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1 Introduction

Orlicz sequence spaces are one of the most natural generalizations of classical
spaces `p, p > 1. They were first considered by W. Orlicz in 1936. Afterwards, J.
Lindenstrauss and L. Tzafriri [4] used the idea of Orlicz function M to construct
the sequence space `M of all sequences of scalars (xn) such that

∞∑

k=1

M

( |xk|
ρ

)
< ∞ for some ρ > 0.

The space `M becomes a Banach space which is called an Orlicz sequence
space. The space `M is closely related to the space `p which is an Orlicz sequence
space with M (x) = xp, (1 6 p < ∞). In the present note, we introduce and
examine some properties of a sequence space defined by using Orlicz function M ,
which generalizes the well known Orlicz sequence space `M . Before introducing
this sequence space, let us give some basic concepts :

An algebra X is a linear space together with an internal operation of multipli-
cation of elements of X, such that xy ∈ X, x (yz) = (xy) z, x (y + z) = xy + xz,
(x + y) z = xz+yz and λ (xy) = (λx) y = x (λy), for any scalar λ, and a normed al-
gebra is an algebra which is normed, as a linear space, and in which ‖xy‖ 6 ‖x‖ ‖y‖
for all x, y; [6].

Let F be a sequence space and x, y be the arbitrary elements of F . Then
F is called a sequence algebra if it is closed under the multiplication defined by
xy = (xkyk). The space F is called normal or solid if y = (yk) ∈ F whenever
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|yk| 6 |xk|, k ∈ N, for some x = (xk) ∈ F . If F is both normal and sequence
algebra then it is called a normal sequence algebra. For example, w, `∞, c0 and
`p (0 < p < ∞) are normal sequence algebras. c is a sequence algebra but not
normal.

A norm ‖·‖ on a normal sequence space F is said to be absolutely monotone
if x = (xk) , y = (yk) ∈ F and |xk| 6 |yk| for all k ∈ N implies ‖x‖ 6 ‖y‖, [5]. The
norm

‖x‖∞ = sup |xk|

over `∞, c, c0 and the norm

‖x‖ =

( ∞∑

k=1

|xk|p
)1/p

over `p for p > 1 are absolutely monotone.
We recall [3, 4] that an Orlicz function is a function M : [0,∞) −→ [0,∞)

which is continuous, non-decreasing and convex with M (0) = 0, M (x) > 0 for
all x > 0 and M (x) → ∞ as x → ∞. An Orlicz function M can always be
represented in the following integral form:

M (x) =

x∫

0

p (t) dt,

where p, known as the kernel of M .
We remark that M1 + M2 and M1 ◦M2 are Orlicz functions when M1 and M2

are Orlicz functions.
An Orlicz function M is said to satisfy the ∆2-condition for all values of u

if there exists a constant K > 0 such that M (2u) 6 KM (u), u > 0. It is
easy to see always that K > 2. The ∆2-condition is equivalent to the inequality
M (`u) 6 K(`)M (u) which holds for all values of u and ` > 1; [3].

We now introduce the vector valued sequence space F (Xk,M, p, s) using Orlicz
function M .

Let Xk be seminormed space over the complex field C with seminorm qk for
each k ∈ N, and F be a normal sequence algebra with absolutely monotone norm
‖·‖F and having a Schauder basis (ek), where ek = (0, . . . , 0, 1, 0, . . .), with 1 in
k-th place. Let p = (pk) be any sequence of strictly positive real numbers and
s be any non-negative real number. By s (Xk), we denote the linear space of all
sequences x = (xk) with xk ∈ Xk for each k ∈ N under the usual coordinatewise
operations:

αx = (αxk) and x + y = (xk + yk)

for each α ∈ C. Let x ∈ s (Xk) and λ = (λk) is a scalar sequence such that
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λx = (λkxk). We define for an Orlicz function M ,

F (Xk,M, p, s) =
{

x = (xk) ∈ s (Xk) : xk ∈ Xk for each k and
(

k−s

[
M

(
qk (xk)

ρ

)]pk
)
∈ F for some ρ > 0

}
.

Y. Yılmaz, M. K. Özdemir and İ. Solak [8] introduced a generalization of Minkowski
Inequality to normal sequence algebras with absolutely monotone seminorm. We
will use Lemma 1 which states this extension to put forward a topology of the
space F (Xk, M, p, s) . For x = (xk) ∈ F (Xk,M, p, s), we define

g(x) = inf

{
ρpn/H > 0:

∥∥∥∥
(

k−s

[
M

(
qk (xk)

ρ

)]pk
)∥∥∥∥

1/H

F

6 1, n ∈ N
}

, (1.1)

where H = max (1, sup pk). It is shown that F (Xk,M, p, s) turns out to be a
complete paranormed space with the paranorm defined by (1.1) whenever the
seminormed space Xk is complete under the seminorm qk for each k ∈ N.

