i=0

〈U∗i

(T0, 0)y , z〉

= 〈 y , x0 〉+
m−1∑

i=0

〈 y , z〉
= 〈 y , x0 〉+ mγ.
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Letting m →∞, then

lim
m→∞

〈 y , x(mT0) 〉 = ∞. (3.29)

Since x(t) is bounded solution and y ∈ X∗, then

|〈 y , x(mT0) 〉| ≤ ‖y‖
X∗ ‖x(mT0)‖X

≤ M‖y‖
X∗ < ∞.

It’s contradiction to (3.29). Consequently, the assumption is not true and system
(3.1) has at least one T0-periodic solution. ¤

Corollary 3.8

(i) Assume that system (3.1) has no T0-periodic solution, then all of its solu-
tions are unbounded for t ≥ 0.

(ii) Assume that system (3.1) has a unique bounded solution for t ≥ 0, then this
solution is T0-periodic.

4 Impulsive Periodic Control System with Param-
eter Perturbation

In this section, we will find sufficient conditions for the existence of T0-periodic
solutions of system (2.1), by using the fixed point theorems of an operator acting
in a Banach space (see [7]). We assume that system (2.5) has only trivial solution.
Let ξ = 0, then system (2.1) has the same form as system (3.1) because it follows
from (2.2) that p(t, x, 0) = 0 and qk(x, 0) = 0. It follows from Theorem 3.4, that
system (2.1) has a T0-periodic solution ;

x
T0

(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)u(s) ds

+
∑

0≤τk<T0

U(T0, τk)ck


 +

∫ t

0

U(t, s)u(s)ds

+
∑

0≤τk<t

U(t, τk)ck,

(4.1)

where U(t, s) is defined in (2.3). Then we have the following theorem to show that
for small ξ system (2.1) has a T0-periodic solution which is closed to x

T0
(t).

Theorem 4.1 Under assumption (A1)-(A3). Let A be the infinitesimal generator
of a compact semigroup {T (t), t > 0} in X. Assume that

(i) the T0-periodic solution x
T0

(t) satisfies

ρ0 = sup
t∈[0,T0]

‖x
T0

(t)‖
X

< ρ (4.2)

where ρ be any positive real number ;
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(ii) system (2.5) has only trivial solution ;

(iii) p(t, x, ξ) and qk(x, ξ) satisfy Lipschitz conditions, i.e. for any (t, x, ξ),
(t, y, ξ) ∈ [0,∞)× Bρ × [0, ξ0], there exists a constant N(ξ) such that

‖p(t, x, ξ)− p(t, y, ξ)‖X ≤ N(ξ)‖x− y‖X

and ‖qk(x, ξ)− qk(y, ξ)‖
X
≤ N(ξ)‖x− y‖

X
.

Then there exists ξ0 > 0 such that for ξ ∈ [0, ξ0] system (2.1) has a unique
T0-periodic mild solution xξ

T0
(t) satisfying

‖xξ
T0

(t)− x
T0

(t)‖
X

< ρ− ρ0 (4.3)

and

lim
ξ→0

xξ
T0

(t) = x
T0

(t) (4.4)

uniformly on t.

Proof. Let PCT0([0,∞), X) :=
{
x ∈ PC([0,∞), X) | x(t + T0) = x(t), ∀t ≥ 0

}
.

Moreover, PCT0([0, T0], X) is a Banach space with the norm

‖x‖
P CT0

= sup
t∈[0,T0]

‖x(t)‖X .

Let us define

B := B(xT0
, ρ1) = {x ∈ PCT0([0, T0], X) | ‖x− xT0

‖P CT0
≤ ρ1 := ρ− ρ0}

L1 = sup
0≤s≤t≤T0

‖U(t, s)‖L(X)

L2 = ‖[I − U(T0, 0)]−1‖L(X)

(4.5)

and an operator Ω : B → PCT0([0, T0] , X) such that

Ω(x)(t) := U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, x(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(x(τk), ξ)]


 +

∫ t

0

U(t, s)[u(s)

+ p(s, x(s), ξ)]ds +
∑

0≤τk<t

U(t, τk)[ck + qk(x(τk), ξ)].

