

Some Structural Properties of Vector Valued Orlicz Sequence Space

M. K. Özdemir and İ. Solak

Abstract: In this work, we introduce the vector valued sequence space $F(X_k, M, p, s)$ and study the closed subspace of it. We examine various algebraic and topological properties of this space and also investigate some inclusion relations on it.

Keywords : Orlicz function, Orlicz sequence space, vector valued sequence space, paranormed space.

2000 Mathematics Subject Classification: 46A45, 40D25, 46A35.

1 Introduction

Orlicz sequence spaces are one of the most natural generalizations of classical spaces ℓ_p , $p \ge 1$. They were first considered by W. Orlicz in 1936. Afterwards, J. Lindenstrauss and L. Tzafriri [4] used the idea of Orlicz function M to construct the sequence space ℓ_M of all sequences of scalars (x_n) such that

$$\sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \text{ for some } \rho > 0.$$

The space ℓ_M becomes a Banach space which is called an Orlicz sequence space. The space ℓ_M is closely related to the space ℓ_p which is an Orlicz sequence space with $M(x) = x^p$, $(1 \leq p < \infty)$. In the present note, we introduce and examine some properties of a sequence space defined by using Orlicz function M, which generalizes the well known Orlicz sequence space ℓ_M . Before introducing this sequence space, let us give some basic concepts :

An algebra X is a linear space together with an internal operation of multiplication of elements of X, such that $xy \in X$, x(yz) = (xy)z, x(y+z) = xy + xz, (x+y)z = xz+yz and $\lambda(xy) = (\lambda x) y = x(\lambda y)$, for any scalar λ , and a normed algebra is an algebra which is normed, as a linear space, and in which $||xy|| \leq ||x|| ||y||$ for all x, y; [6].

Let F be a sequence space and x, y be the arbitrary elements of F. Then F is called a sequence algebra if it is closed under the multiplication defined by $xy = (x_k y_k)$. The space F is called normal or solid if $y = (y_k) \in F$ whenever

 $|y_k| \leq |x_k|, k \in \mathbb{N}$, for some $x = (x_k) \in F$. If F is both normal and sequence algebra then it is called a normal sequence algebra. For example, w, ℓ_{∞}, c_0 and ℓ_p (0 are normal sequence algebras. c is a sequence algebra but not normal.

A norm $\|\cdot\|$ on a normal sequence space F is said to be absolutely monotone if $x = (x_k), y = (y_k) \in F$ and $|x_k| \leq |y_k|$ for all $k \in \mathbb{N}$ implies $||x|| \leq ||y||$, [5]. The norm

$$\left\|x\right\|_{\infty} = \sup \left|x_k\right|$$

over ℓ_{∞} , c, c_0 and the norm

$$\|x\| = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}$$

over ℓ_p for $p \ge 1$ are absolutely monotone.

We recall [3, 4] that an Orlicz function is a function $M: [0, \infty) \longrightarrow [0, \infty)$ which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for all x > 0 and $M(x) \to \infty$ as $x \to \infty$. An Orlicz function M can always be represented in the following integral form:

$$M\left(x\right) = \int_{0}^{x} p\left(t\right) dt,$$

where p, known as the kernel of M.

We remark that $M_1 + M_2$ and $M_1 \circ M_2$ are Orlicz functions when M_1 and M_2 are Orlicz functions.

An Orlicz function M is said to satisfy the Δ_2 -condition for all values of u if there exists a constant K > 0 such that $M(2u) \leq KM(u), u \geq 0$. It is easy to see always that K > 2. The Δ_2 -condition is equivalent to the inequality $M(\ell u) \leq K(\ell)M(u)$ which holds for all values of u and $\ell > 1$; [3].

We now introduce the vector valued sequence space $F(X_k, M, p, s)$ using Orlicz function M.

Let X_k be seminormed space over the complex field \mathbb{C} with seminorm q_k for each $k \in \mathbb{N}$, and F be a normal sequence algebra with absolutely monotone norm $\|\cdot\|_F$ and having a Schauder basis (e_k) , where $e_k = (0, \ldots, 0, 1, 0, \ldots)$, with 1 in k-th place. Let $p = (p_k)$ be any sequence of strictly positive real numbers and s be any non-negative real number. By $s(X_k)$, we denote the linear space of all sequences $x = (x_k)$ with $x_k \in X_k$ for each $k \in \mathbb{N}$ under the usual coordinatewise operations:

$$\alpha x = (\alpha x_k)$$
 and $x + y = (x_k + y_k)$

for each $\alpha \in \mathbb{C}$. Let $x \in s(X_k)$ and $\lambda = (\lambda_k)$ is a scalar sequence such that

