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1 Introduction

The existence of a fixed point for contraction type of mappings in partially or-
dered metric spaces has been considered recently by Ran and Reurings [1], Bhaskar
and Lakshmikantham [2], Nieto and lopez [3, 4], Agarwal et al. [5], Lakshmikan-
tham and Ciri¢ [6], Luong and Thuan [7], Berinde [8] and Alotaibi and Alsulami
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[9].

Bhaskar and Lakshmikantham [2] introduced notions of a mixed monotone
mapping and a coupled fixed point and proved some coupled fixed point theo-
rems for mixed monotone mapping. Later, Luong and Thuan , [7] proved some
coupled fixed point theorems for mappings having a mixed monotone property in
partially ordered metric spaces and generalization of the main results of Bhaskar
and Lakshmikantham [2]. In 2012 Berinde [8] extended the coupled fixed point
theorems for mixed monotone operator F' : X x X — X obtain by Bhaskar and
Lakshmikantham [2] and Luong and Thuan [7].

Lakshmikantham and Ciri¢ [6] defined a mixed g-monotone mapping and prove
coupled coincidence and coupled common fixed point theorems for such nonlin-
ear contractive mappings in partially ordered complete metric spaces. In 2011
Alotaibi and Alsulami [9] proved the existence and uniqueness of coupled coin-
cidence point involving a (¢, 1))-contractive condition for a mappings having the
mixed g-monotone property.

The purpose of this paper is to present some coupled coincidence point theo-
rems for a mixed g-monotone mapping in a partially ordered metric space which
are generalizations of the results of Alotaibi and Alsulami [9] and Berinde [8].

2 Preliminaries

Let (X, <) be a partially ordered set and suppose there is a metric d on X
such that (X, d) is a complete metric space. Consider on the product space X x X
the following partial order :

for(z,y), (u,v) € X x X, (u,v) < (z,y) <=z > u,y < v. (2.1)

Definition 2.1 ([2]). Let(X, <) be a partially ordered set and F: X x X — X.
We say F has the mixed monotone property if for any xz,y € X

21,29 € X, 1 < xg  implies F(x1,y) < F(x2,y) (2.2)
and
y1.y2 € X, y1 <y2 implies F(v,y1) > F(2,y2). (2.3)

Definition 2.2 ([2]). An element (z,y) € X x X is called a coupled fixed point
of a mapping F': X x X — X. if x = F(z,y) and y = F(y, ).

Let ® denote the set of all functions ¢ : [0,00) — [0, 00) satisfying
(i) @ is continuous and non-decreasing,
(tiy) @(t) =0 if and only if t = 0 and,

(iti,) @(t +5) < @(t) + (s) for all t,s € [0,00)
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and ¥ denote the set of all functions ¢ : [0,00) — [0, 00) which satisfy

) %52 ¥(t) > 0 for all 7 > 0 and (iiy) tE%l+ P(t) = 0.

Luong and Thuan [7] proved the following coupled fixed point theorems.

Theorem 2.3 ([7]). Let(X, <) be a partially ordered set and suppose there is a
metric d on X such that (X,d) is a complete metric space. Assume there is a
function ¢ € ® and p € ¥ such that

d(z, u) + d(y, v)

e(d(F(z,y), F(u,v))) < %@(d(%U) +d(y,v)) = ( 5 ) (24)

for all x,y,z,u,v € X for which x > u and y < v.
Suppose either

(a) F' is continuous or
(b) X has the following property:
(i) if a non-decreasing sequence {x,} — x, then x, < x for all n.
(i) if a non-increasing sequence {yn} — y, then y < y,, for all n.
If there exist xg,y9 € X such that
zo < F(zo,y0) and yo = F(yo, xo),
Then there exist x,y € X such that
= F(z,y) and y=F(y,z),
that is, F' has a coupled fized point in X.