(4.6)

From (4.2) and (4.5), we know that if x ∈ B, then

‖x‖
P CT0

≤ ‖x− x
T0
‖

P CT0
+ ‖x

T0
‖

P CT0
≤ ρ1 + ρ0 = ρ. (4.7)
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For any x, y ∈ B, we have

‖Ω(x)− Ω(y)‖
P CT0

= sup
t∈[0,T0]

‖U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[p(s, x(s), ξ)− p(s, y(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[qk(x(τk), ξ)− qk(y(τk), ξ)]




+
∫ t

0

U(t, s)[p(s, x(s), ξ)− p(s, y(s), ξ)]ds

+
∑

0≤τk<t

U(t, τk)[qk(x(τk), ξ)− qk(y(τk), ξ)]‖
X

≤ LN(ξ)‖x− y‖
P CT0

,

(4.8)

where L = L2
1L2T0 + L2

1L2σ + L1T0 + L1σ and

‖Ω(x
T0

)− x
T0
‖

P CT0
= sup

t∈[0,T0]

‖U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)p(s, x
T0

(s), ξ) ds

+
∑

0≤τk<T0

U(T0, τk)qk(x
T0

(τk), ξ)




+
∫ t

0

U(t, s)p(s, x
T0

(s), ξ)ds

+
∑

0≤τk<t

U(t, τk)qk(x
T0

(τk), ξ)‖
X

≤ Lχ(ξ).

(4.9)

Let us choose ξ0 > 0 such that

η = L sup
|ξ|≤ξ0

N(ξ) < 1, L sup
|ξ|≤ξ0

χ(ξ) ≤ ρ1(1− η). (4.10)

Assume that ξ ∈ [0, ξ0], then it follows from (4.8), (4.9) and (4.10) that

‖Ω(x)− Ω(y)‖
P CT0

≤ η‖x− y‖
P CT0

,

‖Ω(xT0
)− xT0

‖P CT0
≤ ρ1(1− η).

(4.11)

This means that Ω : B → B is a contraction mapping, so Ω has a unique fixed
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point xξ
T0
∈ B satisfy

xξ
T0

(t) = U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)[u(s) + p(s, xξ
T0

(s), ξ)] ds

+
∑

0≤τk<T0

U(T0, τk)[ck + qk(xξ
T0

(τk), ξ)]




+
∫ t

0

U(t, s)[u(s), p(s, xξ
T0

(s), ξ)]ds

+
∑

0≤τk<t

U(t, τk)[ck + qk(xξ
T0

(τk), ξ)].

(4.12)

It is clear that xξ
T0

(t) is a T0-periodic solution of system (2.1) and satisfies
estimate (4.3). Since we know that Ω(xξ

T0
)(t) = xξ

T0
(t) for all t ∈ [0, T0].

Then ‖xξ
T0

(t)− xT0
(t)‖X = ‖Ω(xξ

T0
)(t)− xT0

(t)‖X ≤ Lχ(ξ).
Letting ξ → 0, we obtain (4.4). This completes the proof. ¤

The following definition and lemma will be used in the proof of Theorem 4.4.

Definition 4.2 A set S ⊂ PC([0, T0], X) is quasiequicontinuous in [0, T0] if for
any δ > 0 there exists ε > 0 such that if x ∈ S, t1, t2 ∈ (τk−1, τk]∩ [0, T0], k ∈ N
and |t1 − t2| < ε, then ‖x(t1)− x(t2)‖X

< δ.

Lemma 4.3 A set S ⊂ PC([0, T0], X) is relatively compact if and only if

(i) S is bounded for each x ∈ S,

(ii) S is quasiequicontinuous in [0, T0].

Theorem 4.4 Under assumption (A1)-(A3). Let A be the infinitesimal generator
of a compact semigroup {T (t), t > 0} in X. Assume that

(i) the T0-periodic solution x
T0

(t) satisfies

ρ0 = sup
t∈[0,∞]

‖xT0
(t)‖X < ρ; (4.13)

(ii) system (2.5) has only trivial solution.

