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1 Introduction

The existence of a fixed point for contraction type of mappings in partially or-
dered metric spaces has been considered recently by Ran and Reurings [1], Bhaskar
and Lakshmikantham [2], Nieto and lopez [3, 4], Agarwal et al. [5], Lakshmikan-
tham and Ćirić [6], Luong and Thuan [7], Berinde [8] and Alotaibi and Alsulami
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[9].
Bhaskar and Lakshmikantham [2] introduced notions of a mixed monotone

mapping and a coupled fixed point and proved some coupled fixed point theo-
rems for mixed monotone mapping. Later, Luong and Thuan , [7] proved some
coupled fixed point theorems for mappings having a mixed monotone property in
partially ordered metric spaces and generalization of the main results of Bhaskar
and Lakshmikantham [2]. In 2012 Berinde [8] extended the coupled fixed point
theorems for mixed monotone operator F : X × X → X obtain by Bhaskar and
Lakshmikantham [2] and Luong and Thuan [7].

Lakshmikantham and Ćirić [6] defined a mixed g-monotone mapping and prove
coupled coincidence and coupled common fixed point theorems for such nonlin-
ear contractive mappings in partially ordered complete metric spaces. In 2011
Alotaibi and Alsulami [9] proved the existence and uniqueness of coupled coin-
cidence point involving a (φ,ψ)-contractive condition for a mappings having the
mixed g-monotone property.

The purpose of this paper is to present some coupled coincidence point theo-
rems for a mixed g-monotone mapping in a partially ordered metric space which
are generalizations of the results of Alotaibi and Alsulami [9] and Berinde [8].

2 Preliminaries

Let (X,6) be a partially ordered set and suppose there is a metric d on X
such that (X, d) is a complete metric space. Consider on the product space X×X
the following partial order :

for(x, y), (u, v) ∈ X ×X, (u, v) 6 (x, y) ⇐⇒ x > u, y 6 v. (2.1)

Definition 2.1 ([2]). Let(X,6) be a partially ordered set and F : X ×X → X.
We say F has the mixed monotone property if for any x, y ∈ X

x1, x2 ∈ X, x1 6 x2 implies F (x1, y) 6 F (x2, y) (2.2)

and

y1, y2 ∈ X, y1 6 y2 implies F (x, y1) > F (x, y2). (2.3)

Definition 2.2 ([2]). An element (x, y) ∈ X ×X is called a coupled fixed point
of a mapping F : X ×X → X. if x = F (x, y) and y = F (y, x).

Let Φ denote the set of all functions φ : [0,∞) → [0,∞) satisfying

(iφ) φ is continuous and non-decreasing,

(iiφ) φ(t) = 0 if and only if t = 0 and,

(iiiφ) φ(t+ s) 6 φ(t) + φ(s) for all t, s ∈ [0,∞)
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and Ψ denote the set of all functions ψ : [0,∞) → [0,∞) which satisfy

(iψ) lim
t→r

ψ(t) > 0 for all r > 0 and (iiψ) lim
t→0+

ψ(t) = 0.

Luong and Thuan [7] proved the following coupled fixed point theorems.

Theorem 2.3 ([7]). Let(X,6) be a partially ordered set and suppose there is a
metric d on X such that (X, d) is a complete metric space. Assume there is a
function φ ∈ Φ and ψ ∈ Ψ such that

φ(d(F (x, y), F (u, v))) 6 1

2
φ(d(x, u) + d(y, v))− ψ(

d(x, u) + d(y, v)

2
) (2.4)

for all x, y, z, u, v ∈ X for which x > u and y 6 v.
Suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn 6 x for all n.

(ii) if a non-increasing sequence {yn} → y, then y 6 yn for all n.

If there exist x0, y0 ∈ X such that

x0 6 F (x0, y0) and y0 > F (y0, x0),

Then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x),

that is, F has a coupled fixed point in X.

The main result in Berinde [8] is the following coupled fixed point theorem
which generalizes Theorem 2.3 in [7].

Theorem 2.4 ([8]). Let(X,6) be a partially ordered set and suppose there is a
metric d on X such that (X, d) is a complete metric space. Assume there is a
function φ ∈ Φ and ψ ∈ Ψ such that

φ

(
d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

2

)
6 φ

(
d(x, u) + d(y, v)

2

)
− ψ

(
d(x, u) + d(y, v)

2

)
(2.5)

for all x, y, z, u, v ∈ X for which x > u and y 6 v.
suppose either

(a) F is continuous or
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(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn 6 x for all n.