The main result in Berinde [8] is the following coupled fixed point theorem
which generalizes Theorem 2.3 in [7].

Theorem 2.4 ([8]). Let(X, <) be a partially ordered set and suppose there is a
metric d on X such that (X,d) is a complete metric space. Assume there is a
function ¢ € ® and p € ¥ such that

o <d(F(I7y),F(u7v)) + d(F(y,l’),F(v,U))>

2

<y (d(m,u)—;—d(y,v)) Y (d(x,u) —2&— d(y,v)) (25)

for all x,y, z,u,v € X for which x > u and y < v.
suppose either

(a) F is continuous or
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(b) X has the following property:

(i) if a non-decreasing sequence {x,} — x, then x, < x for all n.

(i) if a non-increasing sequence {yn} — vy, then y < y, for all n.

If there exist xg,yq € X such that

zo < F(zo,90) and yo = F(yo, zo),
Then there exist x,y € X such that
r=F(z,y) and y=F(y,z),

that is, F' has a coupled fixed point in X.

Lakshmikantham and Cirié¢ [6] introduced a mixed g-monotone mapping.

Definition 2.5 ([6]). Let(X, <) be a partially ordered set and F : X x X — X
and g : X — X. We say F' has the g-mixed monotone property if for any z,y € X

x1,22 € X, g(x1) < g(we) implies F(x1,y) < F(z2,y) (2.6)
and

y1,y2 € X, gyr) < g(y2) implies F(x,y1) > F(x,y2). (2.7)

Definition 2.6 ([6]). An element (z,y) € X x X is called a coupled coincidence
point of a mapping F : X x X — X. and g : X — X if g(x) = F(z,y) and
9(y) = F(y, ).

Definition 2.7 ([6]). Let X be a non-empty set and F' : X x X — X. and
g: X — X. We say F and g are commutative if g(F(z,y)) = F(g(z), g(y)) for all
z,y € X.

Theorem 2.8 ([6]). Let(X, <) be a partially ordered set and suppose there is a

metric d on X such that (X,d) is a complete metric space. Assume there is a

function ¢ : [0,00) — [0,00) with p(t) <t and lim+ o(t) <t for each t > 0 and
r—t

also suppose F': X x X — X and g : X — X are such that F has the mixed

g-monotone property and

d(g(x), 9(u)) + d(g(y)vg(”))> (2.8)

AP Fu) < o :

for all z,y,u,v € X for which g(z) < g(u) and g(y) = g(v).
Suppose F(X x X) C g(X), g is continuous and commutes with F' and also suppose
either

(a) F is continuous or
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(b) X has the following property:
(i) if a non-decreasing sequence {x,} — x, then x,, < x for all n.
(i) if a non-increasing sequence {yn} — y, then y < y,, for all n.
If there exist xg,yo € X such that

g(zo) < F(wo,90) and g(yo) = F(yo, o),
Then there exist x,y € X such that

g(x) = F(z,y) and g(y) = F(y,z),
that is, F' and g have a coupled coincidence.

Alotaibi and Alsulami [9] proved the existence and uniqueness of coupled co-
incidence point involving a (¢, 1)-contractive condition for a mappings having the
mixed g-monotone property.

Theorem 2.9 ([9]). Let (X, <) be a partially ordered set and suppose there is a
metric d on X such that (X,d) is a complete metric space. Assume there is a
function ¢ € ® and ¥ € ¥V and also suppose F: X x X — X and g: X — X are
such that F has the mixed g-monotone property and

(d(F(z,y), F(u,v))) < 1sO(d(g(f),g(U))er(g(y)ag(v)))

2
(d(g(sc), 9(w) + d(g(v), g<v>>) (2.9)

_d) 5

for all z,y,u,v € X for which g(z) > g(u) and g(y) < g(v).
Suppose F(X x X)) C g(X), g is continuous and commutes with F' and also suppose
either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {x,} — x, then x, < x for all n.
(i) if a non-increasing sequence {yn} — y, then y < y, for all n.
If there exist xg,y9 € X such that

9(z0) < F(zo,y0) and g(yo) = F(yo, o),
Then there exist x,y € X such that
g(@) = F(z,y) and g(y) = F(y,z),

that is, F' and g have a coupled coincidence.
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3 Main Results

The first main result in this paper is the following coupled fixed point theorem
which generalize Theorem 2.9 [9].