 $\lambda x = (\lambda_k x_k)$. We define for an Orlicz function M,

$$F(X_k, M, p, s) = \left\{ x = (x_k) \in s(X_k) : x_k \in X_k \text{ for each } k \text{ and} \\ \left(k^{-s} \left[M\left(\frac{q_k(x_k)}{\rho}\right) \right]^{p_k} \right) \in F \text{ for some } \rho > 0 \right\}.$$

Y. Yılmaz, M. K. Özdemir and İ. Solak [8] introduced a generalization of Minkowski Inequality to normal sequence algebras with absolutely monotone seminorm. We will use Lemma 1 which states this extension to put forward a topology of the space $F(X_k, M, p, s)$. For $x = (x_k) \in F(X_k, M, p, s)$, we define

$$g(x) = \inf\left\{\rho^{p_n/H} > 0 \colon \left\| \left(k^{-s} \left[M\left(\frac{q_k\left(x_k\right)}{\rho}\right) \right]^{p_k} \right) \right\|_F^{1/H} \leqslant 1, \ n \in \mathbb{N} \right\}, \quad (1.1)$$

where $H = \max(1, \sup p_k)$. It is shown that $F(X_k, M, p, s)$ turns out to be a complete paranormed space with the paranorm defined by (1.1) whenever the seminormed space X_k is complete under the seminorm q_k for each $k \in \mathbb{N}$.

It can be seen that for suitable choice of the sequence space F, the seminormed space X_k , the sequence of strictly positive real numbers (p_k) , $s \ge 0$ and Orlicz function M, the space $F(X_k, M, p, s)$ reduces to the many number of known ordinary sequence spaces and as well as vector valued sequence spaces, as a particular case. For example, choosing F to be ℓ_1 , $X_k = X$ (a vector space over \mathbb{C}) and $q_k = q$ to be a seminorm on X in $F(X_k, M, p, s)$ one gets the scalar valued sequence space $\ell_M(p, q, s)$ defined by \mathbb{C} . A. Bektaş & Y. Altm [1].

If X_k is normed space, $p_k = 1$ for each $k \in \mathbb{N}$ and s = 0, then the class $F(X_k, M, p, s)$ gives the class $F(X_k, M)$ defined by D. Ghosh & P. D. Srivastava [2]. Furthermore, if $F = \ell_1$, $X_k = \mathbb{C}$ and s = 0 in $F(X_k, M, p, s)$, then one obtains the space $\ell_M(p)$ defined by S. D. Parashar & B. Choudhary [7]. Thus, the generalized sequence space $F(X_k, M, p, s)$ yields several spaces studied by several authors.

2 Linear Topological Structure of $F(X_k, M, p, s)$

Now, we examine some algebraic and topological properties of $F(X_k, M, p, s)$ and investigate some inclusion relations on it. In order to discuss the properties of $F(X_k, M, p, s)$, we assume that (p_k) is bounded. We will henceforth denote by h and C, the real numbers $\sup p_k$ and $\max(1, 2^{h-1})$, respectively.

Theorem 2.1 $F(X_k, M, p, s)$ is a linear space over the complex field \mathbb{C} .

Proof. Let $x = (x_k), y = (y_k) \in F(X_k, M, p, s)$ and $\alpha, \beta \in \mathbb{C}$. So, there exist $\rho_1, \rho_2 > 0$ such that

$$\left(k^{-s}\left[M\left(\frac{q_k\left(x_k\right)}{\rho_1}\right)\right]^{p_k}\right), \left(k^{-s}\left[M\left(\frac{q_k\left(y_k\right)}{\rho_2}\right)\right]^{p_k}\right) \in F.$$

Let $\rho_3 = \max(2 |\alpha| \rho_1, 2 |\beta| \rho_2)$. Since *M* is non-decreasing and convex,

$$\begin{aligned} k^{-s} \left[M\left(\frac{q_k\left(\alpha x_k + \beta y_k\right)}{\rho_3}\right) \right]^{p_k} &\leqslant k^{-s} \left[M\left(\left|\alpha\right| \frac{q_k\left(x_k\right)}{\rho_3} + \left|\beta\right| \frac{q_k\left(y_k\right)}{\rho_3} \right) \right]^{p_k} \\ &\leqslant k^{-s} \left[M\left(\frac{q_k\left(x_k\right)}{\rho_1}\right) + M\left(\frac{q_k\left(y_k\right)}{\rho_2}\right) \right]^{p_k} \\ &\leqslant C \left\{ k^{-s} \left[M\left(\frac{q_k\left(x_k\right)}{\rho_1}\right) \right]^{p_k} \\ &+ k^{-s} \left[M\left(\frac{q_k\left(y_k\right)}{\rho_2}\right) \right]^{p_k} \right\}. \end{aligned}$$

Since F is a normal space, we have

$$\left(k^{-s}\left[M\left(\frac{q_k\left(\alpha x_k+\beta y_k\right)}{\rho_3}\right)\right]^{p_k}\right)\in H$$

which shows that $\alpha x + \beta y \in F(X_k, M, p, s)$.