(ii) if a non-increasing sequence {yn} → y, then y 6 yn for all n.

If there exist x0, y0 ∈ X such that

x0 6 F (x0, y0) and y0 > F (y0, x0),

Then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x),

that is, F has a coupled fixed point in X.

Lakshmikantham and Ćirić [6] introduced a mixed g-monotone mapping.

Definition 2.5 ([6]). Let(X,6) be a partially ordered set and F : X ×X → X
and g : X → X. We say F has the g-mixed monotone property if for any x, y ∈ X

x1, x2 ∈ X, g(x1) 6 g(x2) implies F (x1, y) 6 F (x2, y) (2.6)

and

y1, y2 ∈ X, g(y1) 6 g(y2) implies F (x, y1) > F (x, y2). (2.7)

Definition 2.6 ([6]). An element (x, y) ∈ X ×X is called a coupled coincidence
point of a mapping F : X × X → X. and g : X → X if g(x) = F (x, y) and
g(y) = F (y, x).

Definition 2.7 ([6]). Let X be a non-empty set and F : X × X → X. and
g : X → X. We say F and g are commutative if g(F (x, y)) = F (g(x), g(y)) for all
x, y ∈ X.

Theorem 2.8 ([6]). Let(X,6) be a partially ordered set and suppose there is a
metric d on X such that (X, d) is a complete metric space. Assume there is a
function φ : [0,∞) → [0,∞) with φ(t) < t and lim

r→t+
φ(t) < t for each t > 0 and

also suppose F : X × X → X and g : X → X are such that F has the mixed
g-monotone property and

d(F (x, y), F (u, v)) 6 φ

(
d(g(x), g(u)) + d(g(y), g(v))

2

)
(2.8)

for all x, y, u, v ∈ X for which g(x) 6 g(u) and g(y) > g(v).
Suppose F (X×X) ⊆ g(X), g is continuous and commutes with F and also suppose
either

(a) F is continuous or
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(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn 6 x for all n.

(ii) if a non-increasing sequence {yn} → y, then y 6 yn for all n.

If there exist x0, y0 ∈ X such that

g(x0) 6 F (x0, y0) and g(y0) > F (y0, x0),

Then there exist x, y ∈ X such that

g(x) = F (x, y) and g(y) = F (y, x),

that is, F and g have a coupled coincidence.

Alotaibi and Alsulami [9] proved the existence and uniqueness of coupled co-
incidence point involving a (φ,ψ)-contractive condition for a mappings having the
mixed g-monotone property.

Theorem 2.9 ([9]). Let (X,6) be a partially ordered set and suppose there is a
metric d on X such that (X, d) is a complete metric space. Assume there is a
function φ ∈ Φ and ψ ∈ Ψ and also suppose F : X ×X → X and g : X → X are
such that F has the mixed g-monotone property and

φ(d(F (x, y), F (u, v))) 6 1

2
φ(d(g(x), g(u)) + d(g(y), g(v)))

−ψ
(
d(g(x), g(u)) + d(g(y), g(v))

2

)
(2.9)

for all x, y, u, v ∈ X for which g(x) > g(u) and g(y) 6 g(v).
Suppose F (X×X) ⊆ g(X), g is continuous and commutes with F and also suppose
either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn 6 x for all n.

(ii) if a non-increasing sequence {yn} → y, then y 6 yn for all n.

If there exist x0, y0 ∈ X such that

g(x0) 6 F (x0, y0) and g(y0) > F (y0, x0),

Then there exist x, y ∈ X such that

g(x) = F (x, y) and g(y) = F (y, x),

that is, F and g have a coupled coincidence.
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3 Main Results

The first main result in this paper is the following coupled fixed point theorem
which generalize Theorem 2.9 [9].

