Some Structural Properties of Vector Valued Orlicz Sequence Space

M. K. Özdemir and İ. Solak

Abstract

In this work, we introduce the vector valued sequence space $F\left(X_{k}, M, p, s\right)$ and study the closed subspace of it. We examine various algebraic and topological properties of this space and also investigate some inclusion relations on it.

Keywords : Orlicz function, Orlicz sequence space, vector valued sequence space, paranormed space.
2000 Mathematics Subject Classification : 46A45, 40D25, 46A35.

1 Introduction

Orlicz sequence spaces are one of the most natural generalizations of classical spaces $\ell_{p}, p \geqslant 1$. They were first considered by W. Orlicz in 1936. Afterwards, J. Lindenstrauss and L. Tzafriri [4] used the idea of Orlicz function M to construct the sequence space ℓ_{M} of all sequences of scalars $\left(x_{n}\right)$ such that

$$
\sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty \text { for some } \rho>0
$$

The space ℓ_{M} becomes a Banach space which is called an Orlicz sequence space. The space ℓ_{M} is closely related to the space ℓ_{p} which is an Orlicz sequence space with $M(x)=x^{p},(1 \leqslant p<\infty)$. In the present note, we introduce and examine some properties of a sequence space defined by using Orlicz function M, which generalizes the well known Orlicz sequence space ℓ_{M}. Before introducing this sequence space, let us give some basic concepts :

An algebra X is a linear space together with an internal operation of multiplication of elements of X, such that $x y \in X, x(y z)=(x y) z, x(y+z)=x y+x z$, $(x+y) z=x z+y z$ and $\lambda(x y)=(\lambda x) y=x(\lambda y)$, for any scalar λ, and a normed algebra is an algebra which is normed, as a linear space, and in which $\|x y\| \leqslant\|x\|\|y\|$ for all $x, y ;[6]$.

Let F be a sequence space and x, y be the arbitrary elements of F. Then F is called a sequence algebra if it is closed under the multiplication defined by $x y=\left(x_{k} y_{k}\right)$. The space F is called normal or solid if $y=\left(y_{k}\right) \in F$ whenever
$\left|y_{k}\right| \leqslant\left|x_{k}\right|, k \in \mathbb{N}$, for some $x=\left(x_{k}\right) \in F$. If F is both normal and sequence algebra then it is called a normal sequence algebra. For example, w, ℓ_{∞}, c_{0} and $\ell_{p}(0<p<\infty)$ are normal sequence algebras. c is a sequence algebra but not normal.

A norm $\|\cdot\|$ on a normal sequence space F is said to be absolutely monotone if $x=\left(x_{k}\right), y=\left(y_{k}\right) \in F$ and $\left|x_{k}\right| \leqslant\left|y_{k}\right|$ for all $k \in \mathbb{N}$ implies $\|x\| \leqslant\|y\|$, [5]. The norm

$$
\|x\|_{\infty}=\sup \left|x_{k}\right|
$$

over ℓ_{∞}, c, c_{0} and the norm

$$
\|x\|=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}
$$

over ℓ_{p} for $p \geqslant 1$ are absolutely monotone.
We recall [3, 4] that an Orlicz function is a function $M:[0, \infty) \longrightarrow[0, \infty)$ which is continuous, non-decreasing and convex with $M(0)=0, M(x)>0$ for all $x>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. An Orlicz function M can always be represented in the following integral form:

$$
M(x)=\int_{0}^{x} p(t) d t
$$

where p, known as the kernel of M.
We remark that $M_{1}+M_{2}$ and $M_{1} \circ M_{2}$ are Orlicz functions when M_{1} and M_{2} are Orlicz functions.

An Orlicz function M is said to satisfy the Δ_{2}-condition for all values of u if there exists a constant $K>0$ such that $M(2 u) \leqslant K M(u), u \geqslant 0$. It is easy to see always that $K>2$. The Δ_{2}-condition is equivalent to the inequality $M(\ell u) \leqslant K(\ell) M(u)$ which holds for all values of u and $\ell>1$; [3].

We now introduce the vector valued sequence space $F\left(X_{k}, M, p, s\right)$ using Orlicz function M.