Theorem 2.2 $F(X_k, M, p, s)$ is a topological linear space, paranormed by

$$g(x) = \inf\left\{\rho^{p_n/H} > 0 \colon \left\| \left(k^{-s} \left[M\left(\frac{q_k(x_k)}{\rho}\right)\right]^{p_k}\right) \right\|_F^{1/H} \le 1, \ n \in \mathbb{N}\right\},$$

where $H = \max(1, h)$.

To prove this theorem we need the following lemma.

Lemma 1 Let F be a normal sequence algebra, $\|\cdot\|_F$ be an absolutely monotone seminorm on F and let p > 1. Then

$$||(u+v)^p||_F^{1/p} \le ||u^p||_F^{1/p} + ||v^p||_F^{1/p},$$

for every $u = (u_n)$, $v = (v_n) \in F$; [8].

Proof. [Proof of Theorem 2.2] Let $x = (x_k)$, $y = (y_k) \in F(X_k, M, p, s)$. It is easy to see that g(x) = g(-x) and $g(\theta) = 0$ for $\theta = (\theta_1, \theta_2, ...)$ the null element of $F(X_k, M, p, s)$ (where θ_i is the zero element of X_i for each i).

We shall now show the subadditivity of g. By taking $\alpha = \beta = 1$ in Theorem 2.1, we have

Some Structural Properties of Vector Valued Orlicz Sequence Space

$$\begin{aligned} k^{-s} \left[M\left(\frac{q_k\left(x_k+y_k\right)}{\rho_3}\right) \right]^{p_k} &\leqslant k^{-s} \left[M\left(\frac{q_k\left(x_k\right)}{\rho_1}\right) + M\left(\frac{q_k\left(y_k\right)}{\rho_2}\right) \right]^{p_k} \\ &= \left(k^{-s/H} \left[M\left(\frac{q_k\left(x_k\right)}{\rho_1}\right) + M\left(\frac{q_k\left(y_k\right)}{\rho_2}\right) \right]^{p_k/H} \right)^H \\ &\leqslant \left(k^{-s/H} \left[M\left(\frac{q_k\left(x_k\right)}{\rho_1}\right) \right]^{p_k/H} \\ &+ k^{-s/H} \left[M\left(\frac{q_k\left(y_k\right)}{\rho_2}\right) \right]^{p_k/H} \right)^H. \end{aligned}$$

Considering Lemma 1, we get

$$\left\| \left(k^{-s} \left[M \left(\frac{q_k \left(x_k + y_k \right)}{\rho_3} \right) \right]^{p_k} \right) \right\|_F^{1/H} \leq \left\| \left(k^{-s} \left[M \left(\frac{q_k \left(x_k \right)}{\rho_1} \right) \right]^{p_k} \right) \right\|_F^{1/H} + \left\| \left(k^{-s} \left[M \left(\frac{q_k \left(y_k \right)}{\rho_2} \right) \right]^{p_k} \right) \right\|_F^{1/H} \right) \right\|_F^{1/H}$$

which means that $g(x+y) \leq g(x) + g(y)$.

Finally, we show that the scalar multiplication is continuous. Let λ be any complex number. By (1.1), we have

$$g(\lambda x) = \inf\left\{\rho^{p_n/H} > 0 \colon \left\| \left(k^{-s} \left[M\left(\frac{q_k\left(\lambda x_k\right)}{\rho}\right) \right]^{p_k} \right) \right\|_F^{1/H} \leqslant 1, \ n \in \mathbb{N} \right\}.$$

Then

$$g(\lambda x) = \inf\left\{ \left(|\lambda| r \right)^{p_n/H} > 0 \colon \left\| \left(k^{-s} \left[M \left(\frac{q_k(x_k)}{r} \right) \right]^{p_k} \right) \right\|_F^{1/H} \leqslant 1, \ n \in \mathbb{N} \right\},$$

where $r = \rho/|\lambda|$. Since $|\lambda|^{p_n} \leq \max(1, |\lambda|^{\sup p_n})$, we have

$$g(\lambda x) = \max\left(1, |\lambda|^{\sup p_n}\right)^{1/H}$$
$$\inf\left\{r^{p_n/H} > 0: \left\| \left(k^{-s} \left[M\left(\frac{q_k\left(x_k\right)}{r}\right)\right]^{p_k}\right) \right\|_F^{1/H} \le 1, n \in \mathbb{N}\right\},$$

which converges to zero whenever x converges to zero in $F(X_k, M, p, s)$.