Theorem 3.1. Let (X, <) be a partially ordered set and suppose there is a metric
d on X such that (X,d) is a complete metric space. Assume there is a function
p e P andy € VU and also suppose F': X x X — X and g : X — X are such that
F has the mized g-monotone property and

o (d(F(w,y)aF(uav)) ;r d(F(yw)aF(%U))>

d(g(x), g(u)) +d(g(y),9(v)) d(g(x), g(u)) +d(g(y),9(v))
s0(99291/_0 )¢<gg gyg)

<

for all z,y,u,v € X with g(x) = g(u) and g(y) < g(v).

Suppose F(X x X) C g(X), g is continuous and commutes with F and also
suppose either

(a) F is continuous or
(b) X has the following property:

(1) if a non — decreasing sequence {x,} — x, then x, < x for all n. (3.2)

(i) if a non — increasing sequence {yn,} — vy, then y <y, for all n. (3.3)
If there exist xg,yo € X such that
9(zo) < F(zo,y0) and  g(yo) = F(yo, o) (3.4)
or
9(xo) = F(zo,y0) and g(yo) < F(yo, o), (3.5)
Then there exist x,y € X such that
9(x) = F(z,y) and g(y) = F(y,z).

Proof. Let xg,yo € X be such that g(z¢) < F(z0,y0) and
9(yo) = F(yo,x0). Since F(X x X) C g(X), we can choose x1,y; € X such that

g(z1) = F(zo,90) and g(y1) = F(yo, o).
Again from F(X x X) C g(X) we can choose z2,y2 € X such that

g(x2) = F(z1,y1) and g(y2) = F(y1,71).
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Continuing this process we can construct sequences {x,,} and {y, } in X such that

9(Tnt1) = F(zn,yn) and g(Yynt+1) = F(yn,zn) forall n > 0. (3.6)

Since F' is g-mixed monotone, we have

(9(z0), 9(y0)) < (F(x0,¥0), F(yo,z0)) = (9(x1), 9(y1))-

Assume
(9(xn-1),9(yn-1)) < (9(xn), 9(yn))-
by the mathematical induction, we get
9(@n) < g(@nt1) and  g(yn) 2 9(yns1) forall n > 0.

Consider the sequence of nonnegative real number {4, }22; given by

d(g(@n+1), 9(xn)) + d(g(Yn+1), 9(yn))

> 0.
2 >

6n+1 =

By taking © := 2,y := Yn, U := Tp_1,v := yYp—1 in (3.1), we have

d(F(ajnayn)vF(xn—layn—l)) +d<F(yn7xn)7F(yn—17xn—l))
2
d(g(anrl)vg(xn)) + d(g(yn+1)7g(yn))
2

= §n+1~

While the right hand side of (3.1) will be equal to

o (d(g(xn),g(évn—l)) ;d(g(yn),g(yn—l))>

Y (d(g(wn),g(xn—ﬁ) ; d(g(yn)vg(yn_l))>

Therefore, the sequence {6, }°2 ; satisfies
(1) < 9(60) — B(82) < 9(80). for all 1> 0. (3.7)

From (3.7) and (i) it follows that the sequence {d, }72; is non-increasing. There-
fore, there exists some d > 0 such that

lim 6, = lim | A9@n)9(@n)) +dg(n), 9(m1))| _ o

n— 00 n— 00 2

(3.8)