It can be seen that for suitable choice of the sequence space F , the seminormed
space Xk, the sequence of strictly positive real numbers (pk), s > 0 and Orlicz
function M , the space F (Xk,M, p, s) reduces to the many number of known ordi-
nary sequence spaces and as well as vector valued sequence spaces, as a particular
case. For example, choosing F to be `1, Xk = X (a vector space over C) and qk = q
to be a seminorm on X in F (Xk,M, p, s) one gets the scalar valued sequence space
`M (p, q, s) defined by Ç. A. Bektaş & Y. Altın [1].

If Xk is normed space, pk = 1 for each k ∈ N and s = 0, then the class
F (Xk,M, p, s) gives the class F (Xk,M) defined by D. Ghosh & P. D. Srivastava
[2]. Furthermore, if F = `1, Xk = C and s = 0 in F (Xk,M, p, s), then one
obtains the space `M (p) defined by S. D. Parashar & B. Choudhary [7]. Thus, the
generalized sequence space F (Xk,M, p, s) yields several spaces studied by several
authors.

2 Linear Topological Structure of F (Xk,M, p, s)

Now, we examine some algebraic and topological properties of F (Xk,M, p, s)
and investigate some inclusion relations on it. In order to discuss the properties
of F (Xk,M, p, s), we assume that (pk) is bounded. We will henceforth denote by
h and C, the real numbers sup pk and max

(
1, 2h−1

)
, respectively.

Theorem 2.1 F (Xk,M, p, s) is a linear space over the complex field C.

Proof. Let x = (xk) , y = (yk) ∈ F (Xk,M, p, s) and α, β ∈ C. So, there exist
ρ1, ρ2 > 0 such that

(
k−s

[
M

(
qk (xk)

ρ1

)]pk
)

,

(
k−s

[
M

(
qk (yk)

ρ2

)]pk
)
∈ F .
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Let ρ3 = max (2 |α| ρ1, 2 |β| ρ2). Since M is non-decreasing and convex,

k−s

[
M

(
qk (αxk + βyk)

ρ3

)]pk

6 k−s

[
M

(
|α| qk (xk)

ρ3
+ |β| qk (yk)

ρ3

)]pk

6 k−s

[
M

(
qk (xk)

ρ1

)
+ M

(
qk (yk)

ρ2

)]pk

6 C

{
k−s

[
M

(
qk (xk)

ρ1

)]pk

+ k−s

[
M

(
qk (yk)

ρ2

)]pk
}

.

Since F is a normal space, we have
(

k−s

[
M

(
qk (αxk + βyk)

ρ3

)]pk
)
∈ F

which shows that αx + βy ∈ F (Xk,M, p, s). ¤

Theorem 2.2 F (Xk, M, p, s) is a topological linear space, paranormed by

g(x) = inf

{
ρpn/H > 0:

∥∥∥∥
(

k−s

[
M

(
qk (xk)

ρ

)]pk
)∥∥∥∥

1/H

F

6 1, n ∈ N
}

,

where H = max (1, h).

To prove this theorem we need the following lemma.

Lemma 1 Let F be a normal sequence algebra, ‖·‖F be an absolutely monotone
seminorm on F and let p > 1. Then

‖(u + v)p‖1/p
F 6 ‖up‖1/p

F + ‖vp‖1/p
F ,

for every u = (un) , v = (vn) ∈ F ; [8].

Proof. [Proof of Theorem 2.2] Let x = (xk) , y = (yk) ∈ F (Xk,M, p, s). It is
easy to see that g(x) = g(−x) and g(θ) = 0 for θ = (θ1, θ2, . . .) the null element of
F (Xk,M, p, s) (where θi is the zero element of Xi for each i).

We shall now show the subadditivity of g. By taking α = β = 1 in Theorem
2.1, we have
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k−s

[
M

(
qk (xk + yk)

ρ3

)]pk

6 k−s

[
M

(
qk (xk)

ρ1

)
+ M

(
qk (yk)

ρ2

)]pk

=

(
k−s/H

[
M

(
qk (xk)

ρ1

)
+ M

(
qk (yk)

ρ2

)]pk/H
)H

6
(

k−s/H

[
M

(
qk (xk)

ρ1

)]pk/H

+ k−s/H

[
M

(
qk (yk)

ρ2

)]pk/H
)H

.

