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1 Introduction

Orlicz sequence spaces are one of the most natural generalizations of classical
spaces £y, p > 1. They were first considered by W. Orlicz in 1936. Afterwards, J.
Lindenstrauss and L. Tzafriri [4] used the idea of Orlicz function M to construct
the sequence space £ of all sequences of scalars (x,,) such that

(oo}
ZM <m> < oo for some p > 0.
k=1 P

The space £); becomes a Banach space which is called an Orlicz sequence
space. The space £, is closely related to the space ¢, which is an Orlicz sequence
space with M () = 2P, (1 <p < o0). In the present note, we introduce and
examine some properties of a sequence space defined by using Orlicz function M,
which generalizes the well known Orlicz sequence space ¢;;. Before introducing
this sequence space, let us give some basic concepts :

An algebra X is a linear space together with an internal operation of multipli-
cation of elements of X, such that zy € X, x (yz) = (zy) z, z (y + 2) = zy + zz,
(x4 y)z = xz+yz and A (xy) = (Az) y = = (\y), for any scalar A, and a normed al-
gebra is an algebra which is normed, as a linear space, and in which ||zy|| < ||z ||y||
for all z, y; [6].

Let F be a sequence space and z, y be the arbitrary elements of F. Then
F' is called a sequence algebra if it is closed under the multiplication defined by
zy = (xpyr). The space F is called normal or solid if y = (yx) € F whenever
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lye] < |zk|, & € N, for some 2 = (x) € F. If F is both normal and sequence
algebra then it is called a normal sequence algebra. For example, w, {,, ¢ and
¢, (0 < p < o0) are normal sequence algebras. c is a sequence algebra but not
normal.

A norm ||-|| on a normal sequence space F' is said to be absolutely monotone
ifx=(xr),y=(yx) € F and |zg| < |yx| for all k € N implies |z|| < ||y|, [5]. The
norm

2]l oo = sup ||

over £, ¢, ¢g and the norm

]l = (i Iwkl”> "

k=1

over £, for p > 1 are absolutely monotone.

We recall [3, 4] that an Orlicz function is a function M: [0,00) — [0, c0)
which is continuous, non-decreasing and convex with M (0) = 0, M (z) > 0 for
all x > 0 and M (z) — oo as ¢ — oo. An Orlicz function M can always be
represented in the following integral form:

where p, known as the kernel of M.

We remark that M; + My and M; o My are Orlicz functions when M; and M,
are Orlicz functions.

An Orlicz function M is said to satisfy the As-condition for all values of u
if there exists a constant K > 0 such that M (2u) < KM (u), u > 0. Tt is
easy to see always that K > 2. The As-condition is equivalent to the inequality
M (fu) < K(¢)M (u) which holds for all values of u and £ > 1; [3].

We now introduce the vector valued sequence space F (X, M, p, s) using Orlicz
function M.

Let X be seminormed space over the complex field C with seminorm g for
each k € N, and F' be a normal sequence algebra with absolutely monotone norm
||| » and having a Schauder basis (e), where e, = (0,...,0,1,0,...), with 1 in
k-th place. Let p = (pr) be any sequence of strictly positive real numbers and
s be any non-negative real number. By s(X}), we denote the linear space of all
sequences © = () with z; € X}, for each k € N under the usual coordinatewise
operations:

oz = (azy) and z+y= (T + k)

for each @ € C. Let z € s(Xj) and A = (Ar) is a scalar sequence such that
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Az = (Agag). We define for an Orlicz function M,

F (X, M,p,s) = {x = (x) € s(Xy) : x € X}, for each k and

(k;—s [M (q’“ (pm’“))]pk> € F for some p > 0}.

Y. Yilmaz, M. K. Ozdemir and 1. Solak [8] introduced a generalization of Minkowski
Inequality to normal sequence algebras with absolutely monotone seminorm. We
will use Lemma 1 which states this extension to put forward a topology of the
space F(Xy, M,p,s) . For x = (z1) € F(Xg, M, p, s), we define

oot (=) )

where H = max (1,suppg). It is shown that F(Xj, M,p,s) turns out to be a
complete paranormed space with the paranorm defined by (1.1) whenever the
seminormed space X} is complete under the seminorm ¢ for each k£ € N.

It can be seen that for suitable choice of the sequence space F', the seminormed
space X}, the sequence of strictly positive real numbers (py), s > 0 and Orlicz
function M, the space F(X, M, p, s) reduces to the many number of known ordi-
nary sequence spaces and as well as vector valued sequence spaces, as a particular
case. For example, choosing F' to be ¢1, X = X (a vector space over C) and ¢ = ¢
to be a seminorm on X in F(Xj, M, p, s) one gets the scalar valued sequence space
lar (p,q, s) defined by C. A. Bektag & Y. Altin [1].