Suppose that $\lambda_n \to 0$ and x is fixed in $F(X_k, M, p, s)$. Then,

$$t = (t_k) = \left(k^{-s} \left[M\left(\frac{q_k(x_k)}{\rho}\right)\right]^{p_k}\right) \in F$$

for some $\rho > 0$. For arbitrary $\varepsilon > 0$, let N be a positive integer such that

$$\left\| t - \sum_{k=1}^{N} t_k e_k \right\|_F = \left\| \sum_{k=N+1}^{\infty} t_k e_k \right\|_F < \left(\frac{\varepsilon}{2}\right)^H,$$

since (e_k) is a Schauder basis for F. Let $0 < |\lambda| < 1$, using convexity of M and absolutely monotonicity of $\|\cdot\|_F$ we get

$$\begin{split} \left\| \sum_{k=N+1}^{\infty} k^{-s} \left[M\left(\frac{q_k\left(\lambda x_k\right)}{\rho}\right) \right]^{p_k} e_k \right\|_F &\leqslant \left\| \sum_{k=N+1}^{\infty} k^{-s} \left[\left|\lambda\right| M\left(\frac{q_k\left(x_k\right)}{\rho}\right) \right]^{p_k} e_k \right\|_F \\ &< \left(\frac{\varepsilon}{2}\right)^H. \end{split}$$

Since M is continuous everywhere in $[0, \infty)$, then

$$f(u) =: \left\| \sum_{k=1}^{N} k^{-s} \left[M\left(\frac{q_k\left(ux_k\right)}{\rho}\right) \right]^{p_k} e_k \right\|_{F}$$

is continuous at 0. So there is $0 < \delta < 1$ such that $f(u) < (\varepsilon/2)^H$ for $0 < u < \delta$. Let K be a positive integer such that $|\lambda_n| < \delta$ for n > K, then for n > K

$$\left\|\sum_{k=1}^{N} k^{-s} \left[M\left(\frac{q_k\left(\lambda_n x_k\right)}{\rho}\right) \right]^{p_k} e_k \right\|_F^{1/H} < \frac{\varepsilon}{2}.$$

Thus

$$\left\| \left(k^{-s} \left[M \left(\frac{q_k \left(\lambda_n x_k \right)}{\rho} \right) \right]^{p_k} \right) \right\|_F^{1/H} < \frac{\varepsilon}{2}$$

for n > K, so that $g(\lambda x) \to 0$ as $\lambda \to 0$.

This completes the proof of Theorem 2.2.

Remark 1 It can be easily verified that when $F = \ell_1$, $(X_k, q_k) = (\mathbb{C}, |\cdot|)$, $p_k = 1$ for each $k \in \mathbb{N}$ and s = 0 the paranorms defined on $F(X_k, M, p, s)$ and $\ell_M(p)$ are the same, and also taking $q_k = \|\cdot\|_{X_k}$, $p_k = 1$ for each $k \in \mathbb{N}$ and s = 0 in (1.1), one obtains the norm of $F(X_k, M)$.

Theorem 2.3 $F(X_k, M, p, s)$ is complete with the paranorm (1.1) if X_k is complete under the seminorm q_k for each $k \in \mathbb{N}$.

Proof. Let (x^i) be any Cauchy sequence in $F(X_k, M, p, s)$. We get by (1.1) that

$$\left\| \left(k^{-s} \left[M \left(\frac{q_k \left(x_k^i - x_k^j \right)}{g \left(x^i - x^j \right)} \right) \right]^{p_k} \right) \right\|_F^{1/H} \leqslant 1.$$

Some Structural Properties of Vector Valued Orlicz Sequence Space

Since F is a normal space and (e_k) is a Schauder basis of F, it follows that

$$k^{-s} \left[M\left(\frac{q_k(x_k^i - x_k^j)}{g(x^i - x^j)}\right) \right]^{p_k} \|e_k\|_F \leqslant \left\| \left(k^{-s} \left[M\left(\frac{q_k(x_k^i - x_k^j)}{g(x^i - x^j)}\right) \right]^{p_k} \right) \right\|_F \leqslant 1.$$