Let X_{k} be seminormed space over the complex field \mathbb{C} with seminorm q_{k} for each $k \in \mathbb{N}$, and F be a normal sequence algebra with absolutely monotone norm $\|\cdot\|_{F}$ and having a Schauder basis $\left(e_{k}\right)$, where $e_{k}=(0, \ldots, 0,1,0, \ldots)$, with 1 in k-th place. Let $p=\left(p_{k}\right)$ be any sequence of strictly positive real numbers and s be any non-negative real number. By $s\left(X_{k}\right)$, we denote the linear space of all sequences $x=\left(x_{k}\right)$ with $x_{k} \in X_{k}$ for each $k \in \mathbb{N}$ under the usual coordinatewise operations:

$$
\alpha x=\left(\alpha x_{k}\right) \text { and } x+y=\left(x_{k}+y_{k}\right)
$$

for each $\alpha \in \mathbb{C}$. Let $x \in s\left(X_{k}\right)$ and $\lambda=\left(\lambda_{k}\right)$ is a scalar sequence such that
$\lambda x=\left(\lambda_{k} x_{k}\right)$. We define for an Orlicz function M,

$$
\begin{aligned}
F\left(X_{k}, M, p, s\right)= & \left\{x=\left(x_{k}\right) \in s\left(X_{k}\right): x_{k} \in X_{k} \text { for each } k\right. \text { and } \\
& \left.\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}}\right) \in F \text { for some } \rho>0\right\}
\end{aligned}
$$

Y. Yılmaz, M. K. Özdemir and İ. Solak [8] introduced a generalization of Minkowski Inequality to normal sequence algebras with absolutely monotone seminorm. We will use Lemma 1 which states this extension to put forward a topology of the space $F\left(X_{k}, M, p, s\right)$. For $x=\left(x_{k}\right) \in F\left(X_{k}, M, p, s\right)$, we define

$$
\begin{equation*}
g(x)=\inf \left\{\rho^{p_{n} / H}>0:\left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}}\right)\right\|_{F}^{1 / H} \leqslant 1, n \in \mathbb{N}\right\} \tag{1.1}
\end{equation*}
$$

where $H=\max \left(1, \sup p_{k}\right)$. It is shown that $F\left(X_{k}, M, p, s\right)$ turns out to be a complete paranormed space with the paranorm defined by (1.1) whenever the seminormed space X_{k} is complete under the seminorm q_{k} for each $k \in \mathbb{N}$.

It can be seen that for suitable choice of the sequence space F, the seminormed space X_{k}, the sequence of strictly positive real numbers $\left(p_{k}\right), s \geqslant 0$ and Orlicz function M, the space $F\left(X_{k}, M, p, s\right)$ reduces to the many number of known ordinary sequence spaces and as well as vector valued sequence spaces, as a particular case. For example, choosing F to be $\ell_{1}, X_{k}=X$ (a vector space over \mathbb{C}) and $q_{k}=q$ to be a seminorm on X in $F\left(X_{k}, M, p, s\right)$ one gets the scalar valued sequence space $\ell_{M}(p, q, s)$ defined by Ç. A. Bektaş \& Y. Altın [1].

If X_{k} is normed space, $p_{k}=1$ for each $k \in \mathbb{N}$ and $s=0$, then the class $F\left(X_{k}, M, p, s\right)$ gives the class $F\left(X_{k}, M\right)$ defined by D. Ghosh \& P. D. Srivastava [2]. Furthermore, if $F=\ell_{1}, X_{k}=\mathbb{C}$ and $s=0$ in $F\left(X_{k}, M, p, s\right)$, then one obtains the space $\ell_{M}(p)$ defined by S. D. Parashar \& B. Choudhary [7]. Thus, the generalized sequence space $F\left(X_{k}, M, p, s\right)$ yields several spaces studied by several authors.

2 Linear Topological Structure of $F\left(X_{k}, M, p, s\right)$

Now, we examine some algebraic and topological properties of $F\left(X_{k}, M, p, s\right)$ and investigate some inclusion relations on it. In order to discuss the properties of $F\left(X_{k}, M, p, s\right)$, we assume that $\left(p_{k}\right)$ is bounded. We will henceforth denote by h and C, the real numbers $\sup p_{k}$ and $\max \left(1,2^{h-1}\right)$, respectively.
Theorem 2.1 $F\left(X_{k}, M, p, s\right)$ is a linear space over the complex field \mathbb{C}.
Proof. Let $x=\left(x_{k}\right), y=\left(y_{k}\right) \in F\left(X_{k}, M, p, s\right)$ and $\alpha, \beta \in \mathbb{C}$. So, there exist $\rho_{1}, \rho_{2}>0$ such that

$$
\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{1}}\right)\right]^{p_{k}}\right),\left(k^{-s}\left[M\left(\frac{q_{k}\left(y_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}}\right) \in F
$$

Let $\rho_{3}=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$. Since M is non-decreasing and convex,

$$
\begin{aligned}
& k^{-s}\left[M\left(\frac{q_{k}\left(\alpha x_{k}+\beta y_{k}\right)}{\rho_{3}}\right)\right]^{p_{k}} \leqslant k^{-s}\left[M\left(|\alpha| \frac{q_{k}\left(x_{k}\right)}{\rho_{3}}+|\beta| \frac{q_{k}\left(y_{k}\right)}{\rho_{3}}\right)\right]^{p_{k}} \\
& \leqslant k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{1}}\right)+M\left(\frac{q_{k}\left(y_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}} \\
& \leqslant C\left\{k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{1}}\right)\right]^{p_{k}}\right. \\
&\left.+k^{-s}\left[M\left(\frac{q_{k}\left(y_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}}\right\} .
\end{aligned}
$$

