Thai Journal of Mathematics
Volume 11 (2013) Number 3: 697-702
http://thaijmath.in.cmu.ac.th

On Estimates for the Bessel Transform in the Space $L_{p, \alpha}\left(\mathbb{R}_{+}\right)$

R. Daher and M. El Hamma ${ }^{1}$
Department of Mathematics, Faculty of Science Aïn Chock
Casablanca, Morocco
e-mail : ra_daher@yahoo.fr (R. Daher)
m_elhamma@yahoo.fr (M. El Hamma)

Abstract

In this paper, we prove the estimates for the Bessel transform in $L_{p, \alpha}\left(\mathbb{R}_{+}\right)$as applied to some classes of functions characterized by a generalized modulus of continuity.

Keywords : Bessel operator; Bessel transform; Bessel generalized translation; generalized modulus of continuity.
2010 Mathematics Subject Classification : 42B10; 42B37.

1 Introduction and Preliminaries

Integral transforms and their inverses the Bessel transform are widely used to solve various problems in calculus, mechanics, mathematical physics, and computational mathematics (see $[1-6])$. The main aim of this paper is to generalise the Theorem 1 in [7]. $L_{p, \alpha}\left(\mathbb{R}_{+}\right), 1<p \leq 2$, is the Banach space of measurable functions $f(t)$ on \mathbb{R}_{+}with the finite norm

$$
\|f\|=\|f\|_{p, \alpha}=\left(\int_{0}^{\infty}|f(x)|^{p} x^{2 \alpha+1} d x\right)^{1 / p}
$$

Everywhere α is a real number, $\alpha>-\frac{1}{2}$, let

$$
\mathrm{B}=\frac{d^{2}}{d x^{2}}+\frac{(2 \alpha+1)}{x} \frac{d}{d x}
$$

[^0]be the Bessel differential operator. By $j_{\alpha}(x)$ we denote the Bessel normed function of the first kind, i.e,
$$
j_{\alpha}(x)=\frac{2^{\alpha} \Gamma(\alpha+1) J_{\alpha}(x)}{x^{\alpha}},
$$
where $J_{\alpha}(x)$ is the Bessel function of the first kind and $\Gamma(x)$ is the gamma-function (see [8]). The function $y=j_{\alpha}(x)$ satisfies the differential equation $\mathrm{B} y+y=0$ with the condition initial $y(0)=1$ and $y^{\prime}(0)=0$. The function $j_{\alpha}(x)$ is the infinitely differentiable and even. In $L_{p, \alpha}\left(\mathbb{R}_{+}\right)$, consider the Bessel generalized translation T_{h} (see [8])
$$
\mathrm{T}_{h} f(x)=\frac{\Gamma(\alpha+1)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{0}^{\pi} f\left(\sqrt{x^{2}+h^{2}-2 x h \cos x}\right) \sin ^{2 \alpha} x d x .
$$

The Bessel transform is defined by formula [8-10]

$$
\widehat{f}(t)=\int_{0}^{\infty} f(x) j_{\alpha}(t x) x^{2 \alpha+1} d x, \quad t \in \mathbb{R}^{+}
$$

The inverse Bessel transform is given by the formula

$$
f(x)=\left(2^{\alpha} \Gamma(\alpha+1)\right)^{-2} \int_{0}^{\infty} \widehat{f}(t) j_{\alpha}(t x) t^{2 \alpha+1} d t
$$

We have the Young inequality

$$
\begin{equation*}
\|\widehat{f}\|_{q, \alpha} \leq K\|f\|_{p, \alpha}, \tag{1.1}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and K is positive constant.
We note the important property of the Bessel transform: If $f \in L_{p, \alpha}\left(\mathbb{R}_{+}\right)$

$$
\begin{equation*}
\widehat{\mathrm{Bf}}(t)=\left(-t^{2}\right) \widehat{f}(t) . \tag{1.2}
\end{equation*}
$$

The following relation connect the Bessel generalized translation and the Bessel transform:

$$
\begin{equation*}
\widehat{\mathrm{T}_{h} f}(t)=j_{\alpha}(t h) \widehat{f}(t) . \tag{1.3}
\end{equation*}
$$