If X} is normed space, pp = 1 for each kK € N and s = 0, then the class
F(Xy, M,p,s) gives the class F (Xy, M) defined by D. Ghosh & P. D. Srivastava
[2]. Furthermore, if FF = ¢;, X = C and s = 0 in F(Xy, M,p,s), then one
obtains the space £,/ (p) defined by S. D. Parashar & B. Choudhary [7]. Thus, the
generalized sequence space F(Xy, M, p, s) yields several spaces studied by several
authors.

1/H

<1, neN}, (1.1)

F

2 Linear Topological Structure of F (X, M,p, s)

Now, we examine some algebraic and topological properties of F (X}, M, p, s)
and investigate some inclusion relations on it. In order to discuss the properties
of F(Xy, M,p,s), we assume that (pi) is bounded. We will henceforth denote by
h and C, the real numbers sup p; and max (1, 2h_1), respectively.

Theorem 2.1 F(Xy, M,p,s) is a linear space over the complex field C.

Proof. Let x = (xx),y = (yx) € F(Xk, M,p,s) and «, 3 € C. So, there exist
p1, p2 > 0 such that

(7 P () (e e () ) e
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Let p3 = max (2 |a| p1,2]8] p2). Since M is non-decreasing and convex,

(T e s
e )
b2

Dk
o o (2202)))
P2
Since F' is a normal space, we have

(k—s [M <Qk <a$23+ﬁyk)):|pk) cF

which shows that ax 4+ Sy € F(X, M, p, s). O

Theorem 2.2 F (X, M,p,s) is a topological linear space, paranormed by

g(x) = inf {pP"/H > 0: H(k‘s {M (qlcff’“))rk) v <1l,ne N},

F
where H = max (1, h).

To prove this theorem we need the following lemma.

Lemma 1 Let F' be a normal sequence algebra, ||-|| be an absolutely monotone
seminorm on F and let p > 1. Then

1w+ o)1 < Pl + o137,
for every u = (uy), v=(v,) € F; [8].

Proof. [Proof of Theorem 2.2] Let © = (zx), y = (yx) € F(Xi, M,p,s). Tt is
easy to see that g(x) = g(—z) and ¢g(0) = 0 for = (01, 03, . ..) the null element of
F(Xy, M,p,s) (where 0; is the zero element of X; for each ).

We shall now show the subadditivity of g. By taking a = 8 =1 in Theorem
2.1, we have
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e {M (W)]” < [M (Qk;fk)) Y (qkp(;yk)>:|pk

Considering Lemma 1, we get

[ pe (2]

1/H

- <l P ()]
| e
which means that g(z +y) < g(x) + g(y).

Finally, we show that the scalar multiplication is continuous. Let A be any
complex number. By (1.1), we have

sn=ufo (o (2]

Then

F
1/H

F

1/H

<1l,neN,.
F

iy ||1/H
g()\x)inf{(|)\|r)p"/H > 0: H<k5 {M <qk(xk)>} ) < 1,TL€N},
r F
where r = p . Since " < max (1, ™), we have
h Al Si AP 1, |A[F4PP h
g(Az) = max (1, AP P )/ H
prN |1/ H
.inf {rp"/H>O: H(l@‘s {M <Qk (x@)} > < 1,n6N},
r F

which converges to zero whenever z converges to zero in F(Xy, M, p, s).
Suppose that A\, — 0 and x is fixed in F(Xy, M,p,s). Then,

e (22 e
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for some p > 0. For arbitrary € > 0, let N be a positive integer such that

N 0o e\ H
t—kzz:ltkek Z trek < (5) ,

k=N+1 F
since (ex) is a Schauder basis for F. Let 0 < |A| < 1, using convexity of M and

absolutely monotonicity of ||-|| » we get
00 Pk
3ok [|/\M (q’“ (p“”“))] ex

2P <3
()"

Since M is continuous everywhere in [0, c0), then

S ()

F

<
F

F

flu) =: ;

F

is continuous at 0. So there is 0 < § < 1 such that f(u) < (¢/2)" for 0 < u < 6.
Let K be a positive integer such that |\,| < ¢ for n > K, then for n > K

N r 1 Pk
Zk_fs M (Qk (/\n'rk)) ex

k=1 P

|6 pr(=52)]1)

for n > K, so that g(Az) — 0 as A — 0.
This completes the proof of Theorem 2.2. O

1/H

Thus

Remark 1 It can be easily verified that when F = ¢y, (X, qx) = (C,|-]), pr =1
for each k € N and s = 0 the paranorms defined on F(Xy, M, p, s) and £p;(p) are
the same, and also taking gx = ||||x,, px = 1 for each k € N and s = 0 in (1.1),
one obtains the norm of F' (X, M).