Since F is a normal space, we have

$$
\left(k^{-s}\left[M\left(\frac{q_{k}\left(\alpha x_{k}+\beta y_{k}\right)}{\rho_{3}}\right)\right]^{p_{k}}\right) \in F
$$

which shows that $\alpha x+\beta y \in F\left(X_{k}, M, p, s\right)$.
Theorem 2.2 $F\left(X_{k}, M, p, s\right)$ is a topological linear space, paranormed by

$$
g(x)=\inf \left\{\rho^{p_{n} / H}>0:\left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}}\right)\right\|_{F}^{1 / H} \leqslant 1, n \in \mathbb{N}\right\}
$$

where $H=\max (1, h)$.
To prove this theorem we need the following lemma.
Lemma 1 Let F be a normal sequence algebra, $\|\cdot\|_{F}$ be an absolutely monotone seminorm on F and let $p>1$. Then

$$
\left\|(u+v)^{p}\right\|_{F}^{1 / p} \leqslant\left\|u^{p}\right\|_{F}^{1 / p}+\left\|v^{p}\right\|_{F}^{1 / p}
$$

for every $u=\left(u_{n}\right), v=\left(v_{n}\right) \in F ;[8]$.
Proof. [Proof of Theorem 2.2] Let $x=\left(x_{k}\right), y=\left(y_{k}\right) \in F\left(X_{k}, M, p, s\right)$. It is easy to see that $g(x)=g(-x)$ and $g(\theta)=0$ for $\theta=\left(\theta_{1}, \theta_{2}, \ldots\right)$ the null element of $F\left(X_{k}, M, p, s\right)$ (where θ_{i} is the zero element of X_{i} for each i).

We shall now show the subadditivity of g. By taking $\alpha=\beta=1$ in Theorem 2.1, we have

$$
\begin{aligned}
k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}+y_{k}\right)}{\rho_{3}}\right)\right]^{p_{k}} & \leqslant k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{1}}\right)+M\left(\frac{q_{k}\left(y_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}} \\
& =\left(k^{-s / H}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{1}}\right)+M\left(\frac{q_{k}\left(y_{k}\right)}{\rho_{2}}\right)\right]^{p_{k} / H}\right)^{H} \\
\leqslant & \left(k^{-s / H}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{1}}\right)\right]^{p_{k} / H}\right. \\
& \left.\quad+k^{-s / H}\left[M\left(\frac{q_{k}\left(y_{k}\right)}{\rho_{2}}\right)\right]^{p_{k} / H}\right)^{H}
\end{aligned}
$$

Considering Lemma 1, we get

$$
\begin{aligned}
\left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}+y_{k}\right)}{\rho_{3}}\right)\right]^{p_{k}}\right)\right\|_{F}^{1 / H} \leqslant & \left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{1}}\right)\right]^{p_{k}}\right)\right\|_{F}^{1 / H} \\
& +\left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(y_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}}\right)\right\|_{F}^{1 / H}
\end{aligned}
$$

which means that $g(x+y) \leqslant g(x)+g(y)$.
Finally, we show that the scalar multiplication is continuous. Let λ be any complex number. By (1.1), we have

$$
g(\lambda x)=\inf \left\{\rho^{p_{n} / H}>0:\left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(\lambda x_{k}\right)}{\rho}\right)\right]^{p_{k}}\right)\right\|_{F}^{1 / H} \leqslant 1, n \in \mathbb{N}\right\}
$$

Then

$$
g(\lambda x)=\inf \left\{(|\lambda| r)^{p_{n} / H}>0:\left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{r}\right)\right]^{p_{k}}\right)\right\|_{F}^{1 / H} \leqslant 1, n \in \mathbb{N}\right\}
$$

where $r=\rho /|\lambda|$. Since $|\lambda|^{p_{n}} \leqslant \max \left(1,|\lambda|^{\text {sup } p_{n}}\right)$, we have

$$
\begin{aligned}
g(\lambda x)= & \max \left(1,|\lambda|^{\sup p_{n}}\right)^{1 / H} \\
& . \inf \left\{r^{p_{n} / H}>0:\left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{r}\right)\right]^{p_{k}}\right)\right\|_{F}^{1 / H} \leqslant 1, n \in \mathbb{N}\right\},
\end{aligned}
$$

which converges to zero whenever x converges to zero in $F\left(X_{k}, M, p, s\right)$.
Suppose that $\lambda_{n} \rightarrow 0$ and x is fixed in $F\left(X_{k}, M, p, s\right)$. Then,

$$
t=\left(t_{k}\right)=\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}}\right) \in F
$$

