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1 Introduction

Consider the Liouville-Bratu-Gelfand equation [1–3]{
∆u(t) + λeu(t) = 0, t ∈ Ω,
u(t) = 0, t ∈ ∂Ω,

(1.1)

where λ > 0, and Ω is a bounded domain. We consider the Bratu’s boundary
value problem in one-dimensional planar coordinates [1–5] of the form

u′′(t) + λeu(t) = 0, 0 < t < 1,

u(0) = u(1) = 0. (1.2)
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Bratu’s problem is widely used in science and engineering to describe compli-
cated physical and chemical models. For example, Bratu’s problem [2–7] is used
in a large variety of applications such as the fuel ignition model of the thermal
combustion theory, the model of the thermal reaction process, the Chandrasekhar
model of the expansion of the universe, questions in geometry and relativity con-
cerning the Chandrasekhar model, chemical reaction theory, radiative heat transfer
and nanotechnology [8–12].

Several numerical methods for approximating the solution of Bratu’s prob-
lem are known. Laplace transform decomposition numerical algorithm is used for
solving Bratu’s problem [13]. The Perturbation-iteration algorithm [14], is ap-
plied to Bratu-type equations. Mohsen et al. [15] introduced new smoother to
enhance multigrid-based methods for Bratu problem. One-point pseudospectral
collocation method has been used for the solution of the one-dimensional Bratu
equation [16]. The main purpose of the present paper is to use a parametric cubic
spline method [17–19] for the numerical solution of the nonlinear boundary value
problem (1.2). The method consists of reducing the problem to a set of nonlinear
algebraic equations.

The outline of the paper is as follows. First, in Section 2 we present and
describe the parametric cubic spline method and describe the basic formulation of
spline approximation required for our subsequent development. Section 3 outlines
the convergence analysis of the parametric cubic spline method for the solution
of Bratu’s problem. Numerical examples are given in Section 4 to illustrate the
efficiency of the presented method. Finally, a conclusion is given in Section 5 that
briefly summarizes the numerical results.

2 Parametric Cubic Spline Method

We seek a smooth approximate solution of (1.2) using parametric cubic spline
functions. Let n > 1 and ∆ := {a = t0 < t1 < t2 < · · · < tn−1 < tn = b} be
a partition of a the interval [a, b] with ti = t0 + ih, i = 0, 1, . . . , n and h = b−a

n .
∆ is assumed as mesh of the spline function S∆(t, τ) of class C2[a, b]. S∆(t, τ),
which interpolates u(t) at the grid points {ti}ni=0, depends on a parameter τ > 0
and reduces to a cubic spline function as τ → 0. For the spline function S∆(t) :=
S∆(t, τ) in the interval [ti, ti+1], we can write:

S′′
∆(t)+τS∆(t) =

[
S′′
∆(ti)+τS∆(ti)

]( ti+1 − t

h

)
+
[
S′′
∆(ti+1)+τS∆(ti+1)

]( t− ti
h

)
.

(2.1)
We solve (2.1) and determine the constants of integration from the interpola-

tory conditions, thus we have:

S∆(t) =
−h2

w2 sinw

[
Mi+1 sin

(w(t− ti)

h

)
+Mi sin

(w(ti+1 − t)

h

)]
(2.2)

+

(
h

w

)2 [( t− ti
h

)(
Mi+1 +

(w
h

)2
ui+1

)
+
( ti+1 − t

h

)(
Mi +

(w
h

)2
ui

)]
,



New Approach for Numerical Solution of the One-Dimensional ... 613

where S∆(ti) = u(ti) = ui, S
′′
∆(ti) = Mi and w = h

√
τ . We use the continuity of

first derivative of spline function at ti, and obtain the following result:

h2
(
αMi+1 + 2βMi + αMi−1

)
= ui+1 − 2ui + ui−1, i = 1, 2, . . . , n− 1, (2.3)

where

α =
1

w2

(
w cscw − 1

)
, β =

1

w2

(
1− w cotw

)
. (2.4)