We shall prove that § = 0. Assume, to the contrary, that 6 > 0. Then by letting
n — oo in (3.7), by property of (i,,) and (iy) we have

p(0) = Tm @(dp41) < T @(J,) — lim 9(dn) = () = Lim (dn) < ¢(6),

Op—ot
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a contradiction. Thus § = 0 and hence

nh_}rrgo dn, = 0. (3.9)
We now prove that {g(z,)} and {g(y,)} are Cauchy sequence in (X, d).
Suppose, to the contrary, that at least one of {g(z,)} and {g(y.)} is not Cauchy se-
quence. Then there exists an € > 0 for which we can find subsequences {g(,(x))}

and {g(znw))} of {g(zn)}, {9(Umr))} and {g(ynm))} of {g(yn)} with n(k) >
m(k) > K such that

1

5 [d(g(mn(k))vg(xm(k)) + d(g(yn(k))vg(ym(k))] Z €, k€ {17 2, } (310)

Further, corresponding to m(k), we can choose n(k) in such a way that is the
smallest integer with n(k) > m(k) > K and satisfying (3.10). Then

1

3 [d(9(@n(k)-1), 9(@mk) + AIYn)-1)> 9Wm))] < e (3.11)

Using (3.10) and (3.11) and the triangle inequality, we have

A(g(Tn)); 9(@mer)) + AGYn))> 9Ymr)
< d(g(@n(k)), 9(Tnm)-1)) + d(:(wnw)l)»g(xm(k)))

A(g(Yn (k) g(yn(k>—1))2+ d(g(Yn)-1)> 9Ym)))
d(g(@n(k)), g(xn(k)—l));_%i(g(yn(k))’g(yn(k)—l)

e < Tpi=

_|_

+ €.

Letting k£ — oo in the above inequality and using (3.9), we get

[d(g(xn(k))a g(xn(lc)fl)) + d(g(yn(k))’ g(yn(k)fl)

5 +5}:e,

e < lim 7, < lim
k—o0 k—o0

that is,

lim r = lim
k—o0 k—o0

[d(g(%(k)), (T (k) + A(G(Yn(k))s g(ym(k))] .
5 .

By the triangle inequality, we have

d(g(fﬂn(k))79(33m(k)) < d(9($n(k))79($n(k)+1) + d(g(mn(k)ﬂ),g(ﬂﬁm(k)ﬂ)

+ d(g(Tmr)+1)s 9(@Tmr)))s
similarly

A(G(Yn(x))s I YUm)) < A9 Yni))s 9Yny+1) + A9 Ynk)+1)5 9 Ymk)+1)
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+ d(g(ym(k)—i-l)v g(ym(k)))'

This show that

d(g(wn(k))7 g(xm(k)) + d(g(yn(k))7 g(ym(k))
2
d(g(Tnk)), 9(@n)+1) + A9(@nw)+1), 9(@mp)+1) + AG(Tmk)+1): 9(@Zmw)))
d(g(yn(k))a g(yn(k)-‘rl) + d(g(yn(k)+1§> g(ym(k)+1) + d(g(ym(k)+1)a g(ym(k)))
2
d(9(@n(k)+1), 9(Tm)+1) + AGYnk)+1)s 9(Ym(k)+1)  (313)

Ty =

N

+

= 5n(k) + 5m(k) +

Since n(k) > m(k), we have g(zn)) = 9(Tm@)) and g(ynm)) < 9(Ymm)) and
hence we can use (3.1) with = 1= Z,4), ¥ 1= Unk), U = Timk), U = Ym(k), tO
obtain

o (d (@) +1), 9@y +1) + d(g(yn(k)ﬂ),g(ym(k)ﬂ))
2
_ (d k) Yn(k))s F(@miys Ym))) + AE Wnrys Tn))s F (Ymr)s mm(k)))>
2
< @ (d x”(k xm(k)) ;— d(g(yn(k))7 g(ym(k))>
(d (@n): 9(@mr)) + d(g(ymk)),g(ym(k)))
- 2
= @(re) =¥ (re). (3.14)