The finite differences of the first and higher orders are defined as follows:

$$
\Delta_{h} f(x)=\mathrm{T}_{h} f(x)-f(x)=\left(\mathrm{T}_{h}-\mathrm{I}\right) f(x),
$$

where I is the identity operator in $L_{p, \alpha}\left(\mathbb{R}_{+}\right)$, and

$$
\begin{equation*}
\Delta_{h}^{k} f(x)=\Delta_{h}\left(\Delta_{h}^{k-1} f(x)\right)=\left(\mathrm{T}_{h}-\mathrm{I}\right)^{k} f(x)=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} \mathrm{~T}_{h}^{i} f(x), \tag{1.4}
\end{equation*}
$$

where $\mathrm{T}_{h}^{0} f(x)=f(x), \mathrm{T}_{h}^{i} f(x)=\mathrm{T}_{h}\left(\mathrm{~T}_{h}^{i-1} f(x)\right),(i=1,2, \ldots, k$ and $k=1,2, \ldots)$.

The $k^{t h}$ order generalized modulus of continuity of a function $f \in L_{p, \alpha}\left(\mathbb{R}_{+}\right)$is defined by

$$
\Omega_{k}(f, \delta)=\sup _{0<h \leq \delta}\left\|\Delta_{h}^{k} f(x)\right\|_{p, \alpha}
$$

Let $\mathrm{W}_{p, \phi}^{r, k}(\mathrm{~B})$ denote the class of functions $f \in L_{p, \alpha}\left(\mathbb{R}_{+}\right)$that have generalized derivatives in the sense of Levi (see [11]) satisfying the estimate

$$
\Omega_{k}\left(\mathrm{~B}^{r} f, \delta\right)=O\left(\phi\left(\delta^{k}\right)\right), \delta \longrightarrow 0
$$

i.e
$\mathrm{W}_{p, \phi}^{r, k}(\mathrm{~B})=\left\{f \in L_{p, \alpha}\left(\mathbb{R}_{+}\right) / \mathrm{B}^{r} f \in L_{p, \alpha}\left(\mathbb{R}_{+}\right)\right.$and $\left.\Omega_{k}\left(\mathrm{~B}^{r} f, \delta\right)=O\left(\phi\left(\delta^{k}\right)\right), \delta \longrightarrow 0\right\}$
where $\phi(t)$ is any nonnegative function given on $[0, \infty)$, and $\mathrm{B}^{0} f=f, \mathrm{~B}^{r} f=$ $\mathrm{B}\left(\mathrm{B}^{r-1} f\right) ; r=1,2, \ldots$

2 Main Results

In this section, we can prove an estimate for the integral

$$
\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t
$$

which are useful in applications.
Lemma 2.1. For $f \in L_{p, \alpha}\left(\mathbb{R}_{+}\right)$

$$
\left(\int_{0}^{\infty} t^{2 q r+2 \alpha+1}\left|j_{\alpha}(t h)-1\right|^{q k}|\widehat{f}(t)|^{q} d t\right)^{1 / q} \leq K\left\|\Delta_{h}^{k} \mathrm{~B}^{r} f(x)\right\|_{p, \alpha}
$$

where K is positive constant.
Proof. From formula (1.2), we obtain

$$
\begin{equation*}
\widehat{\mathrm{B}^{r} f}(t)=(-1)^{r} t^{2 r} \widehat{f}(t) ; r=0,1, \ldots \tag{2.1}
\end{equation*}
$$

We use the formulas (1.3) and (2.1), we conclude

$$
\begin{equation*}
\widehat{\mathrm{T}_{h}^{i} \mathrm{~B}^{r} f}(t)=(-1)^{r} j_{\alpha}^{i}(t h) t^{2 r} \widehat{f}(t), 1 \leq i \leq k \tag{2.2}
\end{equation*}
$$

From the definition of finite difference (1.4) and formula (2.2) the image $\Delta_{h}^{k} \mathrm{~B}^{r} f(x)$ under the Bessel transform has the form

$$
\widehat{\Delta_{h}^{k} \mathrm{~B}^{r} f}(t)=(-1)^{r}\left(1-j_{\alpha}(t h)\right)^{k} t^{2 r} \widehat{f}(t)
$$

By the inequality (1.1), we have the result.