Theorem 2.3 F (X, M,p,s) is complete with the paranorm (1.1) if Xy, is com-
plete under the seminorm qi for each k € N.

Proof. Let (z') be any Cauchy sequence in F(Xj, M, p,s). We get by (1.1) that

) . Pk 1/H
qk (arz - mi)

S <1.
g (zt — 27) h

H o

F
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Since F is a normal space and (ey) is a Schauder basis of F, it follows that
i P i P
M qk(xk ka;) Hek”F g k—s M qk(xk xk)
g(z* —7) g(at — )
We choose v with v ||ej|| » > 1 and zo > 0, such that

H
lewlle 5 [p ()] 21
Y ||ekHF 2 p 2 = 1,

k—S

N
—

F

where p is the kernel associated with M. Hence,

k5 | M qk(x;; — xi) " < H JI(I)_I T\ 1Pk
g(z? — a) leellp < llexllr = {p( 2 )}
for each k € N. Using the integral representation of Orlicz function M, we get

17

b [antat — )] <o all [g(a' — 27) (2.1)

For given € > 0, we choose an integer iy such that

1/H

g(a’ —27) < S— for all i, j > do. (2.2)

YZo

(From (2.1) and (2.2) we get
; - 1Pk
k=* [Qk(xfg - xi)} < ¢ for all i,j > i

and so, ‘ _
qi(z), — x],) < € for all i,j > io.
Hence, there exists a sequence x = (xj) such that x; € X, for each k € N and

Qi () — ) < € as i — oo,

for each fixed k € N. For given € > 0, choose an integer n > 1 such that g(z'—27) <
/2, for all i,j > n and a p > 0, such that g(z' — 27) < p < £/2. Since F is a
normal space and (ey,) is a Schauder basis of F,

e [ (-] o (=]
S P () e b))

Since M is continuous, so by taking j — oo and i,j > n in the above inequality

we get
n i Pk
Zk—s {M <Qk($k iﬂk))] ex
k=1

2p

< <L

F

F

<L
F
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Letting n — oo, we get g(z' — 2) < 2p < ¢ for all i > n. That is to say that
(xz) converges to x in the paranorm of F (X, M, p,s). Now, we should show that
r € F(Xg,M,p,s). Since z° = (xfc) € F(Xy, M,p,s), there exists a p > 0 such

that ; e
(o))

Since qi(zf —x1) — 0 as i — oo, for each fixed k we can choose a positive number
0, satisfying 0 < §;, < 1 such that

o ()

() - (M)
(20 (22

s [M <%éﬁ;k)ﬂ S[M Qk(pas ) <W>rk
o (2] (5

<C(1+6;) k™" [M (‘W)rk :

p

() e

that is, z = (vx) € F(Xg, M, p, s). This step completes the proof. O

Consider

<M

Since F' is normal,

Theorem 2.4 Let M and M; be two Orlicz functions. If M satisfies the Ag-
condition, then
F(kaMlapa 8) g F (Xk:aM o Ml7p7s) .

Proof. Let z € F(Xy, M1,p,s). Then

(o (52)] ) e

for some p > 0. Since M satisfies the As-condition, we have

oo (B o (22w
o) o (22
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Thus, we obtain by the normality of F' that @ € F(Xy, M o My,p, s). O

Theorem 2.5 Let My and M,y be two Orlicz functions. Then the following inclu-
sions are hold for non-negative real numbers s1, S2,s:

(1) F(leMlapa S) ﬂF(Xk7M27p75) g F(XkaMl + M2ap73)7
(i) If limsup M;(t)/Ma(t) < oo, then F (Xy, Ma,p,s) C F (Xy, M1,p, s),
t—oo

(iii) If s1 < sq, then F (X, My,p,s1) C F (Xy, My, p, s2),
(IV) IfFl g F2y then Fl (thaMlapvs) g F2 (XkaM17p7S)'

Proof. (i) Let z € F(Xy, Mi,p,s) N F(Xy, Ma,p,s). Then there exist some
p1, p2 > 0 such that

(e P (2 )

Letting p = max(p1, p2), we get

ke [(M1 + My) <q’“(;'“))]pk <k [Ml (q’“("”’“)) + M, (q’“("”’“))rk

P1 P2

el (o]
()

Since F is a normal space, © € F(Xy, M1 + Ma, p, s).
(i) We can find K > 0 such that My(t)/Ms(t) < K for all ¢ > 0, since
limsup M (t)/Ma(t) < co. Let x € F (X, Ma,p,s). There exists a p > 0 such
t—o00

that

M, (%(Ik))

_ N\ r J
ar(z)\

M2( 2 )

i () <ot ()

Hence

Since F' is normal, x € F(Xy, My, p, s).
The proofs of the cases (iii) and (iv) are trivial. O

Corollary 1 We have

(i) F(Xg,p,s) € F(Xg,M,p,s) for any Orlicz function M satisfying the Ag-
condition,

(ii) F (X, M,p) C F(Xg, M,p,s) for any Orlicz function M.
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3 A Closed Subspace of F(Xy, M, p,s)
We define [F(Xy, M, p, s)] by

[F(Xk, M,p,s)] = {z = (x): x € X}, for each k € N and

(1 |pr ((Nvf“)” & F for every p > 0}.