On the other hand, by (3.13) and using property (iii,), we get

o(rk) < @(Onk) + Omk))

(d(g(fﬂn(m“)’g(wm(mﬂ) ;L d(g(yn<k>+1)’g(ym(’“)“)> - (3.15)

+te

By (3.14), we have
o(rk) < @(Onk) + Omy) + (k) — ¥ (ri) - (3.16)

Letting £ — oo in (3.16) and using (3.9) and (3.12) and property of ¢ and ¥, we
have

N

T [9(ngw) + Omiy) + () = ¥ ()]
w(kllngo(én(k) +mw)) + (p(kh—{go k)~ kh—>n<>1<> v ()
©(0) + p(e) — i o (re) < (e),

ple) = lim o(rk)
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which is a contradiction. This shows that {g(z,)} and {g(y,)} are Cauchy se-
quence. Since X is a complete matric space, there exist x,y € X such that

lim g(z,) =2 and ILm 9(yn) = y. (3.17)

n—oo

From (3.17) and continuity of g,

lim g(g(zn)) = g(z) and  lim g(g(yn)) = 9(y)- (3.18)

n—oo

From (2.6) and commutativity of F' and g,
9(9(@n11)) = g(F(2n,yn)) = F(g(2n); 9(yn)); (3.19)

and

9(9Wn+1)) = 9(F(Yn, 2n)) = F(g(yn), 9(zn)). (3.20)

We now show that F(z,y) = g(z) and F(y,x) = g(y).

Suppose that assumption (a) holds.

Taking the limit as n — oo in (3.19) and (3.20), by (3.17),(3.18) continuity and
commutativity of F' and g, we get

9(x) = g(lim g(zni1)) = lim g(g(wni1)) = lim g(F(zn,yn))
= lim F(g(zn),9(yn)) = F(lim (g(zn), 9(yn))) = F(z,y)

and

9y) = g(lm g(ynt1)) = Lm g(g(yn+1)) = Um g(F(yn,zn))
= lim Fg(ya),9(zn)) = F(im (9(yn), 9(z0))) = F(y, ).
Thus we prove that F(x,y) = g(z) and F(y,z) = g(y). Suppose that the assump-
tion (b) holds. Since {g(z,)} is a non-decreasing and g(z,) — z, and {g(yn)}
is a non-increasing and g(y,) — y, from (3.2) and (3.3) we have g(z,) < z and
9(yn) = y for all n. Then
d(g(x), F(x,y)) < dg(@),9(9(zn+1))) + d(g(9(zn41)), F(z,y))
d(9(2), 9(9(xn11))) + d(F(g(2n), 9(yn)), F(2,9))

and

N

d(9(¥), 9(9(yn+1))) + d(9(9(yn+1)), F(y, z))
d(g(y)ag(g(yn+1))) +d(F(g(yn)ag(xn))aF(yvx))

d(9(y), F(y,v))

So

d(g(z), F(z,y)) — d(g(x), 9(9(zn11))) < d(F(g(zn), 9(yn)), F (2, y))
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and

d(g(y), F(y,)) — d(9(y), 9(9(yn+1))) < d(F(9(yn), 9(zn)), F(y, x)).
Hence

d(g(z), F(z,y)) — d(g(x), 9(9(wn+1))) +d(g(y), F(y,x)) — d(9(y), 9(9(yn+1)))

2
o UEG@n), 9(yn)), F(2,y)) + d(F(g(yn), 9(xn)), Fy, x))

By ¢ is non-decreasing and (3.1), therefore

o (d(g(ﬂf), F(z,y)) —d(g(z), 9(g(xns1))) + d(g(y), F(y,z))

2

d(g(y),g(g(yn+1))))
2

(d(F(g(xn)v 9(yn)), F'(x,y)) + d(F(g(yn), 9(zn)), F'(y, 1‘)))
\ 2

d(g(g(zn)), g9(z)) + d(g(g(yn)), 9(y))
o ; )

_ (d(g(g(:vn)%g(x)) + d(g(g(yn)),g(y))) .