For a numerical solution of the Bratu’s problem (1.2), the interval [0, 1] is
divided into a set of grid points with step size h. Setting t = ti = t0 + ih, in Eq.
(1.2), we obtain

u′′(ti) = −λeu(ti). (2.5)

By using the assumption S′′
∆(ti) = Mi in (2.5), we have

Mi = −λeu(ti). (2.6)

Replacing Mi as given by Eq. (2.6) into Eq.(2.3), we get(
λαh2eui−1+ui−1

)
+
(
2λβh2eui−2ui

)
+
(
λαh2eui+1+ui+1

)
= 0, i = 1, 2, . . . , n−1.

(2.7)
The above nonlinear system consists of (n−1) equations with (n−1) unknowns

ui, i = 1, . . . , n − 1. Solving this nonlinear system by Newton′s method, we can
obtain an approximation to the solution of (1.2).

3 Convergence Analysis

Now we discuss the convergence of the parametric spline method for the
Bratu’s problem (1.2). We consider the equations in (2.7) and then rewrite them
in the matrix form given by the nonlinear system

AU + λh2BG = 0, (3.1)

where U =
(
u1, u2, . . . , un−1

)T
. Also A =

[
ai,j

]
, B =

[
bi,j

]
are tridiagonal matri-

ces of order (n− 1)× (n− 1) and define as follows:

ai,j =

 2, i = j,
−1, |i− j| = 1,
0, otherwise,

bi,j =

 −2β, i = j,
−α, |i− j| = 1,
0, otherwise,

and G = diag
(
eui

)
, i = 1, 2, . . . , n− 1.
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Theorem 3.1. Let M be a matrix such that ||M || < 1, and let I denote the unit
matrix. Then (I +M)−1 exists, and

||(I +M)−1|| < 1

1− ||M ||
.

Proof. By applying Theorem 1.7.7 of [20], we can prove the Theorem 3.1.

Consider Eq.(3.1) and let:

C = AU + λh2BG. (3.2)

We know that the inverse of A exists and bounded as follows [21]:

||A−1|| ≤ (b− a)2

8h2
. (3.3)

Theorem 3.2. If ||G||∞ < 8
λ(b−a)2 then the inverse of C, defined by (3.2), exists.

Proof. From Eq.(3.2) we can write:

C = A(I + λh2A−1BG). (3.4)

Eq.(3.3) shows that A−1 exists. Now, we need to prove the existence of
(
I +

λh2A−1BG
)−1

. According to Theorem 3.1 it is sufficient to show that

||λh2A−1BE|| < 1.

Having used Eq.(3.3) and also ||B|| = 1, we obtain:

||λh2A−1BG|| ≤ λh2||A−1||||B||||G||

≤ λ(b− a)2

8
||G||. (3.5)

Considering the assumption ||G|| < 8
λ(b−a)2 , we have

||λh2A−1BG|| < 1. (3.6)

Therefore, by using Theorem 3.1 and Eqs.(3.3) and (3.6) we conclude the
existence of C−1.

We can also obtain a bound on the errors E = U − Un in the maximum
norm, where U =

(
u(x1), u(x2), . . . , u(xn−1)

)
is the exact solution and Un =(

u1, u2, . . . , un−1

)
is the approximate solution of Bratu’s problem (1.2). From

Theorem 3.2 we can derive a bound on ||E||.
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Theorem 3.3. Let T be the vector of local truncation error and CE = T , then

||E|| ∼= O(h4),

(
when α =

1

12
, β =

5

12

)
,

||E|| ∼= O(h2),

(
when α =

1

6
, β =

1

3

)
.