Then there exists ξ0 > 0 such that for ξ ∈ [0, ξ0] system (2.1) has a unique T0-
periodic mild solution xξ

T0
(t) satisfying

‖xξ
T0

(t)− xT0
(t)‖X ≤ ρ− ρ0. (4.14)
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Proof. As in the proof of Theorem 4.1, we determine successively the number
ρ1 = ρ − ρ0, the Banach space PCT0([0, T0], X), the set B := B(x

T0
; ρ1) and the

operator Ω : B → PCT0([0, T0], X) as defined in (4.6). Obviously, B is a non-
empty bounded closed and convex set. It follows from equation (4.7) that if x ∈ B,
then ‖x‖

P CT0
≤ ρ. For any x ∈ B, we have

‖Ω(x
T0

)− x
T0
‖PCT0

= sup
t∈[0,T0]

‖U(t, 0)[I − U(T0, 0)]−1

(∫ T0

0

U(T0, s)p(s, x
T0

(s), ξ) ds

+
∑

0≤τk<T0

U(T0, τk)qk(xT0
(τk), ξ)




+
∫ t

0

U(t, s)p(s, xT0
(s), ξ)ds

+
∑

0≤τk<T0

U(t, τk)qk(xT0
(τk), ξ)‖X

≤
(
L2

1L2T0 + L2
1L2σ + L1T0 + L1σ

)
χ(ξ).

So

‖Ω(x
T0

)− x
T0
‖

P CT0
≤ Lχ(ξ). (4.15)

where L = L2
1L2T0 + L2

1L2σ + L1T0 + L1σ.

Let us choose ξ ∈ [0, ξ0] such that

L sup
ξ∈[0, ξ0]

χ(ξ) ≤ ρ1. (4.16)

Then for ξ ∈ [0, ξ0], we have

‖Ω(xT0
)− xT0

‖PCT0
≤ Lχ(ξ) ≤ ρ1, (4.17)

From which we know that Ω(x) ∈ B and therefore Ω : B → B.
It follows from (4.1), (4.13) and (4.17) that

‖Ω(x
T0

)‖PCT0
≤ ‖Ω(x

T0
)− x

T0
‖PCT0

+ ‖x
T0
‖PCT0

≤ ρ1 + ρ0 = ρ. (4.18)

That is, the set B is uniformly bounded.
Let x ∈ Bρ and t1, t2 ∈ (τi−1, τi]∩[0, T0], i = 1, 2, . . . , σ, where τ0 = 0 and τσ = T0.
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For 0 < ε < t1 < t2 ≤ T0, then we have

‖(Ωx)(t1)− (Ωx)(t2)‖X
≤ ‖U(t1, 0)− U(t2, 0)‖L(X)‖[I − U(T0, 0)]−1‖L(X)(∫ T0

0

‖U(T0, s)‖L(X)‖u(s) + p(s, x(s), ξ)‖
X

ds

+
∑

0≤τk<T0

‖U(T0, τk)‖L(X)‖ck + qk(x(τk), ξ)‖
X




+
∫ t1−ε

0

‖U(t1, s)− U(t2, s)‖L(X)‖u(s) + p(s, x(s), ξ)‖
X

ds

+
∫ t1

t1−ε

‖U(t1, s)− U(t2, s)‖L(X)‖u(s) + p(s, x(s), ξ)‖
X

ds

+
∫ t2

t1

‖U(t2, s)‖L(X)‖u(s) + p(s, x(s), ξ)‖
X

ds

+
∑

0≤τk<t

‖U(t1, τk)− U(t2, τk)‖L(X)‖ck + qk(x(τk), ξ)‖X .

from which we know that for any δ > 0, there exists ε > 0 such that if t1− t2 < ε,
then ‖Ω(x)(t1)−Ω(x)(t2)‖X

< δ. Thus B is quasiequicontinuous and by Lemma
4.3, we know that the following set is relatively compact in B;

S = {y ∈ B | y = Ω(x), x ∈ B}. (4.19)

Applying Schuader’s fixed point theorem, it follows that the operator Ω has
a fixed point xξ

T0
∈ B and satisfies equation (4.12). It is clear that xξ

T0
(t) is a

T0-periodic solution of system (2.1). ¤
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