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1 Introduction

Given an infinite series
∑∞

n=0 an, let

sn = a0 + a1 + · · ·+ an. (1.1)

Denote the sequence (an) by a and the sequence (sn) by s. We will suppose
throughout that a, s are related by (1.1).

Let A be a lower triangular matrix. Set An =
∑n

ν=0 anνsν .
It is well known (see e.g. [3, 4]) that a series

∑
an is summable |A|k, k ≥ 1 if∑∞

n=1 n
k−1|An−An−1|k < ∞. In particular,

∑
an is |A| summable if

∑∞
n=1 |An−

An−1| < ∞.
We may associate with A two lower triangular matrices Ā and Â defined as

follows:

ānν =

n∑
r=ν

anr, n, ν = 0, 1, 2, . . . ,

and

ânν = ānν − ān−1,ν , n = 1, 2, . . . .

Also we define

yn(a) =
n∑

i=0

anisi =
n∑

i=0

ani

i∑
ν=0

aν =
n∑

ν=0

aν

n∑
i=ν

ani =
n∑

ν=0

ānνaν

and

ϕn(a) = yn(a)− yn−1(a) =
n∑

ν=0

(ānν − ān−1,ν)aν =
n∑

ν=0

ânνaν . (1.2)

Note that for any sequences a, b and scalar λ, we have

ϕn(a+ b) = ϕn(a) + ϕn(b) andϕn(λa) = λϕn(a).

The idea of modulus was structured in 1953 by Nakano [5]. Following Ruckle
[6] and Maddox [7] we recall that a modulus f is a function from [0,∞) to [0,∞)
such that

(i) f(x) = 0 if and only if x = 0,

(ii) f(x+ y) ≤ f(x) + f(y) for all x ≥ 0, y ≥ 0,

(iii) f is increasing,

(iv) f is continuous from the right at 0.
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Because of (ii), |f(x)− f(y)| ≤ f(|x − y|) so that in view of (iv), f is continuous
everywhere on [0,∞). A modulus may be unbounded (for example, f(x) = xp, 0 <
p ≤ 1) or bounded (for example, f(x) = x

(1+x) ).

It is easy to see that f1+f2 is a modulus function when f1 and f2 are modulus
functions, and that the function fv(v is a positive integer), the composition of a
modulus function f with itself v times, is also a modulus function.

Ruckle [6] used the idea of a modulus function f to construct a class of FK
spaces

L(f) = {x = (xk) :
∑∞

k=1 f(|xk|) < ∞} .

The space L(f) is closely related to the space ℓ1which is an L(f) space with
f(x) = x for all real x ≥ 0.

Recently many researchers have studied sequence spaces of fuzzy numbers
using the concept of a modulus function. For a detailed account, one may refer to
[8–11] where many more references can be found.

By w we shall denote the space of all scalar sequences. ℓ∞, c and c0 denote the
spaces of bounded, convergent and null sequences x = (xk) with complex terms,
respectively, normed by ∥x∥∞ = supk |xk|.

Let q1 and q2 be seminorms on a linear space X. Then q1 is stronger than q2
[12] if there exists a constant L such that q2(x) ≤ Lq1(x) for all x ∈ X. If each is
stronger than the other, q1 and q2 are said to be equivalent.

The following inequalities (see e.g. [13, p. 190]) are needed throughout the
paper.

Let r = (rk) be a bounded sequence of strictly positive real numbers. If
H = supk rk, then for any complex ak and bk,

|ak + bk|rk ≤ C(|ak|rk + |bk|rk), (1.3)

where C = max(1, 2H−1). Also for any complex λ,

|λ|rk ≤ max(1, |λ|H). (1.4)

Let X be a seminormed space with seminorm q, f be a modulus function,
s ≥ 0 be a real number and r = (rk) be a bounded sequence of strictly positive
real numbers. The symbol w(X) denotes the space of all X-valued sequences.

We now introduce the following generalized X-valued sequence space using
modulus function f .

|A|(f, r, q, s) = {a ∈ w(X) :
∑∞

n=1 n
−s[f(q(ϕn(a)))]

rn < ∞}.

|A|(f, r, q, s) is the generalization of several known sequence spaces, for in-
stance, the following classes arise from |A|(f, r, q, s) as the special cases:

(i) If X = C, q(x) = |x|, f(x) = x, s = 0, (ank) is ank = pk

Pn
if k ≤ n and

ank = 0 if k > n, then |A|(f, r, q, s) = |N̄p|(r) (Bhardwaj and Singh [14]).
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(ii) If X = C, q(x) = |x|, s = 0, (ank) is ank = pk

Pn
if k ≤ n and ank = 0 if k > n,

then |A|(f, r, q, s) = |N̄p|(f, r) (Bhardwaj and Singh [2]).