Proof. By using Theorem 3.2 and CE = T , we can write:

E = C−1T =
(
I + λh2A−1BG

)−1
A−1T, (3.7)

therefore, we get

||E|| ≤ ||
(
I + λh2A−1BG

)−1||||A−1||||T ||. (3.8)

Having used Eq.(3.6) and Theorem 3.1 we obtain

||
(
I + λh2A−1BG

)−1|| ≤ 1

1− ||λh2A−1BG||
. (3.9)

Now, by applying Eqs.(3.3), (3.8) and (3.9) and also ||B|| = 1, we have

||E|| ≤ (b− a)2

h2
(
8− λ||G||(b− a)2

) ||T ||. (3.10)

For ||T || from [18], the following cases arise:

Case(i) when α = 1
12 , β = 5

12 then ||T || ≤ h6M6

240 , where M6 = max |u(6)(x)|.

Case(ii) when α = 1
6 , β = 1

3 then ||T || ≤ h4M4

12 , where M4 = max |u(4)(x)|.

Therefore from the above cases and Eq.(3.10), the results can be written as
follows:

||E|| ≤ (b− a)2h6M6

240h2
(
8− λ||G||(b− a)2

) ∼= O(h4), (3.11)

||E|| ≤ (b− a)2h4M4

12h2
(
8− λ||G||(b− a)2

) ∼= O(h2). (3.12)

4 Numerical Illustrations

In order to illustrate the performance of the parametric spline method for
the Bratu equation (1.2) and justify the accuracy and efficiency of the method,
we consider the following examples. The examples have been solved for different
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values of λ. We take α = 1
12 and β = 5

12 . The errors are reported on the set of
uniform grid points

S = {a = t0, . . . , ti, . . . , tn = b},

ti = t0 + ih, i = 0, 1, 2, . . . , n, h =
b− a

n
. (4.1)

The absolute error on the uniform grid points S is

|u(tj)− un(tj)| , 1 ≤ j ≤ n− 1, (4.2)

where u(tj) is the exact solution of the given example, and uj is the computed
solution by the parametric cubic spline method. The exact solution of the equation
(1.2) is given in [1–3] as:

u(t) = −2 ln

[
cosh

(
(t− 1

2 )
θ
2

)
cosh

(
θ
4

) ]
, (4.3)

where θ satisfies

θ =
√
2λ cosh

(
θ

4

)
. (4.4)

The Bratu problem has zero, one or two solutions when λ > λc, λ = λc and
λ < λc respectively, where the critical value λc satisfies the equation

1 =
1

4

√
2λc sinh

(
θc
4

)
. (4.5)

It was evaluated (see [1–5]), that the critical value λc is given by λc = 3.513830719.
The absolute errors in the computed solutions are tabulated in Tables 1–4.

Example 4.1. We first consider the Bratu-type model

u′′(t) + eu(t) = 0, 0 < t < 1,

u(0) = u(1) = 0. (4.6)

In Eq.(4.6), we have λ = 1. The numerical results for Example 4.1 are tabulated
in Table 1.

For the sake of comparision, we consider the Bratu’s problem discussed by
Khuri [13], Deeba et al. [22] and Caglar et al. [23]. The authors used the Laplace
method, decomposition method and B-spline method to obtain their numerical so-
lution. Table 2 compares the our results for parameters λ = 1, α = 1

12 , β = 5
12

and n = 10 with the mentioned methods to same equation.
The exact and approximate solution of Example 4.1 are shown in Figure 1 for

λ = 1, α = 1
12 , β = 5

12 and n = 20. Figure 1 shows that the approximate solution
is indistinguishable (for the given scale) from the exact solution.
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Example 4.2. Consider the second case for Bratu equation as follows when λ = 2.

u′′(t) + 2eu(t) = 0, 0 < t < 1,

u(0) = u(1) = 0. (4.7)

In Table 3, the exact solution for the case λ = 2 is compared with the numerical
solution obtained by the parametric spline method.

Table 4 compares the our results for λ = 2, α = 1
12 , β = 5

12 and n = 10 with
the methods in [13], [22] and [23].

The exact and approximate solutions of Example 4.2 are shown in Figure 2 for
λ = 2, α = 1

12 , β = 5
12 and n = 20.