We choose γ with $\gamma^{H} \|e_{k}\|_{F} > 1$ and $x_{0} > 0$, such that

$$\gamma^{H} \|e_{k}\|_{F} \frac{x_{0}^{H}}{2} \left[p\left(\frac{x_{0}}{2}\right) \right]^{p_{k}} \ge 1$$

where p is the kernel associated with M. Hence,

$$k^{-s} \left[M \left(\frac{q_k(x_k^i - x_k^j)}{g(x^i - x^j)} \right) \right]^{p_k} \|e_k\|_F \leqslant \gamma^H \|e_k\|_F \frac{x_0^H}{2} \left[p \left(\frac{x_0}{2} \right) \right]^{p_k}$$

for each $k \in \mathbb{N}$. Using the integral representation of Orlicz function M, we get

$$k^{-s} \left[q_k (x_k^i - x_k^j) \right]^{p_k} \leqslant \gamma^H x_0^H \left[g(x^i - x^j) \right]^H.$$
 (2.1)

For given $\varepsilon > 0$, we choose an integer i_0 such that

$$g(x^i - x^j) < \frac{\varepsilon^{1/H}}{\gamma x_0} \text{ for all } i, j > i_0.$$

$$(2.2)$$

 ξ From (2.1) and (2.2) we get

$$k^{-s} \left[q_k (x_k^i - x_k^j) \right]^{p_k} < \varepsilon \text{ for all } i, j > i_0$$

and so,

$$q_k(x_k^i - x_k^j) < \varepsilon \text{ for all } i, j > i_0$$

Hence, there exists a sequence $x = (x_k)$ such that $x_k \in X_k$ for each $k \in \mathbb{N}$ and

$$q_k(x_k^i - x_k) < \varepsilon \text{ as } i \to \infty,$$

for each fixed $k \in \mathbb{N}$. For given $\varepsilon > 0$, choose an integer n > 1 such that $g(x^i - x^j) < \varepsilon/2$, for all i, j > n and a $\rho > 0$, such that $g(x^i - x^j) < \rho < \varepsilon/2$. Since F is a normal space and (e_k) is a Schauder basis of F,

$$\left\|\sum_{k=1}^{n} k^{-s} \left[M\left(\frac{q_k(x_k^i - x_k^j)}{\rho}\right) \right]^{p_k} e_k \right\|_F \leqslant \left\| \left(k^{-s} \left[M\left(\frac{q_k(x_k^i - x_k^j)}{\rho}\right) \right]^{p_k} \right) \right\|_F \leqslant 1.$$

Since M is continuous, so by taking $j \to \infty$ and i, j > n in the above inequality we get

$$\left\|\sum_{k=1}^{n} k^{-s} \left[M\left(\frac{q_k(x_k^i - x_k)}{2\rho}\right) \right]^{p_k} e_k \right\|_F < 1.$$

Letting $n \to \infty$, we get $g(x^i - x) < 2\rho < \varepsilon$ for all i > n. That is to say that (x^i) converges to x in the paranorm of $F(X_k, M, p, s)$. Now, we should show that $x \in F(X_k, M, p, s)$. Since $x^i = (x_k^i) \in F(X_k, M, p, s)$, there exists a $\rho > 0$ such that

$$\left(k^{-s}\left\lfloor M\left(\frac{q_k(x_k^i)}{\rho}\right)\right\rfloor^{F_k}\right) \in F.$$

Since $q_k(x_k^i - x_k) \to 0$ as $i \to \infty$, for each fixed k we can choose a positive number δ_k^i satisfying $0 < \delta_k^i < 1$ such that

$$k^{-s} \left[M\left(\frac{q_k(x_k^i - x_k)}{\rho}\right) \right]^{p_k} < \delta_k^i k^{-s} \left[M\left(\frac{q_k(x_k^i)}{\rho}\right) \right]^{p_k}.$$

Consider

$$M\left(\frac{q_k(x_k)}{2\rho}\right) = M\left(\frac{q_k(x_k^i + x_k - x_k^i)}{2\rho}\right)$$
$$\leqslant M\left(\frac{q_k(x_k^i)}{\rho}\right) + M\left(\frac{q_k(x_k^i - x_k)}{\rho}\right)$$

Hence,

$$\begin{split} k^{-s} \left[M\left(\frac{q_k(x_k)}{2\rho}\right) \right]^{p_k} &\leqslant k^{-s} \left[M\left(\frac{q_k(x_k^i)}{\rho}\right) + M\left(\frac{q_k(x_k^i - x_k)}{\rho}\right) \right]^{p_k} \\ &\leqslant Ck^{-s} \left\{ \left[M\left(\frac{q_k(x_k^i)}{\rho}\right) \right]^{p_k} + \left[M\left(\frac{q_k(x_k^i - x_k)}{\rho}\right) \right]^{p_k} \right\} \\ &< C\left(1 + \delta_k^i\right) k^{-s} \left[M\left(\frac{q_k(x_k^i)}{\rho}\right) \right]^{p_k} \,. \end{split}$$

Since F is normal,

$$\left(k^{-s}\left[M\left(\frac{q_k(x_k)}{2\rho}\right)\right]^{p_k}\right) \in F,$$

that is, $x = (x_k) \in F(X_k, M, p, s)$. This step completes the proof.