for some $\rho>0$. For arbitrary $\varepsilon>0$, let N be a positive integer such that

$$
\left\|t-\sum_{k=1}^{N} t_{k} e_{k}\right\|_{F}=\left\|\sum_{k=N+1}^{\infty} t_{k} e_{k}\right\|_{F}<\left(\frac{\varepsilon}{2}\right)^{H}
$$

since $\left(e_{k}\right)$ is a Schauder basis for F. Let $0<|\lambda|<1$, using convexity of M and absolutely monotonicity of $\|\cdot\|_{F}$ we get

$$
\begin{aligned}
\left\|\sum_{k=N+1}^{\infty} k^{-s}\left[M\left(\frac{q_{k}\left(\lambda x_{k}\right)}{\rho}\right)\right]^{p_{k}} e_{k}\right\|_{F} & \leqslant\left\|\sum_{k=N+1}^{\infty} k^{-s}\left[|\lambda| M\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}} e_{k}\right\|_{F} \\
& <\left(\frac{\varepsilon}{2}\right)^{H}
\end{aligned}
$$

Since M is continuous everywhere in $[0, \infty)$, then

$$
f(u)=:\left\|\sum_{k=1}^{N} k^{-s}\left[M\left(\frac{q_{k}\left(u x_{k}\right)}{\rho}\right)\right]^{p_{k}} e_{k}\right\|_{F}
$$

is continuous at 0 . So there is $0<\delta<1$ such that $f(u)<(\varepsilon / 2)^{H}$ for $0<u<\delta$. Let K be a positive integer such that $\left|\lambda_{n}\right|<\delta$ for $n>K$, then for $n>K$

$$
\left\|\sum_{k=1}^{N} k^{-s}\left[M\left(\frac{q_{k}\left(\lambda_{n} x_{k}\right)}{\rho}\right)\right]^{p_{k}} e_{k}\right\|_{F}^{1 / H}<\frac{\varepsilon}{2}
$$

Thus

$$
\left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(\lambda_{n} x_{k}\right)}{\rho}\right)\right]^{p_{k}}\right)\right\|_{F}^{1 / H}<\frac{\varepsilon}{2}
$$

for $n>K$, so that $g(\lambda x) \rightarrow 0$ as $\lambda \rightarrow 0$.
This completes the proof of Theorem 2.2.
Remark 1 It can be easily verified that when $F=\ell_{1},\left(X_{k}, q_{k}\right)=(\mathbb{C},|\cdot|), p_{k}=1$ for each $k \in \mathbb{N}$ and $s=0$ the paranorms defined on $F\left(X_{k}, M, p, s\right)$ and $\ell_{M}(p)$ are the same, and also taking $q_{k}=\|\cdot\|_{X_{k}}, p_{k}=1$ for each $k \in \mathbb{N}$ and $s=0$ in (1.1), one obtains the norm of $F\left(X_{k}, M\right)$.

Theorem 2.3 $F\left(X_{k}, M, p, s\right)$ is complete with the paranorm (1.1) if X_{k} is complete under the seminorm q_{k} for each $k \in \mathbb{N}$.

Proof. Let $\left(x^{i}\right)$ be any Cauchy sequence in $F\left(X_{k}, M, p, s\right)$. We get by (1.1) that

$$
\left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)}{g\left(x^{i}-x^{j}\right)}\right)\right]^{p_{k}}\right)\right\|_{F}^{1 / H} \leqslant 1
$$

Since F is a normal space and $\left(e_{k}\right)$ is a Schauder basis of F, it follows that

$$
k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)}{g\left(x^{i}-x^{j}\right)}\right)\right]^{p_{k}}\left\|e_{k}\right\|_{F} \leqslant\left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)}{g\left(x^{i}-x^{j}\right)}\right)\right]^{p_{k}}\right)\right\|_{F} \leqslant 1 .
$$

We choose γ with $\gamma^{H}\left\|e_{k}\right\|_{F}>1$ and $x_{0}>0$, such that

$$
\gamma^{H}\left\|e_{k}\right\|_{F} \frac{x_{0}^{H}}{2}\left[p\left(\frac{x_{0}}{2}\right)\right]^{p_{k}} \geqslant 1
$$

where p is the kernel associated with M. Hence,

$$
k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)}{g\left(x^{i}-x^{j}\right)}\right)\right]^{p_{k}}\left\|e_{k}\right\|_{F} \leqslant \gamma^{H}\left\|e_{k}\right\|_{F} \frac{x_{0}^{H}}{2}\left[p\left(\frac{x_{0}}{2}\right)\right]^{p_{k}}
$$

for each $k \in \mathbb{N}$. Using the integral representation of Orlicz function M, we get

$$
\begin{equation*}
k^{-s}\left[q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right]^{p_{k}} \leqslant \gamma^{H} x_{0}^{H}\left[g\left(x^{i}-x^{j}\right)\right]^{H} \tag{2.1}
\end{equation*}
$$