Table 1: Results for Example 4.1: λ = 1, α = 1
12 , β = 5

12 , n = 8.

x Exact solution Numerical solution Error

0.125 0.06068537911 0.06068565922 2.80110×10−7

0.250 0.10478731054 0.10478782429 5.13753×10−7

0.375 0.13156129526 0.13156196444 6.69185×10−7

0.500 0.14053921440 0.14053993814 7.23740×10−7

0.625 0.13156129526 0.13156196444 6.69185×10−7

0.750 0.10478731054 0.10478782429 5.13753×10−7

0.875 0.06068537911 0.06068565922 2.80110×10−7

Table 2: Absolute errors for Example 4.1.
x Our method Laplace[13] Decomposition[22] B-spline[23]

0.100 9.270× 10−8 1.979× 10−6 2.685× 10−3 2.980× 10−6

0.200 1.751× 10−7 3.940× 10−6 2.022× 10−3 5.466× 10−6

0.300 2.399× 10−7 5.855× 10−6 1.523× 10−4 7.336× 10−6

0.400 2.816× 10−7 7.704× 10−6 2.202× 10−3 8.497× 10−6

0.500 2.959× 10−7 9.466× 10−6 3.02× 10−3 8.892× 10−6

0.600 2.816× 10−7 1.111× 10−5 2.202× 10−3 8.497× 10−6

0.700 2.399× 10−7 1.257× 10−5 1.523× 10−4 7.336× 10−6

0.800 1.751× 10−7 1.348× 10−5 2.022× 10−3 5.466× 10−6

0.900 9.270× 10−8 1.197× 10−5 2.685× 10−3 2.980× 10−6
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Appr.

Exact ———

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 1: Exact and approximate solutions for Example 1(λ = 1, α = 1
12 ,

β = 5
12 and n = 20).

Appr.

Exact ———
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Figure 2: Exact and approximate solutions for Example 2 (λ = 2, α = 1
12 ,

β = 5
12 and n = 20).
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Table 3: Results for Example 4.2: λ = 2, α = 1
12 , β = 5

12 , n = 8.

x Exact solution Numerical solution Error

0.125 0.13960278219 0.13960597008 3.18789×10−6

0.250 0.24333656779 0.24334289751 6.32972×10−6

0.375 0.30731941062 0.30732808838 8.67776×10−6

0.500 0.32895242134 0.32896197408 9.55274×10−6

0.625 0.30731941062 0.30732808838 8.67776×10−6

0.750 0.24333656779 0.24334289751 6.32972×10−6

0.875 0.13960278219 0.13960597008 3.18789×10−6

Table 4: Absolute errors for Example 4.2.
x Our method Laplace[13] Decomposition[22] B-spline[23]

0.100 1.034× 10−6 2.129× 10−3 1.522× 10−2 1.718× 10−5

0.200 2.092× 10−6 4.210× 10−3 1.468× 10−2 3.260× 10−5

0.300 3.023× 10−6 6.187× 10−3 5.889× 10−3 4.490× 10−5

0.400 3.667× 10−6 8.002× 10−3 3.247× 10−3 5.286× 10−5

0.500 3.898× 10−6 9.599× 10−3 6.989× 10−3 5.561× 10−5

0.600 3.667× 10−6 1.093× 10−3 3.247× 10−3 5.286× 10−5

0.700 3.023× 10−6 1.193× 10−2 5.889× 10−3 4.490× 10−5

0.800 2.092× 10−6 1.238× 10−2 1.468× 10−2 3.260× 10−5

0.900 1.034× 10−6 1.087× 10−2 1.522× 10−2 1.718× 10−5

5 Conclusion

In this paper a parametric cubic spline method is applied for solving the Bratu
equation. The parametric spline method reduce the computation of the Bratu
equation to some nonlinear algebraic equations. The analytical results are illus-
trated with two numerical examples. The proposed scheme is simple and compu-
tationally attractive.

Acknowledgement : We are grateful to the reviewers for their constructive
comments that helped to improve the paper.
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