Theorem 2.4 Let M and M_1 be two Orlicz functions. If M satisfies the Δ_2 -condition, then

$$F(X_k, M_1, p, s) \subseteq F(X_k, M \circ M_1, p, s).$$

Proof. Let $x \in F(X_k, M_1, p, s)$. Then

$$\left(k^{-s}\left[M_1\left(\frac{q_k(x_k)}{\rho}\right)\right]^{p_k}\right) \in F$$

for some $\rho > 0$. Since M satisfies the Δ_2 -condition, we have

$$k^{-s} \left[M \left(M_1 \left(\frac{q_k(x_k)}{\rho} \right) \right) \right]^{p_k} \leq k^{-s} \left[K M_1 \left(\frac{q_k(x_k)}{\rho} \right) M(1) \right]^{p_k} \leq \max \left(1, \left[K M(1) \right]^h \right) k^{-s} \left[M_1 \left(\frac{q_k(x_k)}{\rho} \right) \right]^{p_k}.$$

Thus, we obtain by the normality of F that $x \in F(X_k, M \circ M_1, p, s)$.

Theorem 2.5 Let M_1 and M_2 be two Orlicz functions. Then the following inclusions are hold for non-negative real numbers s_1, s_2, s :

- (i) $F(X_k, M_1, p, s) \cap F(X_k, M_2, p, s) \subseteq F(X_k, M_1 + M_2, p, s),$
- (ii) If $\limsup_{t\to\infty} M_1(t)/M_2(t) < \infty$, then $F(X_k, M_2, p, s) \subseteq F(X_k, M_1, p, s)$,
- (iii) If $s_1 \leqslant s_2$, then $F(X_k, M_1, p, s_1) \subseteq F(X_k, M_1, p, s_2)$,
- (iv) If $F_1 \subseteq F_2$, then $F_1(X_k, M_1, p, s) \subseteq F_2(X_k, M_1, p, s)$.

Proof. (i) Let $x \in F(X_k, M_1, p, s) \cap F(X_k, M_2, p, s)$. Then there exist some $\rho_1, \rho_2 > 0$ such that

$$\left(k^{-s}\left[M_1\left(\frac{q_k(x_k)}{\rho_1}\right)\right]^{p_k}\right), \left(k^{-s}\left[M_2\left(\frac{q_k(x_k)}{\rho_2}\right)\right]^{p_k}\right) \in F.$$

Letting $\rho = \max(\rho_1, \rho_2)$, we get

$$\begin{aligned} k^{-s} \left[(M_1 + M_2) \left(\frac{q_k(x_k)}{\rho} \right) \right]^{p_k} &\leqslant k^{-s} \left[M_1 \left(\frac{q_k(x_k)}{\rho_1} \right) + M_2 \left(\frac{q_k(x_k)}{\rho_2} \right) \right]^{p_k} \\ &\leqslant C \left\{ k^{-s} \left[M_1 \left(\frac{q_k(x_k)}{\rho_1} \right) \right]^{p_k} \\ &+ k^{-s} \left[M_2 \left(\frac{q_k(x_k)}{\rho_2} \right) \right]^{p_k} \right\}. \end{aligned}$$

Since F is a normal space, $x \in F(X_k, M_1 + M_2, p, s)$.

(ii) We can find K > 0 such that $M_1(t)/M_2(t) \leq K$ for all $t \geq 0$, since $\limsup_{t\to\infty} M_1(t)/M_2(t) < \infty$. Let $x \in F(X_k, M_2, p, s)$. There exists a $\rho > 0$ such that

$$\frac{M_1\left(\frac{q_k(x_k)}{\rho}\right)}{M_2\left(\frac{q_k(x_k)}{\rho}\right)} \leqslant K$$

Hence

$$k^{-s} \left[M_1\left(\frac{q_k(x_k)}{\rho}\right) \right]^{p_k} \leqslant \max\left(1, K^h\right) k^{-s} \left[M_2\left(\frac{q_k(x_k)}{\rho}\right) \right]^{p_k}.$$

Since F is normal, $x \in F(X_k, M_1, p, s)$.

The proofs of the cases (iii) and (iv) are trivial.

Corollary 1 We have

- (i) $F(X_k, p, s) \subseteq F(X_k, M, p, s)$ for any Orlicz function M satisfying the Δ_2 -condition,
- (ii) $F(X_k, M, p) \subseteq F(X_k, M, p, s)$ for any Orlicz function M.