For given $\varepsilon>0$, we choose an integer i_{0} such that

$$
\begin{equation*}
g\left(x^{i}-x^{j}\right)<\frac{\varepsilon^{1 / H}}{\gamma x_{0}} \text { for all } i, j>i_{0} \tag{2.2}
\end{equation*}
$$

¿From (2.1) and (2.2) we get

$$
k^{-s}\left[q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right]^{p_{k}}<\varepsilon \text { for all } i, j>i_{0}
$$

and so,

$$
q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)<\varepsilon \text { for all } i, j>i_{0} .
$$

Hence, there exists a sequence $x=\left(x_{k}\right)$ such that $x_{k} \in X_{k}$ for each $k \in \mathbb{N}$ and

$$
q_{k}\left(x_{k}^{i}-x_{k}\right)<\varepsilon \text { as } i \rightarrow \infty
$$

for each fixed $k \in \mathbb{N}$. For given $\varepsilon>0$, choose an integer $n>1$ such that $g\left(x^{i}-x^{j}\right)<$ $\varepsilon / 2$, for all $i, j>n$ and a $\rho>0$, such that $g\left(x^{i}-x^{j}\right)<\rho<\varepsilon / 2$. Since F is a normal space and $\left(e_{k}\right)$ is a Schauder basis of F,

$$
\left\|\sum_{k=1}^{n} k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)}{\rho}\right)\right]^{p_{k}} e_{k}\right\|_{F} \leqslant\left\|\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)}{\rho}\right)\right]^{p_{k}}\right)\right\|_{F} \leqslant 1
$$

Since M is continuous, so by taking $j \rightarrow \infty$ and $i, j>n$ in the above inequality we get

$$
\left\|\sum_{k=1}^{n} k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}\right)}{2 \rho}\right)\right]^{p_{k}} e_{k}\right\|_{F}<1 .
$$

Letting $n \rightarrow \infty$, we get $g\left(x^{i}-x\right)<2 \rho<\varepsilon$ for all $i>n$. That is to say that $\left(x^{i}\right)$ converges to x in the paranorm of $F\left(X_{k}, M, p, s\right)$. Now, we should show that $x \in F\left(X_{k}, M, p, s\right)$. Since $x^{i}=\left(x_{k}^{i}\right) \in F\left(X_{k}, M, p, s\right)$, there exists a $\rho>0$ such that

$$
\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}\right)}{\rho}\right)\right]^{p_{k}}\right) \in F .
$$

Since $q_{k}\left(x_{k}^{i}-x_{k}\right) \rightarrow 0$ as $i \rightarrow \infty$, for each fixed k we can choose a positive number δ_{k}^{i} satisfying $0<\delta_{k}^{i}<1$ such that

$$
k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}\right)}{\rho}\right)\right]^{p_{k}}<\delta_{k}^{i} k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}\right)}{\rho}\right)\right]^{p_{k}} .
$$

Consider

$$
\begin{aligned}
M\left(\frac{q_{k}\left(x_{k}\right)}{2 \rho}\right) & =M\left(\frac{q_{k}\left(x_{k}^{i}+x_{k}-x_{k}^{i}\right)}{2 \rho}\right) \\
& \leqslant M\left(\frac{q_{k}\left(x_{k}^{i}\right)}{\rho}\right)+M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}\right)}{\rho}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{2 \rho}\right)\right]^{p_{k}} & \leqslant k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}\right)}{\rho}\right)+M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}\right)}{\rho}\right)\right]^{p_{k}} \\
& \leqslant C k^{-s}\left\{\left[M\left(\frac{q_{k}\left(x_{k}^{i}\right)}{\rho}\right)\right]^{p_{k}}+\left[M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}\right)}{\rho}\right)\right]^{p_{k}}\right\} \\
& <C\left(1+\delta_{k}^{i}\right) k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}\right)}{\rho}\right)\right]^{p_{k}}
\end{aligned}
$$

Since F is normal,

$$
\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{2 \rho}\right)\right]^{p_{k}}\right) \in F
$$

that is, $x=\left(x_{k}\right) \in F\left(X_{k}, M, p, s\right)$. This step completes the proof.
Theorem 2.4 Let M and M_{1} be two Orlicz functions. If M satisfies the Δ_{2} condition, then

$$
F\left(X_{k}, M_{1}, p, s\right) \subseteq F\left(X_{k}, M \circ M_{1}, p, s\right)
$$