<

<

2
using the property of ¥, we get

(d(g(l‘)vF(w, y)) —d(g(x), 9(g(xny1))) +d(g(y), F(y, x))
14 2

d(g(y)7g(g(yn+1))))
2

; <d(g(g(xn))7g(x)) + d(g(g(yn)),g(y))> .

<

2

Taking the limit as n — oo in the above inequality, we obtain

. (d<g<x>, Fley) + dlots) FW”) <(0)=0

which shows, by (ii,), that F(z,y) = g(z) and F(y,z) = g(y). O
Example 3.2. Let X =R, d(xz,y) = |z —y| and F : X x X — X be defined by

T — 2y

5 (z,y) € X2

F(xvy) =

Then F is mized monotone and satisfies condition (3.1) but not satisfy condition
(2.9).
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We well prove that (2.9) is not satisfied when g(x) = 5. Assume, to the contrary,
that there exist ¢ € ® and v € ¥ such that (2.9) holds. This means that

r—2y u—2v
AN 8

) < el - gD +1st) - g0
o (Ug(@) = g(u)]) + lg(y) — g(v)])
o )

2

1 (le—ultly—dl
= ¥ 2

|z —ul+ |y — v
o (i)
g9(x) = g(u) and g(y) < g(v).
By which, for g(xz) = g(u) and g(y) # g(v). in the previous inequality and denote
r=|Y2|. By (i), we get

p(2r) —P(r) = o(r) = ¢(r),

N | =

p(r) <

for all >0, ¥(r) <0, this is, ¥(r) = 0, which contradicts (iy). It show that F
does not satisfy (2.9).
Now we prove that (3.1) holds. Indeed, since g(x) = g(u) and g(y) < g(v) we have

33—82y_u—82v < m;u ’y;v7 g(z) = g(u), g(y) < g(v),
and
’y—Qx_v—Qu g‘y—v TR @) = g(u),g(y) < g(v),
8 8 8 4
by summing up the two inequalities above we get exactly (3.1) with (t) = § and

Y(t) = §. Note also that xo = —4,yo = 6 satisfy (3.2). So by our theorem 3.1 we
obtain that F has a (unique) couple common fixed point (0,0) but theorem 2.9 in
[9] does not apply to F in this example.

Corollary 3.3. Let (X, <) be a partially ordered set and suppose there is a metric
d on X such that (X,d) is a complete metric space. Assume there is a function
p € ® andy € U and also suppose F': X x X = X and g : X — X are such that
F' has the mized g-monotone property and

d(F(2,y), F(u,v)) + d(F(y, ), F(v,u))

S T e IS

for all x,y,u,v € X with g(x) = g(u) and g(y) < g(v).
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Suppose F(X x X) C g(X), g is continuous and commutes with F' and also
suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {x,} — x, then x, < x for all n.
(i1) if a non-increasing sequence {yn} — y, then y < y, for all n.

If there exist xg,y9 € X such that

g(wo) < F(zo,90) and g(yo) = F(yo, o)

or
9(xo) 2 F(xo,90) and g(yo) < F(yo, o),
Then there exist x,y € X such that
9(x) = F(z,y) and g(y) = F(y,z).

Proof. In theorem 3.1, taking ¢(t) = & and ¢4 (t) = % and multiple by 4, we get

Corollary 3.3 O

Theorem 3.4. In addition to the hypotheses of theorem 3.1, suppose that for every
(x,y), (z*,y*) € X x X there ezists a (u,v) € X x X such that (F(u,v), F(v,u))
is comparable to (F(z,y), F(y,x)) and (F(z*,y*), F(y*,2*)). Then F and g have
a unique couple common fized point, that is, there exist a unique (z,y) € X x X
such that

r=g(r)=F(z,y) and y = g(y) = F(y,z).