Theorem 2.2. For functions $f(x) \in L_{p, \alpha}\left(\mathbb{R}_{+}\right)$in the class $\mathrm{W}_{p, \phi}^{r, k}(\mathrm{~B})$,

$$
\sup _{\mathrm{W}_{p, \phi}^{r, k}(\mathrm{~B})}\left(\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t\right)=O\left(N^{-2 r q} \phi^{q}\left(\left(\frac{C}{N}\right)^{k}\right)\right)
$$

where $r=0,1,2, \ldots ; k=1,2, \ldots, C>0$ is a fixed constant, and $\phi(t)$ is any nonnegative function defined on the interval $[0, \infty)$.

Proof. In the terms of $j_{\alpha}(x)$, we have (see [12])

$$
\begin{array}{r}
1-j_{p}(x)=O(1), x \geq 1 \\
1-j_{p}(x)=O\left(x^{2}\right), 0 \leq x \leq 1 \\
\sqrt{h x} J_{p}(h x)=O(1), h x \geq 0 \tag{2.5}
\end{array}
$$

Let $f \in \mathrm{~W}_{p, \phi}^{r, k}(\mathrm{~B})$. By the Hölder inequality, we have

$$
\begin{aligned}
\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t-\int_{N}^{\infty} j_{\alpha}(t h)|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t=\int_{N}^{\infty}\left(1-j_{\alpha}(t h)\right)|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t \\
\quad=\int_{N}^{\infty}\left(1-j_{\alpha}(t h)\right)\left(|\widehat{f}(t)| t^{\frac{2 \alpha+1}{q}}\right)^{q} d t \\
\quad=\int_{N}^{\infty}\left(1-j_{\alpha}(t h)\right)\left(|\widehat{f}(t)| t^{\frac{2 \alpha+1}{q}}\right)^{q-1 / k}\left(|\widehat{f}(t)| t^{\frac{2 \alpha+1}{q}}\right)^{1 / k} d t \\
\quad \leq\left(\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t\right)^{\frac{q k-1}{q k}}\left(\int_{N}^{\infty}\left|1-j_{\alpha}(t h)\right|^{q k}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t\right)^{\frac{1}{q k}} \\
\quad=\left(\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t\right)^{\frac{q k-1}{q k}}\left(\int_{N}^{\infty} t^{-2 q r}\left|1-j_{\alpha}(t h)\right|^{q k}|\widehat{f}(t)|^{q} t^{2 q r+2 \alpha+1} d t\right)^{\frac{1}{q k}} \\
\quad \leq N^{-2 r / k}\left(\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t\right)^{\frac{q k-1}{q k}}\left(\int_{N}^{\infty}\left|1-j_{\alpha}(t h)\right|^{q k}|\widehat{f}(t)|^{q} t^{2 q r+2 \alpha+1} d t\right)^{\frac{1}{q k}} .
\end{aligned}
$$

In view of Lemma 2.1, we conclude that

$$
\int_{N}^{\infty}\left|1-j_{\alpha}(t h)\right|^{q k}|\widehat{f}(t)|^{q} t^{2 q r+2 \alpha+1} d t \leq K^{q}\left\|\Delta_{h}^{k} \mathrm{~B}^{r} f(x)\right\|_{p, \alpha}^{q}
$$

Therefore,

$$
\begin{aligned}
\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t \leq & \int_{N}^{\infty} j_{\alpha}(t h)|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t \\
& +K^{q} N^{-2 r / k}\left(\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t\right)^{\frac{q k-1}{q k}}\left\|\Delta_{h}^{k} \mathrm{~B}^{r} f(x)\right\|_{p, \alpha}^{1 / k}
\end{aligned}
$$