Proof. Let $x \in F\left(X_{k}, M_{1}, p, s\right)$. Then

$$
\left(k^{-s}\left[M_{1}\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}}\right) \in F
$$

for some $\rho>0$. Since M satisfies the Δ_{2}-condition, we have

$$
\begin{aligned}
k^{-s}\left[M\left(M_{1}\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right)\right]^{p_{k}} & \leqslant k^{-s}\left[K M_{1}\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right) M(1)\right]^{p_{k}} \\
& \leqslant \max \left(1,[K M(1)]^{h}\right) k^{-s}\left[M_{1}\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}} .
\end{aligned}
$$

Thus, we obtain by the normality of F that $x \in F\left(X_{k}, M \circ M_{1}, p, s\right)$.
Theorem 2.5 Let M_{1} and M_{2} be two Orlicz functions. Then the following inclusions are hold for non-negative real numbers s_{1}, s_{2}, s :
(i) $F\left(X_{k}, M_{1}, p, s\right) \cap F\left(X_{k}, M_{2}, p, s\right) \subseteq F\left(X_{k}, M_{1}+M_{2}, p, s\right)$,
(ii) If $\limsup _{t \rightarrow \infty} M_{1}(t) / M_{2}(t)<\infty$, then $F\left(X_{k}, M_{2}, p, s\right) \subseteq F\left(X_{k}, M_{1}, p, s\right)$,
(iii) If $s_{1} \leqslant s_{2}$, then $F\left(X_{k}, M_{1}, p, s_{1}\right) \subseteq F\left(X_{k}, M_{1}, p, s_{2}\right)$,
(iv) If $F_{1} \subseteq F_{2}$, then $F_{1}\left(X_{k}, M_{1}, p, s\right) \subseteq F_{2}\left(X_{k}, M_{1}, p, s\right)$.

Proof. (i) Let $x \in F\left(X_{k}, M_{1}, p, s\right) \cap F\left(X_{k}, M_{2}, p, s\right)$. Then there exist some $\rho_{1}, \rho_{2}>0$ such that

$$
\left(k^{-s}\left[M_{1}\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{1}}\right)\right]^{p_{k}}\right),\left(k^{-s}\left[M_{2}\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}}\right) \in F .
$$

Letting $\rho=\max \left(\rho_{1}, \rho_{2}\right)$, we get

$$
\begin{aligned}
k^{-s}\left[\left(M_{1}+M_{2}\right)\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}} \leqslant k^{-s}\left[M_{1}\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{1}}\right)+M_{2}\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}} \\
\leqslant C\left\{k^{-s}\left[M_{1}\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{1}}\right)\right]^{p_{k}}\right. \\
\left.+k^{-s}\left[M_{2}\left(\frac{q_{k}\left(x_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}}\right\} .
\end{aligned}
$$

Since F is a normal space, $x \in F\left(X_{k}, M_{1}+M_{2}, p, s\right)$.
(ii) We can find $K>0$ such that $M_{1}(t) / M_{2}(t) \leqslant K$ for all $t \geqslant 0$, since $\limsup M_{1}(t) / M_{2}(t)<\infty$. Let $x \in F\left(X_{k}, M_{2}, p, s\right)$. There exists a $\rho>0$ such $\stackrel{t \rightarrow \infty}{\text { that }}$

$$
\frac{M_{1}\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)}{M_{2}\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)} \leqslant K .
$$

Hence

$$
k^{-s}\left[M_{1}\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}} \leqslant \max \left(1, K^{h}\right) k^{-s}\left[M_{2}\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}} .
$$

Since F is normal, $x \in F\left(X_{k}, M_{1}, p, s\right)$.
The proofs of the cases (iii) and (iv) are trivial.

Corollary 1 We have

(i) $F\left(X_{k}, p, s\right) \subseteq F\left(X_{k}, M, p, s\right)$ for any Orlicz function M satisfying the Δ_{2} condition,
(ii) $F\left(X_{k}, M, p\right) \subseteq F\left(X_{k}, M, p, s\right)$ for any Orlicz function M.

3 A Closed Subspace of $F\left(X_{k}, M, p, s\right)$

We define $\left[F\left(X_{k}, M, p, s\right)\right]$ by

$$
\begin{aligned}
{\left[F\left(X_{k}, M, p, s\right)\right]=\{ } & x=\left(x_{k}\right): x_{k} \in X_{k} \text { for each } k \in \mathbb{N} \text { and } \\
& \left.\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}}\right) \in F \text { for every } \rho>0\right\} .
\end{aligned}
$$

The space $\left[F\left(X_{k}, M, p, s\right)\right]$ is clearly a subspace of $F\left(X_{k}, M, p, s\right)$, and its topology is introduced by the paranorm of $F\left(X_{k}, M, p, s\right)$ given by (1.1).

Theorem 3.1 $\left[F\left(X_{k}, M, p, s\right)\right]$ is a complete paranormed space with the paranorm given by (1.1) if $\left(X_{k}, q_{k}\right)$ is complete seminormed space for each $k \in \mathbb{N}$.