101

3 A Closed Subspace of $F(X_k, M, p, s)$

We define $[F(X_k, M, p, s)]$ by

$$[F(X_k, M, p, s)] = \left\{ x = (x_k) \colon x_k \in X_k \text{ for each } k \in \mathbb{N} \text{ and} \\ \left(k^{-s} \left[M \left(\frac{q_k(x_k)}{\rho} \right) \right]^{p_k} \right) \in F \text{ for every } \rho > 0 \right\}$$

The space $[F(X_k, M, p, s)]$ is clearly a subspace of $F(X_k, M, p, s)$, and its topology is introduced by the paranorm of $F(X_k, M, p, s)$ given by (1.1).

Theorem 3.1 $[F(X_k, M, p, s)]$ is a complete paranormed space with the paranorm given by (1.1) if (X_k, q_k) is complete seminormed space for each $k \in \mathbb{N}$.

Proof. Since $F(X_k, M, p, s)$ is just shown that a complete paranormed space under the paranorm (1.1) and $[F(X_k, M, p, s)]$ is a subspace of $F(X_k, M, p, s)$, it is sufficient to show that it is closed. For this let us consider $(x^i) = ((x_k^i)) \in$ $[F(X_k, M, p, s)]$ such that $g(x^i - x) \to 0$ as $i \to \infty$, where $x = (x_k) \in F(X_k, M, p, s)$. So for given $\xi > 0$, we can choose an integer i_0 such that

$$g\left(x^{i}-x\right) < \xi/2, \,\forall i > i_{0}.$$

Consider

$$k^{-s} \left[M\left(\frac{q_k(x_k)}{\xi}\right) \right]^{p_k} \leqslant k^{-s} \left[\frac{1}{2} M\left(\frac{q_k(x_k^i - x_k)}{\xi/2}\right) + \frac{1}{2} M\left(\frac{q_k(x_k^i)}{\xi/2}\right) \right]^{p_k} \\ \leqslant C k^{-s} \left\{ \left[M\left(\frac{q_k(x_k^i - x_k)}{g\left(x^i - x\right)}\right) \right]^{p_k} + \left[M\left(\frac{q_k(x_k^i)}{\xi/2}\right) \right]^{p_k} \right\}$$

Since

$$\left(k^{-s}\left[M\left(\frac{q_k(x_k^i - x_k)}{g\left(x^i - x\right)}\right)\right]^{p_k}\right), \left(k^{-s}\left[M\left(\frac{q_k(x_k^i)}{\xi/2}\right)\right]^{p_k}\right) \in F$$

and F is normal space,

$$\left(k^{-s}\left[M\left(\frac{q_k(x_k)}{\xi}\right)\right]^{p_k}\right) \in F.$$

This implies $x = (x_k) \in [F(X_k, M, p, s)]$ which shows that $[F(X_k, M, p, s)]$ is complete.

Proposition 1 $[F(X_k, M, p, s)]$ is an AK-space.

Proof. Let $x = (x_k) \in [F(X_k, M, p, s)]$. Therefore,

$$\left(k^{-s}\left[M\left(\frac{q_k(x_k)}{\rho}\right)\right]^{p_k}\right) \in F$$

for every $\rho > 0$. Since (e_k) is a Schauder basis of F, for a given $\varepsilon \in (0, 1)$, we can find an arbitrary positive integer m_0 such that

$$\left\|\sum_{k=m_0}^{\infty} k^{-s} \left[M\left(\frac{q_k(x_k)}{\varepsilon}\right)\right]^{p_k} e_k\right\|_F < 1.$$
(3.1)

Using the definition of the paranorm, we have

$$g\left(x-x^{[m]}\right) = \inf\left\{\xi^{p_n/H} > 0 \colon \left\|\sum_{k=m+1}^{\infty} k^{-s} \left[M\left(\frac{q_k(x_k)}{\xi}\right)\right]^{p_k} e_k\right\|_F^{1/H} \leqslant 1, n \in \mathbb{N}\right\}$$

where $x^{[m]}$ denotes the *m*-th section of *x*. ¿From this equality and (3.1), it is obvious that

$$g\left(x-x^{[m]}\right)<\varepsilon$$
 for all $m>m_0$.

Therefore $[F(X_k, M, p, s)]$ is an AK-space.

Theorem 3.2 Let $(x^i) = ((x^i_k))$ be a sequence of the elements of $[F(X_k, M, p, s)]$ and $x = (x_k) \in [F(X_k, M, p, s)]$. Then $x^i \to x$ in $[F(X_k, M, p, s)]$ iff

- (i) $x_k^i \to x_k$ in X_k for each $k \ge 1$,
- (ii) $g(x^i) \to g(x)$ as $i \to \infty$.

Proof. The necessity part is obvious.