From formula (2.5) and definition of $j_{\alpha}(x)$, we have

$$
j_{\alpha}(t h)=O\left((t h)^{-\alpha-\frac{1}{2}}\right)
$$

Then

$$
\begin{aligned}
& \int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t \\
& =O\left(\int_{N}^{\infty}(t h)^{-\alpha-\frac{1}{2}}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t+K^{q} N^{-2 r / k}\left(\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t\right)^{\frac{q k-1}{q k}}\left\|\Delta_{h}^{k} \mathrm{~B}^{r} f(x)\right\|_{p, \alpha}^{1 / k}\right) \\
& =O\left((N h)^{-\alpha-\frac{1}{2}} \int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t+K^{q} N^{-2 r / k}\left(\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t\right)^{\frac{q k-1}{q /}}\left\|\Delta_{h}^{k} \mathrm{~B}^{r} f(x)\right\|_{p, \alpha}^{1 / k}\right)
\end{aligned}
$$

or
$\left(1-O(N h)^{-\alpha-\frac{1}{2}}\right) \int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t=O\left(N^{-2 r / k}\right)\left(\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t\right)^{\frac{q k-1}{q k}}\left\|\Delta_{h}^{k} \mathrm{~B}^{r} f(x)\right\|_{p, \alpha}^{1 / k}$.
Setting $h=C / N$ in the last inequality and choosing $C>0$ such that $1-$ $O\left(C^{-\alpha-\frac{1}{2}}\right) \geq \frac{1}{2}$, we obtain

$$
\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t=O\left(N^{-2 r / k}\right)\left(\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t\right)^{\frac{q k-1}{q k}} \phi^{1 / k}\left[\left(\frac{C}{N}\right)^{k}\right]
$$

Then

$$
\int_{N}^{\infty}|\widehat{f}(t)|^{q} t^{2 \alpha+1} d t=O\left(N^{-2 r q} \phi^{q}\left[\left(\frac{C}{N}\right)^{k}\right]\right),
$$

which proves the theorem.

References

[1] A.G. Sveshnikov, A.N. Bogolyubov, V.V. Kravtsov, Lectures on Mathematical Physics, (in Russian), Nauka, Moscow, 2004.
[2] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon, Oxford. 1948, Komkniga, Moscow, 2005.
[3] A.N. Tikhonov, A.A. Samarskii, Equations of Mathematical Physics, Pergamon Press. Oxford, 1964; Gostekhteorizdat, Moscow, 1972.
[4] V.S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker, New York, 1971; Nauka, Moscow, 1976.
[5] G.N. Watson, Treatise on the Theory of Bessel Functions, Inostrannaya Literatura, Moscow, 1949; Cambridge Univ. Press, Cambridge, 1952.
[6] A.L. Zayed, Handbook of Function and Generalized Function Transformations, CRC. Boca Raton, 1996.
[7] V.A. Abilov, F.V. Abilova, M.K. Kerimov, On estimates for the Fourier-Bessel integral transform in the space $L_{2}\left(\mathbb{R}_{+}\right)$, Zh. Vychisl. Mat. Mat. Fiz. 49 (7) (2009) 1158-1166.
[8] B.M. Levitan, Expansion in Fourier series and integrals over Bessel functions, Uspekhi Mat. Nauk 6 (2) (1951) 102-143.
[9] I.A. Kipriyanov, Singular Elliptic Boundary Value Problems, (in Russian), Nauka, Moscow, 1997.
[10] K. Trimèche, Transmutation operators and mean-periodic functions associated with differential operators, Math. Rep. 4 (1) (1988) 1-282.
[11] S.M. Nikol'skii, Aproximation of Functions of Several Variables and Embedding Theorems, (in Russian), Nauka, Moscow, 1977.
[12] V.A. Abilov, F.V. Abilova, Approximation of functions by Fourier-Bessel sums, Izv. Vyssh. Uchebn. Zaved. Mat. 8 (2001) 3-9.
(Received 9 February 2012)
(Accepted 27 July 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2013 by the Mathematical Association of Thailand. All rights reserved.

