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Abstract : In this paper, we study the well known equation named the Black-
Scholes equation. Normally, it is so complicate to find the solution of the Black-
Scholes equation which is the option prices directly. But in this work we use
the e—approximation to find such option prices and also obtained the interesting
kernel related to the interest rate r and the volatility o of the stock s. Moreover,
we obtained the boundedness of the option price in the Sobolev space by giving
the suitable initial condition on such option price.
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1 Introduction

In financial mathematics, the famous equation named the Black-Scholes equa-
tion plays an important role in solving the option price of stocks. The Black-
Scholes equation is given by

du(s,t) 0% ,0%u(s,t) ou(s,t)
o T2 a2 T os
with the terminal condition

—ru(s,t) =0 (1.1)

u(s,t) = (s —p)* (1.2)
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for 0 <t <T where u(s,t) is the option price at time ¢, r is the interest rate, s is
the price of stock at time ¢, ¢ is the volatility of stock and p is the strike price.

They obtain the option price u(s,t) or the solution of (1.1) in the complicated
form

u(s,t) = s® (lﬂi i 5;;02) T> —pe "T® On% _ S:/%UQ) T) (1.3)
where ®(z) = \/% I e~V /2dy, see[l, p9l].

In this work, we study the solution of (1.1) in the other form. By changing
the variable R = In s, then (1.1) is transformed to

oV o? ,0°V oV
E‘F? 6R2+(’I“—) R —rV =0 (1.4)

where V = V(R,t) = u(s,t). We study the solution of (1.4) for 0 < ¢t < 1 with
adding the initial condition
V(R,0) = f(R) (1.5)
where f € L(R)-the space of Lebesgue integrable function.
By applying the Fourier transform to (1.4) we obtain

V(w,t) = C(w)exp ({U;wQ - (r - %) iw + 7’] t>

and with the condition (1.5)

V(w,t) = f(w)exp ([a;aﬂ + (r - %) iw + r] t) .

Since V(w,t) ¢ £1(R), thus we can not find the inverse Fourier transform V (R, t)
of V(w, t) we use the e— approximation V(w t) by defining

— 02 9 ~

Ve(w,t) = e TV (w,1).
Thus

Vf(w t)—e”f( Je~ (e 05w i(r— g Jut for 0<t<e<l.

Clearly Ve (w,t) = V(w,t) uniformly as e — 0, so that V(R,t) will be the limit in
the topology of tempered distributions of V¢(R,t), the inverse Fourier transform
of V¢(w,t). Moreover V¢(w,t) € LY(R) for 0<t<e< 1. Thus

1 [
VAR, 1) = o / RV e(w, t)dw

o0 0'2 o~
U n (Bl e
21

r-p)+(r-%

N / / i (§)t+(Ry))]i]26<[2("”"2)t]2>f(y)dydw
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~

where f(w) = [0 e™™¥ f(y)dy. By direct computation

(&
—o0

[tn-w+(5 )

V(R t) = T 209 f(y)dy for 0<t<e<1

ert o0
el B
V2m(e—t)o? J_so
or V(R,t) = K¢(R,t) * f(R) where

et )]
K¢(R,t) = ————e 200> for 0<t<e<l1
27(e — t)o?
since 0 <t < e < 1, thus as e = 0,¢ = 0 we have hI%KC(R, 0) = 6(R) where §(R)
€E—>

is the Dirac-delta function. Thus V(R,0) = 6(R) * f(R) = f(R), as ¢ — 0 it follow
that (1.5) holds.
Moreover, we obtain V (R, t) = H(Rx[0,1]) where Hy(Rx [0, 1]) is the sobolev

space of order k and also V(R,t) = O ((e - t)*%> .
Now we have the e—approximation of V¢(R,t) which is the solution (1.4).
Thus

(In s—y)+(%—7‘)t]2

ert oo _[ §
NoEr /700 e 2e—tye f(y)dy

Ve(lns, t) = u(s,t) =

is the solution of (1.1) and

N

V(ins,t) = u(s,t) = O ((e )"

2 Preliminaries

In the sequel, we shall need the following definitions

Definition 2.1 Let f(z) € £!(R)—the space of integrable function on the set of

I~

real R. The Fourier transform f(w) of f(x) is defined by

fo)= [ epas (2.1)
— 00
where w,z € R. Also the inverse of Fourier transform is defined by
1 > —iwz I
fz) = o e f(w)dw (2.2)
™ — 00