(iii) If (ank) is ank = pk

Pn
if k ≤ n and ank = 0 if k > n, then |A|(f, r, q, s) =

|N̄p|(f, r, q, s) (Altin et al. [1]).

(iv) If X = C, q(x) = |x|, f(x) = x and s = 0, then |A|(f, r, q, s) = |A|(r) (Savas
et al. [15]).

(v) If X = C, q(x) = |x|, f(x) = x, s = 0, rk = 1 for all k, (ank) is ank =
pk

Pn
if k ≤ n and ank = 0 if k > n, then |A|(f, r, q, s) = |N̄p|.

We denote |A|(f, r, q, s) by |A|(r, q, s) when f(x) = x and by |A|(f, r, q) when
s = 0.

2 Linear Topological Structure of |A|(f, r, q, s) Space
and Inclusion Theorems

In this section we examine various algebraic and topological properties of the
space |A|(f, r, q, s) and investigate some inclusion relations.

Theorem 2.1. For any modulus f , |A|(f, r, q, s) is a linear space over the complex
field C.

The proof is a routine verification by using standard techniques and hence is
omitted.

Theorem 2.2. |A|(f, r, q, s) is a topological linear space, paranormed by

g(a) =

( ∞∑
n=1

n−s[f(q(ϕn(a)))]
rn

) 1
M

where M = max(1, supk rk).

The proof uses ideas similar to those used (e.g.) in [2, p. 1793] and the fact
that every paranormed space is a topological linear space [16, p. 37].

Remark 2.3. It is clear from the properties of f and q that g is not total.

Lemma 2.4 ([17]). Let f be a modulus function and let 0 < δ < 1. Then for each
x > δ we have f(x) ≤ 2f(1)δ−1x.

Theorem 2.5. Let f, f1, f2 be modulus functions, then

(i) if s > 1, then |A|(f1, r, q, s) ⊆ |A|(fof1, r, q, s),

(ii) |A|(f1, r, q, s)
∩
|A|(f2, r, q, s) ⊆ |A|(f1 + f2, r, q, s),

(iii) if s > 1 and lim supt→∞
f1(t)
f2(t)

< ∞, then |A|(f2, r, q, s) ⊆ |A|(f1, r, q, s).
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Proof. (i) Let a ∈ |A|(f1, r, q, s). Let ϵ > 0 and choose δ with 0 < δ < 1 such that
f(t) < ϵ for 0 ≤ t ≤ δ. Write un = f1(q(ϕn(a))) and consider

∞∑
n=1

n−s[f(un)]
rn =

∑
un≤δ

n−s[f(un)]
rn +

∑
un>δ

n−s[f(un)]
rn

< max(1, ϵH)

∞∑
n=1

n−s +max(1, (2f(1)δ−1)H)

∞∑
n=1

n−s[un]
rn

< ∞,

by inequality (1.4) and Lemma 2.4 and hence a ∈ |A|(fof1, r, q, s).
(ii) The proof is easy in view of inequality (1.3).

(iii) Let a ∈ |A|(f2, r, q, s) and lim supt→∞
f1(t)
f2(t)

= L < ∞. Then for a given

ϵ > 0 there is a positive integer N such that for all t with t > N we have f1(t) <
(L+ ϵ)f2(t). Let un = q(ϕn(a)), then

∑∞
n=1 n

−s[f1(un)]
rn =

∑
1 +

∑
2, where the

first summation is over un ≤ N and the second over un > N . Then, using (1.4),
we have ∑

1

n−s[f1(un)]
rn ≤ [Nf1(1)]

H
∞∑

n=1

n−s

and ∑
2

n−s[f1(un)]
rn ≤ max(1, (L+ ϵ)H)

∞∑
n=1

n−s[f2(un)]
rn

and so a ∈ |A|(f1, r, q, s).

Proposition 2.6. For any modulus f and s > 1, |A|(r, q, s) ⊆ |A|(f, r, q, s).

The proof follows by taking f1(x) = x in Theorem 2.5(i).
Maddox [18, Proposition 1] proved that for any modulus f there exists

limt→∞
f(t)
t . Using this result we give a sufficient condition for the inclusion

|A|(f, r, q, s) ⊆ |A|(r, q, s).

Theorem 2.7. For any modulus f , if limt→∞
f(t)
t = β > 0, then |A|(f, r, q, s) ⊆

|A|(r, q, s).