Proof. Since $F\left(X_{k}, M, p, s\right)$ is just shown that a complete paranormed space under the paranorm (1.1) and $\left[F\left(X_{k}, M, p, s\right)\right]$ is a subspace of $F\left(X_{k}, M, p, s\right)$, it is sufficient to show that it is closed. For this let us consider $\left(x^{i}\right)=\left(\left(x_{k}^{i}\right)\right) \in$ $\left[F\left(X_{k}, M, p, s\right)\right]$ such that $g\left(x^{i}-x\right) \rightarrow 0$ as $i \rightarrow \infty$, where $x=\left(x_{k}\right) \in F\left(X_{k}, M, p, s\right)$. So for given $\xi>0$, we can choose an integer i_{0} such that

$$
g\left(x^{i}-x\right)<\xi / 2, \forall i>i_{0} .
$$

Consider

$$
\begin{aligned}
k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\xi}\right)\right]^{p_{k}} & \leqslant k^{-s}\left[\frac{1}{2} M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}\right)}{\xi / 2}\right)+\frac{1}{2} M\left(\frac{q_{k}\left(x_{k}^{i}\right)}{\xi / 2}\right)\right]^{p_{k}} \\
& \leqslant C k^{-s}\left\{\left[M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}\right)}{g\left(x^{i}-x\right)}\right)\right]^{p_{k}}+\left[M\left(\frac{q_{k}\left(x_{k}^{i}\right)}{\xi / 2}\right)\right]^{p_{k}}\right\}
\end{aligned}
$$

Since

$$
\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}-x_{k}\right)}{g\left(x^{i}-x\right)}\right)\right]^{p_{k}}\right),\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}^{i}\right)}{\xi / 2}\right)\right]^{p_{k}}\right) \in F
$$

and F is normal space,

$$
\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\xi}\right)\right]^{p_{k}}\right) \in F
$$

This implies $x=\left(x_{k}\right) \in\left[F\left(X_{k}, M, p, s\right)\right]$ which shows that $\left[F\left(X_{k}, M, p, s\right)\right]$ is complete.

Proposition $1\left[F\left(X_{k}, M, p, s\right)\right]$ is an AK-space.
Proof. Let $x=\left(x_{k}\right) \in\left[F\left(X_{k}, M, p, s\right)\right]$. Therefore,

$$
\left(k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\rho}\right)\right]^{p_{k}}\right) \in F
$$

for every $\rho>0$. Since $\left(e_{k}\right)$ is a Schauder basis of F, for a given $\varepsilon \in(0,1)$, we can find an arbitrary positive integer m_{0} such that

$$
\begin{equation*}
\left\|\sum_{k=m_{0}}^{\infty} k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\varepsilon}\right)\right]^{p_{k}} e_{k}\right\|_{F}<1 \tag{3.1}
\end{equation*}
$$

Using the definition of the paranorm, we have
$g\left(x-x^{[m]}\right)=\inf \left\{\xi^{p_{n} / H}>0:\left\|\sum_{k=m+1}^{\infty} k^{-s}\left[M\left(\frac{q_{k}\left(x_{k}\right)}{\xi}\right)\right]^{p_{k}} e_{k}\right\|_{F}^{1 / H} \leqslant 1, n \in \mathbb{N}\right\}$,
where $x^{[m]}$ denotes the m-th section of x. ¿From this equality and (3.1), it is obvious that

$$
g\left(x-x^{[m]}\right)<\varepsilon \text { for all } m>m_{0}
$$

Therefore $\left[F\left(X_{k}, M, p, s\right)\right]$ is an AK-space.
Theorem 3.2 Let $\left(x^{i}\right)=\left(\left(x_{k}^{i}\right)\right)$ be a sequence of the elements of $\left[F\left(X_{k}, M, p, s\right)\right]$ and $x=\left(x_{k}\right) \in\left[F\left(X_{k}, M, p, s\right)\right]$. Then $x^{i} \rightarrow x$ in $\left[F\left(X_{k}, M, p, s\right)\right]$ iff
(i) $x_{k}^{i} \rightarrow x_{k}$ in X_{k} for each $k \geqslant 1$,
(ii) $g\left(x^{i}\right) \rightarrow g(x)$ as $i \rightarrow \infty$.

Proof. The necessity part is obvious.
Sufficiency. Suppose that (i) and (ii) hold, and let m be an arbitrary positive integer. Then

$$
g\left(x^{i}-x\right) \leqslant g\left(x^{i}-x^{i[m]}\right)+g\left(x^{i[m]}-x^{[m]}\right)+g\left(x^{[m]}-x\right)
$$

where $x^{i[m]}, x^{[m]}$ denote the m-th sections of x^{i} and x, respectively. Letting $i \rightarrow \infty$, we get

$$
\begin{aligned}
\limsup _{i \rightarrow \infty} g\left(x^{i}-x\right) & \leqslant \limsup _{i \rightarrow \infty} g\left(x^{i}-x^{i[m]}\right)+\limsup _{i \rightarrow \infty} g\left(x^{i[m]}-x^{[m]}\right)+g\left(x^{[m]}-x\right) \\
& \leqslant 2 g\left(x^{[m]}-x\right)
\end{aligned}
$$

Since m is arbitrary, letting $m \rightarrow \infty$, we get $\limsup _{i \rightarrow \infty} g\left(x^{i}-x\right)=0$, i.e. $g\left(x^{i}-x\right) \rightarrow$ 0 as $i \rightarrow \infty$.