Definition 2.2 Let Hy = Hy(R™) be the space of the sobolev space of order &k on
R™ and is
Hy = H,(R" = {f € L*(R") : 9°f € L*(R™)},
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where k is a nonnegative integer and norm
-~ k
17 1= [ 1F© 1 (1€ )" de < oc,
R’IL
L2(R™) is space of the square integrable in R, a = (g, ag, ..., ay), a; is a non-

§o1taz+tan f(a:)

negative integer, 0 f = e OaTT Bai

3 Main Results

Theorem 3.1. Given the Black-Scholes equation

Ou(s,t) o2 ,0%u(s,t) ou(s,t)
ot 2% T o2 T Os

—ru(s,t) =0 (3.1)
with the initial condition
u(s,0) = f(s) for 0<t<1 (3.2)

where f(s) € L1(R)—the space of integrable function of the set R of real number.
By the method of e—approximation, we obtain

[an a0+ (g r))?
2o f(y)dy (3.3)

ert SO
u(s,t) = 7/ e
V2m(e —t)o? J oo
as the solution of (3.1) for 0 <t < e <1 which satisfies (3.2). Moreover,
u(s,t) =0 ((e - t)fé) as € — 0. (3.4)
Proof. Let R =1Ins, then (3.1) is transformed to

WV(Rt) o PV(RY) <r _ "2> WVED _v(rt)=0 (3.5)

ot 2 OR? 2 OR

where V(R,t) = V(Ins,t) = u(s,t. By applying the Fourier transform in (2.1) we
obtain

% - TtV () + (r = 5) (Ciw)V (@, 0) =1V (w,8) = 0 (3.6)

since u(s,t) = V(R,t) thus the condition(3.2) can be written in the form
u(s,0) = V(R,0) = f(R). (3.7)

where, R =1Ins,1 < s and F € £!(R). Thus

-~ ~

V(w,0) = f(w) (3.8)
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we have

V(w,t) = C(w)exp <[J22w2 + (r - %) iw + 7‘] t>

V(w,t) = f(w)exp (EWQ +(r=3)iw+ 7’] t> (3.9)

by the condition (3.7).
Since V (w, t) ¢ L*(R), so we can not compute the inverse V (R, t) of the Fourier

transform V(w,t). Thus we need the e— approximation to find such inverse. We
define

—~ 02 o ~
Ve(w,t) = e 79V (w,1) (3.10)
where 0 < ¢ < € < 1. Now \//\e(w,t) — V(w,t) uniformly as ¢ — 0, so that

V(R,t) will be the limit in the topology of tempered distribution of V¢(R,t). Now
Ve(w,t) € LY(R), thus

VE(R,t) = % ei“’Rl//\f(w,t)dw
1 < ﬁwz r—% )Jiw+r —ﬁwze’\
=5 e“"Re(2 +(r=%) +)t 20 " f(w)dw
™ —0o0
— 2i eine—(e—t)%wQ—&-i(r—%)wtf(w)dw
™
1 [~ [~ o? o ,
%[w[mexp [(et)Zw + ((7"7§)t+(Rfy)) zw] fy)dydw
2
ert 0 0 o2 r— g t—|—(R—y) ]
= E/ / exp _(e_t)f (w— <( ?e)—t)aQ i
NN
S@-w+e-90
exp 5l —1)o? f(y)dydw
for0<t<e<l1l Let u= 52t~0{w—W}then
du = 0,/67_’5dw, dw = %,/E—zt. Thus
2
et e g [ [ (R=p)+(r-3))]
‘(R,t) = — L= d d
VE(R,¢) 27 /700/7006 o\ e—err 2(e —t)o? J(y)dy

_((R— o) )2
‘3:;\/2\/%/26“’{ ((R foftﬁgg 0 }f(y)dy
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~((R=y)+ (= 5)1)’]

d
e / eemire F(v)dy
for0<t<e<l.
Now R =1Ins, thus V¢(R,t) = V<(Ins, t) = u(s,t)
<1n s—y)+(g - )t)ﬂ
ue(s,t) = s [ e T
V27m(e —t)o

Thus, we obtain (3.3)as required. Since we have

V(wt) = f(w)exp ({U;cuz - (r - %) iw + 7’} t>

— .2 ~
Ve(w,t) = 6_7“’25V(w,t) for 0<t<e<]l.