Proof. Following the proof of Proposition 1 of Maddox [18], we have β = limt→∞
f(t)
t

= inf{ f(t)
t : t > 0}, so that 0 ≤ β ≤ f(1). Let β > 0. By definition of β we have

βt ≤ f(t) for all t ≥ 0. Since β > 0 we have t ≤ β−1f(t) for all t ≥ 0. Now
a ∈ |A|(f, r, q, s) implies

∞∑
n=1

n−s[q(ϕn(a))]
rn ≤ max(1, β−H)

∞∑
n=1

n−s[f(q(ϕn(a)))]
rn

by (1.4) whence a ∈ |A|(r, q, s) and the proof is complete.
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Theorem 2.8. Let f be a modulus function, q, q1, q2 be seminorms and s, s1, s2
be non-negative real numbers. Then

(i) |A|(f, r, q1, s)
∩
|A|(f, r, q2, s) ⊆ |A|(f, r, q1 + q2, s),

(ii) if q1 is stronger than q2, then |A|(f, r, q1, s) ⊆ |A|(f, r, q2, s),

(iii) if q1 is equivalent to q2, then |A|(f, r, q1, s) = |A|(f, r, q2, s),

(iv) if s1 ≤ s2, then |A|(f, r, q, s1) ⊆ |A|(f, r, q, s2).

Proof. The proof of (i) is straightforward using (1.3).
(ii) Let a ∈ |A|(f, r, q1, s). Then

∞∑
n=1

n−s[f(q2(ϕn(a)))]
rn ≤

∞∑
n=1

n−s[f(Lq1(ϕn(a)))]
rn

≤ (1 + [L])H
∞∑

n=1

n−s[f(q1(ϕn(a)))]
rn

by (1.4) whence a ∈ |A|(f, r, q2, s).
The proofs of (iii) and (iv) are trivial.

Theorem 2.9. If t = (tk) and r = (rk) are bounded sequences of positive real
numbers with 0 < tk ≤ rk < ∞ for each k, then for any modulus f ,

(i) |A|(f, t, q) ⊆ |A|(f, r, q),

(ii) |A|(f, r, q) ⊆ |A|(f, r, q, s).

Proof. (i) Let a ∈ |A|(f, t, q). This implies that

f(q(ϕi(a))) ≤ 1

for sufficiently large values of i, say i ≥ k0 for some fixed k0 ∈ N. Since f is
increasing, we have

∞∑
n≥n0

[f(q(ϕn(a)))]
rn ≤

∞∑
n≥n0

[f(q(ϕn(a)))]
tn < ∞.

This shows that a ∈ |A|(f, r, q) and completes the proof.
The proof of (ii) is trivial.

3 Composite Space |A|(f v, r, q, s) Using Composite
Modulus Function f v

Taking modulus function fv instead of f in the space |A|(f, r, q, s), we can
define the composite space |A|(fv, r, q, s) as follows.
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Definition 3.1. For a fixed natural number v, we define

|A|(fv, r, q, s) =

{
a ∈ w(X) :

∞∑
n=1

n−s[fv(q(ϕn(a)))]
rn < ∞

}
.

Theorem 3.2. For any modulus function f and v ∈ N,

(i) |A|(fv, r, q, s) ⊆ |A|(r, q, s) if limt→∞
f(t)
t = β > 0,

(ii) |A|(r, q, s) ⊆ |A|(fv, r, q, s) if there exists a positive constant α such that
f(t) ≤ αt for all t ≥ 0.

Proof. Since proof of (i) is similar to that of Theorem 2.7, hence is omitted.

(ii) Let a ∈ |A|(r, q, s). Since f(t) ≤ αt for all t ≥ 0 and f is increasing, we
have fv(t) ≤ αvt for each v ∈ N. Again, using (1.4), we have

∞∑
n=1

n−s[fv(q(ϕn(a)))]
rn ≤ max(1, αvH)

∞∑
n=1

n−s[q(ϕn(a))]
rn

Hence, a ∈ |A|(fv, r, q, s) and this completes the proof.

Example 3.3. f1(t) = t + t1/2 and f2(t) = log(1 + t) for all t ≥ 0 satisfy the
conditions given in Theorem 3.2(i), (ii) respectively.

Theorem 3.4. Let i, v ∈ N and i < v. If f is a modulus such that f(t) ≤ αt for
all t ≥ 0, where α is a positive constant, then

|A|(r, q, s) ⊆ |A|(f i, r, q, s) ⊆ |A|(fv, r, q, s).

Proof. Let j = v − i. Since f(t) ≤ αt, we have fv(t) < M jf i(t) < Mvt, where
M = 1 + [α]. Let a ∈ |A|(r, q, s). By the above inequality and using (1.4), we get

∞∑
n=1

n−s[fv(q(ϕn(a)))]
rn < M jH

∞∑
n=1

n−s[f i(q(ϕn(a)))]
rn

< MvH
∞∑

n=1

n−s[q(ϕn(a))]
rn .

Hence, the required inclusion follows.
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[9] Y. Altin, H. Altinok, R. Çolak, On some seminormed sequence spaces defined
by a modulus function, Kragujevac J. Math. 29 (2006) 121–132.
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