Theorem 3.3 $\left[F\left(X_{k}, M, p, s\right)\right]$ is separable if for each $k \in \mathbb{N}, X_{k}$ is.
Proof. Suppose X_{k} is separable for each $k \in \mathbb{N}$. Then, there exists a countable dense subset U_{k} of X_{k}. Let Z denotes the set of finite sequences $z=\left(z_{k}\right)$ where $z_{k} \in U_{k}$ for each $k \in \mathbb{N}$ and

$$
\left(z_{k}\right)=\left(z_{1}, z_{2}, \ldots, z_{m}, \theta_{m+1}, \theta_{m+2}, \ldots\right)
$$

for arbitrary $m \in \mathbb{N}$. Obviously, Z is a countable subset of $\left[F\left(X_{k}, M, p, s\right)\right]$. We shall prove that Z is dense in $\left[F\left(X_{k}, M, p, s\right)\right]$. Let $x \in\left[F\left(X_{k}, M, p, s\right)\right]$. Since $\left[F\left(X_{k}, M, p, s\right)\right]$ is an AK-space, $g\left(x-x^{[m]}\right) \rightarrow 0$ as $m \rightarrow \infty$. So for a given $\varepsilon>0$, there exists an integer $m_{1}>1$ such that

$$
g\left(x-x^{[m]}\right)<\varepsilon / 2 \text { for all } m \geqslant m_{1} .
$$

If we take $m=m_{1}$, then

$$
g\left(x-x^{\left[m_{1}\right]}\right)<\varepsilon / 2
$$

Let us choose $y=\left(y_{k}\right)=\left(y_{1}, y_{2}, \ldots, y_{m_{1}}, \theta_{m_{1}+1}, \theta_{m_{1}+2}, \ldots\right) \in Z$ such that

$$
q_{k}\left(x_{k}^{\left[m_{1}\right]}-y_{k}\right)<\frac{\varepsilon}{2 M(1) m_{1}\left\|e_{k}\right\|_{F}} \text { for each } k \in \mathbb{N} .
$$

Now

$$
\begin{aligned}
g(x-y) & =g\left(x-x^{\left[m_{1}\right]}+x^{\left[m_{1}\right]}-y\right) \\
& \leqslant g\left(x-x^{\left[m_{1}\right]}\right)+g\left(x^{\left[m_{1}\right]}-y\right)<\varepsilon .
\end{aligned}
$$

This implies that Z is dense in $\left[F\left(X_{k}, M, p, s\right)\right]$. Hence $\left[F\left(X_{k}, M, p, s\right)\right]$ is separable.

Acknowledgement

The first author would like to express his great thanks to Professor Feyzi Başar, Matematik Eğitimi Bölümü, İnönü Üniversitesi, 44280, Malatya - Türkiye, for his careful reviewing and some useful comments on the first draft of the paper.

References

[1] Ç. A. Bektaş and Y. Altın, The sequence space $\ell_{M}(p, q, s)$ on seminormed spaces, Indian J. Pure Appl. Math., 34(4)(2003), 529-534.
[2] D. Ghosh and P. D. Srivastava, On some vector valued sequence spaces using Orlicz function, Glas. Mat. Ser. III, 34 (2)(1999), 819-826.
[3] M. A. Krasnosel'skii and Y. B. Rutickii, Convex functions and Orlicz spaces, Noordhoff Ltd., Groningen, Netherlands, 1961.
[4] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence space, Israel J. Math., 10(1971), 379-390.
[5] P. K. Kamthan and M. Gupta, Sequence spaces and series, Marcel Dekker, Inc., New York and Basel, 1981.
[6] I. J. Maddox, Elements of functional analysis, Second Edition, Cambridge University Press, Cambridge, 1977.
[7] S. D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25(4)(1994), 419-428.
[8] Y. Yılmaz, M. K. Özdemir and İ. Solak, A generalization of Hölder and Minkowski inequalities, J. Inequal. Pure Appl. Math. 7 (2006), no. 5, Article 193, 9 pp . (electronic).
(Received 25 October 2005)
M. K. Özdemir and İ. Solak

Department of Mathematics
Inonu University
44280 Malatya, Turkey.
e-mail: kozdemir@inonu.edu.tr