Theorem 3.1. Let (X,6) be a partially ordered set and suppose there is a metric
d on X such that (X, d) is a complete metric space. Assume there is a function
φ ∈ Φ and ψ ∈ Ψ and also suppose F : X ×X → X and g : X → X are such that
F has the mixed g-monotone property and

φ

(
d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

2

)
6 φ

(
d(g(x), g(u)) + d(g(y), g(v))

2

)
− ψ

(
d(g(x), g(u)) + d(g(y), g(v))

2

)
(3.1)

for all x, y, u, v ∈ X with g(x) > g(u) and g(y) 6 g(v).

Suppose F (X × X) ⊆ g(X), g is continuous and commutes with F and also
suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non− decreasing sequence {xn} → x, then xn 6 x for all n. (3.2)

(ii) if a non− increasing sequence {yn} → y, then y 6 yn for all n. (3.3)

If there exist x0, y0 ∈ X such that

g(x0) 6 F (x0, y0) and g(y0) > F (y0, x0) (3.4)

or

g(x0) > F (x0, y0) and g(y0) 6 F (y0, x0), (3.5)

Then there exist x, y ∈ X such that

g(x) = F (x, y) and g(y) = F (y, x).

Proof. Let x0, y0 ∈ X be such that g(x0) 6 F (x0, y0) and
g(y0) > F (y0, x0). Since F (X ×X) ⊆ g(X), we can choose x1, y1 ∈ X such that

g(x1) = F (x0, y0) and g(y1) = F (y0, x0).

Again from F (X ×X) ⊆ g(X) we can choose x2, y2 ∈ X such that

g(x2) = F (x1, y1) and g(y2) = F (y1, x1).
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Continuing this process we can construct sequences {xn} and {yn} in X such that

g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn) for all n > 0. (3.6)

Since F is g-mixed monotone, we have

(g(x0), g(y0)) 6 (F (x0, y0), F (y0, x0)) = (g(x1), g(y1)).

Assume
(g(xn−1), g(yn−1)) 6 (g(xn), g(yn)).

by the mathematical induction, we get

g(xn) 6 g(xn+1) and g(yn) > g(yn+1) for all n > 0.

Consider the sequence of nonnegative real number {δn}∞n=1 given by

δn+1 =
d(g(xn+1), g(xn)) + d(g(yn+1), g(yn))

2
, n > 0.

By taking x := xn, y := yn, u := xn−1, v := yn−1 in (3.1), we have

d(F (xn, yn), F (xn−1, yn−1)) + d(F (yn, xn), F (yn−1, xn−1))

2

=
d(g(xn+1), g(xn)) + d(g(yn+1), g(yn))

2
= δn+1.

While the right hand side of (3.1) will be equal to

φ

(
d(g(xn), g(xn−1)) + d(g(yn), g(yn−1))

2

)
− ψ

(
d(g(xn), g(xn−1)) + d(g(yn), g(yn−1))

2

)
= φ(δn)− ψ(δn).

Therefore, the sequence {δn}∞n=1 satisfies

φ(δn+1) 6 φ(δn)− ψ(δn) 6 φ(δn). for all n > 0. (3.7)

From (3.7) and (iφ) it follows that the sequence {δn}∞n=1 is non-increasing. There-
fore, there exists some δ > 0 such that

lim
n→∞

δn = lim
n→∞

[
d(g(xn), g(xn−1)) + d(g(yn), g(yn−1))

2

]
= δ. (3.8)

We shall prove that δ = 0. Assume, to the contrary, that δ > 0. Then by letting
n→ ∞ in (3.7), by property of (iφ) and (iψ) we have

φ(δ) = lim
n→∞

φ(δn+1) 6 lim
n→∞

φ(δn)− lim
n→∞

ψ(δn) = φ(δ)− lim
δn→δ+

ψ(δn) < φ(δ),
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a contradiction. Thus δ = 0 and hence

lim
n→∞

δn = 0. (3.9)

We now prove that {g(xn)} and {g(yn)} are Cauchy sequence in (X, d).
Suppose, to the contrary, that at least one of {g(xn)} and {g(yn)} is not Cauchy se-
quence. Then there exists an ε > 0 for which we can find subsequences {g(xm(k))}
and {g(xn(k))} of {g(xn)}, {g(ym(k))} and {g(yn(k))} of {g(yn)} with n(k) >
m(k) > K such that

1

2

[
d(g(xn(k)), g(xm(k)) + d(g(yn(k)), g(ym(k))

]
> ε, k ∈ {1, 2, ...}. (3.10)