Thus
€ 1 > iwR{ e
VE(R,t) = — eV e(w, t)dw
27 J_ o
1 oo 2.2 o iwdr) t— 22 e
o [ emlT ) Ry

VRO gt )T

— 00

¥~

IN

M oo
—~e’"t/ e (e~ t)2‘”dw for 0<t<ex<l1
2 _

where M = max | f( .Put W =/ <tow, then dw = 1,/-2.dW. Thus

M o 1 /2
| VE(R,t) | < — e”/ e Wiaw . =

2 oo oV e—t
Me™ 1

T oor .a €e—t VT
M ert

O for 0<t<e<l.
o 27(e — t)

Thus for any fixed ¢, (vVe—1t) | VS(R,t) |< M\eﬁ then for e — 0, V(R,t) =

0 ((e — t)’%>. Since V(R,t) = V(lns,t) = u(s,t) where R = In s, thus u(s,t) =
0 ((e - t)’%> as € — 0.
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Now, (3.3) can be written in the convolution form w(s,t) = K<(s,t) * f(s),
where )
ot oy

- e 2(e—t)o2
\/27(e — t)o?
is the kernel of (1.1). Tt can be shown that lin(l)Ke(s, 0) = d(s), [see 2, pp 36-37].
€E—r
Since 0 <t <e < 1,as e = 0,t = 0. Now, u(s,t) — u(s,t) uniformly as

K(s,t) =

2
e — 0, since u(w,t) = e’Twzeﬂ(w,t) — u(w, t) uniformly. u(s,0) = 1ir%u€(s,t) =
e—

5(s) = f(s) = f(s). Thus (3.2) hold for 0 < ¢ < 1. It follows that u(s,t) in (3.3) is
the solution of (3.1) which satisfies (3.2). O

Corollary 3.2. In (3.8) of theorem (3.1), the conditions on f are given as follows.

(i) If f is a bounded function on R, then | u¢(s,t) |< Me™ for 0 <t<e<1
where M = max | f(s) |,

(i1) If f € H3(R)—the sobolev space of order 3 which is given in definition (2.2)
with k=3. Then u(s,t) € H3(R x [0,00)) with the sobolev norm

1/2

|| w(s,t) [|s= / | d(w,t) |* (14 | w? |)3dw for 0<t<e<l.
R

Proof. (i) From (3.3)

ert o [wmo—(5-r)
| u(s,t) |< M /

- e 2(e—t)o2 dy
2r(e — t)o? J -
where M = max | f(s) | .
N (y—lns)—(%—r)t o 1 o —
Put W = By ey P then dW = Woe=rt dy = o+/2(e — t)dW. Thus

o Jomo-(g-r)]* >
/ e*wdy:gm/ e Wraw

=0y/2(e —t)\/T
=04/ 27(e — t).

Then

rt
| us(s,t) | < M——o . \/27(€ — )02
27 (e — t)o?

= Me"t for 0<t<e<l.

That means that the option price u(s,t) is bounded by the values of the money
M with the interest rate of r for the time ¢ (0 <t < 1).
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(ii) By the plancherel theorem, f € Hj3(R) if and only if (1+ |w |2)3 f(w) €
L2(R). Now, from (3.9) and (3.10)

. 2

Ve(w,t) = fw)exp [—(e T W+ (r - %) wt] .

2
97 Dy N 7o
We know that 57 - 5;Ve(w,t) = (—iw?) 5;Ve(w, t). Thus
) . 5 ) o o 5 o
ﬁ-EV (w,t) = —w* f(w) {2 (T—i)} erp [—(e—t)Zw +z(r—§) wt}
2
— WBilr 2 -T2 ri(r-2 7
= wz(r 2)6.Z’p|: (e t)2w +Z(T 2)wt]f(w).

Now, exp [—(e - t)";wQ] < w?. Thus

—w3i (r — %) exp [(e - t)U;wQ] exp [Z (7’ - %) wt} f(w)
<’ |lr =2 1| fw) |

<r=2 1w’ .

Since f(R) € H3(R), thus (r — %) (1+ | w |2)3 flw) € LA(R). Tt follows that

2 - ZVe(w,t) € L*(R). By the plancherel theorem % - BVE(R,t) € L*(R). It
follow that V¢(R,t) € H3(R x [0,00)). Since V¢(R,t) = V¢(lns,t) = u(s,t), thus

u(s,t) € H3(R x [0,00)) with the sobolev norm

fe = (/ [, 1) 2 (14 | w |2)3dw>1/2

for0<t<e<l. O

4 Conclusion

In the main results of this paper that we obtained the solution of (3.3) which
is the solution focusing on the mathematical sense, particularly in the financial
mathematics area. But, the solution of (1.3) which is the Black-Scholes formula
that can be applied in the real world application which is different purpose compare
with (3.3).
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