The space [F(Xy, M, p, s)] is clearly a subspace of F(Xy, M, p, s), and its topology
is introduced by the paranorm of F(Xy, M, p,s) given by (1.1).

Theorem 3.1 [F(Xy, M,p,s)| is a complete paranormed space with the paranorm
given by (1.1) if (Xk, qx) is complete seminormed space for each k € N.

Proof. Since F(Xy, M,p,s) is just shown that a complete paranormed space
under the paranorm (1.1) and [F(Xy, M, p,s)] is a subspace of F(Xy, M,p,s),
it is sufficient to show that it is closed. For this let us consider (m’) = ((x}v)) €
[F(Xg, M, p,s)] such that g (xl — x) — 0asi — oo, wherexz = () € F(Xg, M, p, s).
So for given £ > 0, we can choose an integer iy such that

g(xi —x) < &/2, Vi > .

Consider
i o (qk?’“))}p [ (2722 L ()
ow{[w (=) [ (%)) )

Since
(i P (5= ) (e e

and F' is normal space,

(o)) -

This implies © = (z) € [F(Xk, M,p,s)] which shows that [F(Xy,M,p,s)] is
complete. O

Proposition 1 [F (X, M, p,s)] is an AK-space.

Proof. Let z = (x) € [F(Xk, M,p,s)]. Therefore,

(o pe ()] ) e
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for every p > 0. Since (eg) is a Schauder basis of F, for a given € € (0, 1), we can
find an arbitrary positive integer mg such that

S

k‘:mo

< 1. (3.1)

Using the definition of the paranorm, we have
1/H

£ )

k=m-+1

g(x—x[m]>:inf e/t > 0: <l,neNy,,

where z[™ denotes the m-th section of . ;jFrom this equality and (3.1), it is
obvious that
g (.’L‘ — x[m]) < ¢ for all m > my.

Therefore [F(Xx, M, p, s)] is an AK-space. O

Theorem 3.2 Let (xl) = ((xi)) be a sequence of the elements of [F(Xy, M, p, s))
and x = (x1,) € [F(Xy, M,p,s)]. Then z* — z in [F(Xy, M,p,s)] iff

(i) ot — xy in Xy for each k > 1,

(i) g(z*) — g(z) as i — oo.
Proof. The necessity part is obvious.

Sufficiency. Suppose that (i) and (ii) hold, and let m be an arbitrary positive
integer. Then

g’ — 1) < gla’ — 1) 4 9@ — 27y 1 g(alm] — ),

where 2/[™ | zl™] denote the m-th sections of 2’ and z, respectively. Letting i — oo,
we get
limsup g(z’ — 2) < limsup g(z* — /™) + lim sup g(z'™ — zl™) 4+ g(zl™ — 2)
i—00 1—00 1—00
< 2g(zt™ — ).
Since m is arbitrary, letting m — oo, we get limsup g (mi — x) =0,ie. g (mi — x) —
1—00

0 as ¢ — oo. 0

Theorem 3.3 [F(Xy, M,p,s)| is separable if for each k € N, X}, is.

Proof. Suppose X} is separable for each k£ € N. Then, there exists a countable
dense subset Uy of Xj. Let Z denotes the set of finite sequences z = (z;) where
2z, € Uy, for each k € N and

(Zk) = (Zlv 225y Bms am—i—la 9m+2; .. )
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for arbitrary m € N. Obviously, Z is a countable subset of [F(X, M, p,s)]. We
shall prove that Z is dense in [F(Xy, M,p,s)]. Let z € [F(Xy, M,p,s)]. Since
[F(Xk, M,p,s)] is an AK-space, g (z — ™) — 0 as m — occ. So for a given € > 0,
there exists an integer m; > 1 such that

g (:17 — x[m}> < ¢/2 for all m > m;.
If we take m = mq, then
g (m - x[ml]) <e/2.

Let us choose y = (Yx) = (Y1,Y25 - - - s Ymys Omy+1, Omy 42, - - -) € Z such that

] _ ) < c for cach k € N
Qk (l'k yk 2M (1) my ||ekHF or eac .

Now
glx—y)=g (m — bl 4 gl y)
<yg (:C _ x[wu]) +g (m[ml] _ y> <e.

This implies that Z is dense in [F(X, M, p, s)]. Hence [F(Xy, M,p, s)] is separa-
ble. O
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