Further, corresponding to m(k), we can choose n(k) in such a way that is the
smallest integer with n(k) > m(k) > K and satisfying (3.10). Then

1

2

[
d(g(xn(k)−1), g(xm(k)) + d(g(yn(k)−1), g(ym(k))

]
< ε. (3.11)

Using (3.10) and (3.11) and the triangle inequality, we have

ε 6 rk :=

[
d(g(xn(k)), g(xm(k)) + d(g(yn(k)), g(ym(k))

2

]
6

d(g(xn(k)), g(xn(k)−1)) + d(g(xn(k)−1), g(xm(k)))

2

+
d(g(yn(k)), g(yn(k)−1)) + d(g(yn(k)−1), g(ym(k)))

2

6
d(g(xn(k)), g(xn(k)−1)) + d(g(yn(k)), g(yn(k)−1)

2
+ ε.

Letting k → ∞ in the above inequality and using (3.9), we get

ε 6 lim
k→∞

rk 6 lim
k→∞

[
d(g(xn(k)), g(xn(k)−1)) + d(g(yn(k)), g(yn(k)−1)

2
+ ε

]
= ε,

that is,

lim
k→∞

rk = lim
k→∞

[
d(g(xn(k)), g(xm(k)) + d(g(yn(k)), g(ym(k))

2

]
= ε. (3.12)

By the triangle inequality, we have

d(g(xn(k)), g(xm(k)) 6 d(g(xn(k)), g(xn(k)+1) + d(g(xn(k)+1), g(xm(k)+1)

+ d(g(xm(k)+1), g(xm(k))),
similarly

d(g(yn(k)), g(ym(k)) 6 d(g(yn(k)), g(yn(k)+1) + d(g(yn(k)+1), g(ym(k)+1)
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+ d(g(ym(k)+1), g(ym(k))).

This show that

rk :=
d(g(xn(k)), g(xm(k)) + d(g(yn(k)), g(ym(k))

2

6
d(g(xn(k)), g(xn(k)+1) + d(g(xn(k)+1), g(xm(k)+1) + d(g(xm(k)+1), g(xm(k)))

2

+
d(g(yn(k)), g(yn(k)+1) + d(g(yn(k)+1), g(ym(k)+1) + d(g(ym(k)+1), g(ym(k)))

2

= δn(k) + δm(k) +
d(g(xn(k)+1), g(xm(k)+1) + d(g(yn(k)+1), g(ym(k)+1)

2
. (3.13)

Since n(k) > m(k), we have g(xn(k)) > g(xm(k)) and g(yn(k)) 6 g(ym(k)) and
hence we can use (3.1) with x := xn(k), y := yn(k), u := xm(k), v := ym(k), to
obtain

φ

(
d(g(xn(k)+1), g(xm(k)+1) + d(g(yn(k)+1), g(ym(k)+1)

2

)
= φ

(
d(F (xn(k), yn(k)), F (xm(k), ym(k))) + d(F (yn(k), xn(k)), F (ym(k), xm(k)))

2

)
6 φ

(
d(g(xn(k)), g(xm(k)) + d(g(yn(k)), g(ym(k))

2

)
−ψ

(
d(g(xn(k)), g(xm(k)) + d(g(yn(k)), g(ym(k))

2

)
= φ(rk)− ψ (rk) . (3.14)

On the other hand, by (3.13) and using property (iiiφ), we get

φ(rk) 6 φ(δn(k) + δm(k))

+ φ

(
d(g(xn(k)+1), g(xm(k)+1) + d(g(yn(k)+1), g(ym(k)+1)

2

)
. (3.15)

By (3.14), we have

φ(rk) 6 φ(δn(k) + δm(k)) + φ(rk)− ψ (rk) . (3.16)

Letting k → ∞ in (3.16) and using (3.9) and (3.12) and property of φ and ψ, we
have

φ(ε) = lim
k→∞

φ(rk) 6 lim
k→∞

[
φ(δn(k) + δm(k)) + φ(rk)− ψ (rk)

]
= φ( lim

k→∞
(δn(k) + δm(k))) + φ( lim

k→∞
rk)− lim

k→∞
ψ (rk)