Sufficiency. Suppose that (i) and (ii) hold, and let m be an arbitrary positive integer. Then

$$g(x^{i} - x) \leqslant g(x^{i} - x^{i[m]}) + g(x^{i[m]} - x^{[m]}) + g(x^{[m]} - x),$$

where $x^{i[m]}, x^{[m]}$ denote the *m*-th sections of x^i and x, respectively. Letting $i \to \infty$, we get

$$\limsup_{i \to \infty} g(x^i - x) \leq \limsup_{i \to \infty} g(x^i - x^{i[m]}) + \limsup_{i \to \infty} g(x^{i[m]} - x^{[m]}) + g(x^{[m]} - x)$$
$$\leq 2g(x^{[m]} - x).$$

Since *m* is arbitrary, letting $m \to \infty$, we get $\limsup_{i \to \infty} g(x^i - x) = 0$, i.e. $g(x^i - x) \to 0$ as $i \to \infty$.

Theorem 3.3 $[F(X_k, M, p, s)]$ is separable if for each $k \in \mathbb{N}$, X_k is.

Proof. Suppose X_k is separable for each $k \in \mathbb{N}$. Then, there exists a countable dense subset U_k of X_k . Let Z denotes the set of finite sequences $z = (z_k)$ where $z_k \in U_k$ for each $k \in \mathbb{N}$ and

$$(z_k) = (z_1, z_2, \dots, z_m, \theta_{m+1}, \theta_{m+2}, \dots)$$

for arbitrary $m \in \mathbb{N}$. Obviously, Z is a countable subset of $[F(X_k, M, p, s)]$. We shall prove that Z is dense in $[F(X_k, M, p, s)]$. Let $x \in [F(X_k, M, p, s)]$. Since $[F(X_k, M, p, s)]$ is an AK-space, $g(x - x^{[m]}) \to 0$ as $m \to \infty$. So for a given $\varepsilon > 0$, there exists an integer $m_1 > 1$ such that

$$g\left(x-x^{[m]}\right) < \varepsilon/2 \text{ for all } m \ge m_1.$$

If we take $m = m_1$, then

$$g\left(x-x^{[m_1]}\right) < \varepsilon/2.$$

Let us choose $y = (y_k) = (y_1, y_2, ..., y_{m_1}, \theta_{m_1+1}, \theta_{m_1+2}, ...) \in \mathbb{Z}$ such that

$$q_k\left(x_k^{[m_1]} - y_k\right) < \frac{\varepsilon}{2M(1) m_1 \|e_k\|_F} \text{ for each } k \in \mathbb{N}.$$

Now

$$g(x-y) = g\left(x - x^{[m_1]} + x^{[m_1]} - y\right)$$

$$\leq g\left(x - x^{[m_1]}\right) + g\left(x^{[m_1]} - y\right) < \varepsilon.$$

This implies that Z is dense in $[F(X_k, M, p, s)]$. Hence $[F(X_k, M, p, s)]$ is separable.

Acknowledgement

The first author would like to express his great thanks to Professor Feyzi Başar, Matematik Eğitimi Bölümü, İnönü Üniversitesi, 44280, Malatya - Türkiye, for his careful reviewing and some useful comments on the first draft of the paper.

References

- [1] C. A. Bektaş and Y. Altın, The sequence space $\ell_M(p,q,s)$ on seminormed spaces, *Indian J. Pure Appl. Math.*, **34**(4)(2003), 529–534.
- [2] D. Ghosh and P. D. Srivastava, On some vector valued sequence spaces using Orlicz function, *Glas. Mat. Ser. III*, **34** (2)(1999), 819–826.
- [3] M. A. Krasnosel'skii and Y. B. Rutickii, *Convex functions and Orlicz spaces*, Noordhoff Ltd., Groningen, Netherlands, 1961.
- [4] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence space, Israel J. Math., 10(1971), 379–390.
- [5] P. K. Kamthan and M. Gupta, Sequence spaces and series, Marcel Dekker, Inc., New York and Basel, 1981.

- [6] I. J. Maddox, *Elements of functional analysis*, Second Edition, Cambridge University Press, Cambridge, 1977.
- [7] S. D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz functions, *Indian J. Pure Appl. Math.*, 25(4)(1994), 419–428.
- [8] Y. Yılmaz, M. K. Özdemir and İ. Solak, A generalization of Hölder and Minkowski inequalities, J. Inequal. Pure Appl. Math. 7 (2006), no. 5, Article 193, 9 pp. (electronic).

(Received 25 October 2005)

M. K. Özdemir and İ. Solak Department of Mathematics Inonu University 44280 Malatya, Turkey. e-mail : kozdemir@inonu.edu.tr