Proof. From Theorem 3.1, the set of couple coincidence is non-empty. We shall
show that if (z,y) and (z*,y*) are couple coincidence points, this is,
if g(z) = F(z,y),9(y) = F(y,z) and g(z*) = F(z*,y*),9(y*) = F(y*,z*), then

g(x) =g(z") and g(y) =g(y"). (3.22)
By assumption there is (u,v) € X x X such that (F'(u,v), F(v,u)) is comparable
with (F(z,y), F(y,z)) and (F(z*,y%), F(y*, z7)).
Put ug = u,vg = v and choose uy,us € X. So that
g(u1) = F(uo,v0) and g(v1) = g(vo, uo).

Then similarly as in Theorem 3.1, we can inductively define sequences {g(un)}
and {g(v,)} such that

9(unt1) = Fun,vn) and  g(vns1) = g(vn, un),n = 0.
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Since (F(z,y), F(y,x)) = (9(x),9(y)) and (F(u,v), F(v,u)) = (9(u1),g(v1)) are
comparable,then g(z) < g(u1) and g(y) > g(v1). It is easy to show that (g(z), g(y))
and (g(uy), g(vy,)) are comparable, that is,

9(x) < g(un) and g(y) = g(vn) for all n > 1.
Thus from (3.1), we have

sD(d(g(fﬂ)»g(unﬂ))er( 99).9 (vn+1)))

2
d(F (2, y), F(un,vs)) + d(F(y, ), F(vn, un))
-« ; )
< o <d(g($),g(un)) ;r d(g(y),g(vn))> _ <d(9($),g(un)) ; d(g(y),g(vn))> _

(3.23)
Which by the fact that ¢ > 0, implies
o <d(g(w)’g(un+1)) +d9(y).g (vn+1))> <y (d(g(w) 9(un)) +d(9(y), g (vn))> .

2 2

Thus, by the monotonicity of ¢, we obtain that sequence {h,} defined by

L _ d(g(x), g(un)) +d(g(y), 9(vn))
" 2

. n =0,

is non-increasing. Hence, there exists o > 0 such that

i = iy [0 00 + Al gl0n)] _

Suppose, to the contrary, that o > 0.
Letting n — oo in (3.23), we get

p(a) <pla) = lim ¢hn) = p(a) = lim $(hn) < p(a).

hp—a™t

A contradiction. Thus a = 0, that is,

lim h, = lim
n— 00 n—o00 2

which implies

lim d(g(z), g(un)) = lim d(g(y),g(vn)) = 0.

n—oo n—oo

Similarly, we obtain

lim d(g(z"),g(un)) = lim d(g(y*),g(vn)) = 0.

n— oo n—0o0
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Hence g(z) = g(z*) and ¢(y) = g(y*).

Since g(z) = F(z,y) and ¢(y) = F(y,z), by commutativity of F' and g, we
have

9(9(x)) = g(F(z,y)) = F(g(x),9(y)) and g(g(y)) = g(F(y,z)) = F(g(y), g(x)).
(3.24)

Denote g(z) = z and g(y) = w. Then from (3.24),
g(z) = F(z,w) and g(w)= F(w,z). (3.25)

Thus (z,w) is a coupled coincidence point. Then from (3.22) with z* = z and
y* =w. It follows g(z) = g(x) and g(w) = g(y), that is,

g(z) =2z and g(w)=w. (3.26)
From (3.25) and (3.26),
z=yg(z) = F(z,w) and w=g(w)=F(w,z).

Therefore, (z,w) is a coupled common fixed point of F and g. To prove the
uniqueness, assume that (p, ¢) is another coupled common fixed point. Then by
(3.22) we have p = g(p) = g(z) = z and ¢ = ¢g(q) = g(w) = w. O
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