= φ(0) + φ(ε)− lim
rk→ε+

ψ (rk) < φ(ε),
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which is a contradiction. This shows that {g(xn)} and {g(yn)} are Cauchy se-
quence. Since X is a complete matric space, there exist x, y ∈ X such that

lim
n→∞

g(xn) = x and lim
n→∞

g(yn) = y. (3.17)

From (3.17) and continuity of g,

lim
n→∞

g(g(xn)) = g(x) and lim
n→∞

g(g(yn)) = g(y). (3.18)

From (2.6) and commutativity of F and g,

g(g(xn+1)) = g(F (xn, yn)) = F (g(xn), g(yn)), (3.19)

and

g(g(yn+1)) = g(F (yn, xn)) = F (g(yn), g(xn)). (3.20)

We now show that F (x, y) = g(x) and F (y, x) = g(y).
Suppose that assumption (a) holds.
Taking the limit as n → ∞ in (3.19) and (3.20), by (3.17),(3.18) continuity and
commutativity of F and g, we get

g(x) = g( lim
n→∞

g(xn+1)) = lim
k→∞

g(g(xn+1)) = lim
k→∞

g(F (xn, yn))

= lim
k→∞

F (g(xn), g(yn)) = F ( lim
k→∞

(g(xn), g(yn))) = F (x, y)

and

g(y) = g( lim
n→∞

g(yn+1)) = lim
k→∞

g(g(yn+1)) = lim
k→∞

g(F (yn, xn))

= lim
k→∞

F (g(yn), g(xn)) = F ( lim
k→∞

(g(yn), g(xn))) = F (y, x).

Thus we prove that F (x, y) = g(x) and F (y, x) = g(y). Suppose that the assump-
tion (b) holds. Since {g(xn)} is a non-decreasing and g(xn) → x, and {g(yn)}
is a non-increasing and g(yn) → y, from (3.2) and (3.3) we have g(xn) 6 x and
g(yn) > y for all n. Then

d(g(x), F (x, y)) 6 d(g(x), g(g(xn+1))) + d(g(g(xn+1)), F (x, y))

= d(g(x), g(g(xn+1))) + d(F (g(xn), g(yn)), F (x, y))

and

d(g(y), F (y, x)) 6 d(g(y), g(g(yn+1))) + d(g(g(yn+1)), F (y, x))

= d(g(y), g(g(yn+1))) + d(F (g(yn), g(xn)), F (y, x)).

So

d(g(x), F (x, y))− d(g(x), g(g(xn+1))) 6 d(F (g(xn), g(yn)), F (x, y))
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and

d(g(y), F (y, x))− d(g(y), g(g(yn+1))) 6 d(F (g(yn), g(xn)), F (y, x)).

Hence

d(g(x), F (x, y))− d(g(x), g(g(xn+1))) + d(g(y), F (y, x))− d(g(y), g(g(yn+1)))

2

6 d(F (g(xn), g(yn)), F (x, y)) + d(F (g(yn), g(xn)), F (y, x))

2
.

By φ is non-decreasing and (3.1), therefore

φ

(
d(g(x), F (x, y))− d(g(x), g(g(xn+1))) + d(g(y), F (y, x))

2
−

d(g(y), g(g(yn+1)))

2

)
6 φ

(
d(F (g(xn), g(yn)), F (x, y)) + d(F (g(yn), g(xn)), F (y, x))

2

)
6 φ

(
d(g(g(xn)), g(x)) + d(g(g(yn)), g(y))

2

)
− ψ

(
d(g(g(xn)), g(x)) + d(g(g(yn)), g(y))

2

)
.

using the property of ψ, we get

φ

(
d(g(x), F (x, y))− d(g(x), g(g(xn+1))) + d(g(y), F (y, x))

2
−

d(g(y), g(g(yn+1)))

2

)
6 φ

(
d(g(g(xn)), g(x)) + d(g(g(yn)), g(y))

2

)
.

Taking the limit as n→ ∞ in the above inequality, we obtain

φ

(
d(g(x), F (x, y)) + d(g(y), F (y, x))

2

)
6 φ(0) = 0

which shows, by (iiφ), that F (x, y) = g(x) and F (y, x) = g(y).

Example 3.2. Let X = R, d(x, y) = |x− y| and F : X ×X → X be defined by

F (x, y) =
x− 2y

8
, (x, y) ∈ X2.

Then F is mixed monotone and satisfies condition (3.1) but not satisfy condition
(2.9).
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We well prove that (2.9) is not satisfied when g(x) = x
2 . Assume, to the contrary,

that there exist φ ∈ Φ and ψ ∈ Ψ such that (2.9) holds. This means that

φ

(∣∣∣∣x− 2y

8
− u− 2v

8

∣∣∣∣) 6 1

2
φ (|g(x)− g(u)|) + |g(y)− g(v)|)

−ψ
(
(|g(x)− g(u)|) + |g(y)− g(v)|)

2

)
=

1

2
φ

(
|x− u|+ |y − v|

2

)
−ψ

(
|x− u|+ |y − v|

4

)
,

g(x) > g(u) and g(y) 6 g(v).
By which, for g(x) = g(u) and g(y) ̸= g(v). in the previous inequality and denote
r =

∣∣y−v
4

∣∣. By (iφ), we get

φ(r) 6 1

2
φ(2r)− ψ(r) = φ(r)− ψ(r),

for all r > 0, ψ(r) 6 0, this is, ψ(r) = 0, which contradicts (iψ). It show that F
does not satisfy (2.9).
Now we prove that (3.1) holds. Indeed, since g(x) > g(u) and g(y) 6 g(v) we have∣∣∣∣x− 2y

8
− u− 2v

8

∣∣∣∣ 6 ∣∣∣∣x− u

8

∣∣∣∣+ ∣∣∣∣y − v

4

∣∣∣∣ , g(x) > g(u), g(y) 6 g(v),

and ∣∣∣∣y − 2x

8
− v − 2u

8

∣∣∣∣ 6 ∣∣∣∣y − v

8

∣∣∣∣+ ∣∣∣∣x− u

4

∣∣∣∣ , g(x) > g(u), g(y) 6 g(v),

by summing up the two inequalities above we get exactly (3.1) with φ(t) = t
2 and

ψ(t) = t
8 . Note also that x0 = −4, y0 = 6 satisfy (3.2). So by our theorem 3.1 we

obtain that F has a (unique) couple common fixed point (0, 0) but theorem 2.9 in
[9] does not apply to F in this example.

Corollary 3.3. Let (X,6) be a partially ordered set and suppose there is a metric
d on X such that (X, d) is a complete metric space. Assume there is a function
φ ∈ Φ and ψ ∈ Ψ and also suppose F : X ×X → X and g : X → X are such that
F has the mixed g-monotone property and

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

6 d(g(x), g(u)) + d(g(y), g(v))− 2ψ

(
d(g(x), g(u)) + d(g(y), g(v))

2

)
(3.21)

for all x, y, u, v ∈ X with g(x) > g(u) and g(y) 6 g(v).
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Suppose F (X × X) ⊆ g(X), g is continuous and commutes with F and also
suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn 6 x for all n.

(ii) if a non-increasing sequence {yn} → y, then y 6 yn for all n.

If there exist x0, y0 ∈ X such that

g(x0) 6 F (x0, y0) and g(y0) > F (y0, x0)

or

g(x0) > F (x0, y0) and g(y0) 6 F (y0, x0),

Then there exist x, y ∈ X such that

g(x) = F (x, y) and g(y) = F (y, x).

Proof. In theorem 3.1, taking φ(t) = t
2 and ψ1(t) =

ψ
2 and multiple by 4, we get

Corollary 3.3

Theorem 3.4. In addition to the hypotheses of theorem 3.1, suppose that for every
(x, y), (x∗, y∗) ∈ X ×X there exists a (u, v) ∈ X ×X such that (F (u, v), F (v, u))
is comparable to (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)). Then F and g have
a unique couple common fixed point, that is, there exist a unique (x, y) ∈ X ×X
such that

x = g(x) = F (x, y) and y = g(y) = F (y, x).

Proof. From Theorem 3.1, the set of couple coincidence is non-empty. We shall
show that if (x, y) and (x∗, y∗) are couple coincidence points, this is,
if g(x) = F (x, y), g(y) = F (y, x) and g(x∗) = F (x∗, y∗), g(y∗) = F (y∗, x∗), then

g(x) = g(x∗) and g(y) = g(y∗). (3.22)

By assumption there is (u, v) ∈ X ×X such that (F (u, v), F (v, u)) is comparable
with (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)).
Put u0 = u, v0 = v and choose u1, u2 ∈ X. So that

g(u1) = F (u0, v0) and g(v1) = g(v0, u0).

Then similarly as in Theorem 3.1, we can inductively define sequences {g(un)}
and {g(vn)} such that

g(un+1) = F (un, vn) and g(vn+1) = g(vn, un), n > 0.
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Since (F (x, y), F (y, x)) = (g(x), g(y)) and (F (u, v), F (v, u)) = (g(u1), g(v1)) are
comparable,then g(x) 6 g(u1) and g(y) > g(v1). It is easy to show that (g(x), g(y))
and (g(un), g(vn)) are comparable, that is,

g(x) 6 g(un) and g(y) > g(vn) for all n > 1.

Thus from (3.1), we have

φ

(
d(g(x), g(un+1)) + d(g(y), g(vn+1))

2

)
= φ

(
d(F (x, y), F (un, vn)) + d(F (y, x), F (vn, un))

2

)
6 φ

(
d(g(x), g(un)) + d(g(y), g(vn))

2

)
− ψ

(
d(g(x), g(un)) + d(g(y), g(vn))

2

)
.

(3.23)

Which by the fact that ψ > 0, implies

φ

(
d(g(x), g(un+1)) + d(g(y), g(vn+1))

2

)
6 φ

(
d(g(x), g(un)) + d(g(y), g(vn))

2

)
.

Thus, by the monotonicity of φ, we obtain that sequence {hn} defined by

hn =
d(g(x), g(un)) + d(g(y), g(vn))

2
, n > 0,

is non-increasing. Hence, there exists α > 0 such that

lim
n→∞

hn = lim
n→∞

[
d(g(x), g(un)) + d(g(y), g(vn))

2

]
= α.

Suppose, to the contrary, that α > 0.
Letting n→ ∞ in (3.23), we get

φ(α) 6 φ(α)− lim
n→∞

ψ(hn) = φ(α)− lim
hn→α+

ψ(hn) < φ(α).

A contradiction. Thus α = 0, that is,

lim
n→∞

hn = lim
n→∞

[
d(g(x), g(un)) + d(g(y), g(vn))

2

]
= 0.

which implies

lim
n→∞

d(g(x), g(un)) = lim
n→∞

d(g(y), g(vn)) = 0.

Similarly, we obtain

lim
n→∞

d(g(x∗), g(un)) = lim
n→∞

d(g(y∗), g(vn)) = 0.
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Hence g(x) = g(x∗) and g(y) = g(y∗).

Since g(x) = F (x, y) and g(y) = F (y, x), by commutativity of F and g, we
have

g(g(x)) = g(F (x, y)) = F (g(x), g(y)) and g(g(y)) = g(F (y, x)) = F (g(y), g(x)).

(3.24)

Denote g(x) = z and g(y) = w. Then from (3.24),

g(z) = F (z, w) and g(w) = F (w, z). (3.25)

Thus (z, w) is a coupled coincidence point. Then from (3.22) with x∗ = z and
y∗ = w. It follows g(z) = g(x) and g(w) = g(y), that is,

g(z) = z and g(w) = w. (3.26)

From (3.25) and (3.26),

z = g(z) = F (z, w) and w = g(w) = F (w, z).

Therefore, (z, w) is a coupled common fixed point of F and g. To prove the
uniqueness, assume that (p, q) is another coupled common fixed point. Then by
(3.22) we have p = g(p) = g(z) = z and q = g(q) = g(w) = w.
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[6] V. Lakshmikantham, L. Ćirić, Couple fixed point theorems for nonlinear con-
tractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341–
4349.

[7] N.V. Luong, N.X. Thuan, Couple fixed points in partially ordered metric
spaces and Application, Nonlinear Anal. 74 (2011) 983–992.

[8] V. Berinde, Couple fixed point theorems for ϕ-contractive mixed monotone
mappings in partially ordered metric spaces, Nonlinear Anal. 75 (2012) 3218-
3228.

[9] A. Alotaibi, S.M. Alsulami, Couple coincidence points for monotone operators
in partially ordered metric spaces, Fixed Point Theory and Applications 2011,
2011:44.

(Received 17 June 2013)
(Accepted 11 September 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th