Considering Lemma 1, we get

∥∥∥∥
(

k−s

[
M

(
qk (xk + yk)

ρ3

)]pk
)∥∥∥∥

1/H

F

6
∥∥∥∥
(

k−s

[
M

(
qk (xk)

ρ1

)]pk
)∥∥∥∥

1/H

F

+
∥∥∥∥
(

k−s

[
M

(
qk (yk)

ρ2

)]pk
)∥∥∥∥

1/H

F

which means that g(x + y) 6 g(x) + g(y).
Finally, we show that the scalar multiplication is continuous. Let λ be any

complex number. By (1.1), we have

g(λx) = inf

{
ρpn/H > 0:

∥∥∥∥
(

k−s

[
M

(
qk (λxk)

ρ

)]pk
)∥∥∥∥

1/H

F

6 1, n ∈ N
}

.

Then

g(λx) = inf

{
(|λ| r)pn/H

> 0:
∥∥∥∥
(

k−s

[
M

(
qk (xk)

r

)]pk
)∥∥∥∥

1/H

F

6 1, n ∈ N
}

,

where r = ρ/ |λ|. Since |λ|pn 6 max (1, |λ|sup pn), we have

g(λx) = max (1, |λ|sup pn)1/H

. inf

{
rpn/H > 0:

∥∥∥∥
(

k−s

[
M

(
qk (xk)

r

)]pk
)∥∥∥∥

1/H

F

6 1, n ∈ N
}

,

which converges to zero whenever x converges to zero in F (Xk,M, p, s).
Suppose that λn → 0 and x is fixed in F (Xk, M, p, s). Then,

t = (tk) =
(

k−s

[
M

(
qk (xk)

ρ

)]pk
)
∈ F
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for some ρ > 0. For arbitrary ε > 0, let N be a positive integer such that
∥∥∥∥∥t−

N∑

k=1

tkek

∥∥∥∥∥
F

=

∥∥∥∥∥
∞∑

k=N+1

tkek

∥∥∥∥∥
F

<
(ε

2

)H

,

since (ek) is a Schauder basis for F . Let 0 < |λ| < 1, using convexity of M and
absolutely monotonicity of ‖·‖F we get

∥∥∥∥∥
∞∑

k=N+1

k−s

[
M

(
qk (λxk)

ρ

)]pk

ek

∥∥∥∥∥
F

6
∥∥∥∥∥

∞∑

k=N+1

k−s

[
|λ|M

(
qk (xk)

ρ

)]pk

ek

∥∥∥∥∥
F

<
(ε

2

)H

.

Since M is continuous everywhere in [0,∞), then

f(u) =:

∥∥∥∥∥
N∑

k=1

k−s

[
M

(
qk (uxk)

ρ

)]pk

ek

∥∥∥∥∥
F

is continuous at 0. So there is 0 < δ < 1 such that f(u) < (ε/2)H for 0 < u < δ.
Let K be a positive integer such that |λn| < δ for n > K, then for n > K

∥∥∥∥∥
N∑

k=1

k−s

[
M

(
qk (λnxk)

ρ

)]pk

ek

∥∥∥∥∥

1/H

F

<
ε

2
.

Thus ∥∥∥∥
(

k−s

[
M

(
qk (λnxk)

ρ

)]pk
)∥∥∥∥

1/H

F

<
ε

2

for n > K, so that g(λx) → 0 as λ → 0.
This completes the proof of Theorem 2.2. ¤

Remark 1 It can be easily verified that when F = `1, (Xk, qk) = (C, |·|), pk = 1
for each k ∈ N and s = 0 the paranorms defined on F (Xk,M, p, s) and `M (p) are
the same, and also taking qk = ‖·‖Xk

, pk = 1 for each k ∈ N and s = 0 in (1.1),
one obtains the norm of F (Xk, M).

Theorem 2.3 F (Xk, M, p, s) is complete with the paranorm (1.1) if Xk is com-
plete under the seminorm qk for each k ∈ N.

Proof. Let
(
xi

)
be any Cauchy sequence in F (Xk,M, p, s). We get by (1.1) that

∥∥∥∥∥∥


k−s


M


qk

(
xi

k − xj
k

)

g (xi − xj)







pk


∥∥∥∥∥∥

1/H

F

6 1.
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Since F is a normal space and (ek) is a Schauder basis of F , it follows that

k−s

[
M

(
qk(xi

k − xj
k)

g(xi − xj)

)]pk

‖ek‖F 6
∥∥∥∥∥

(
k−s

[
M

(
qk(xi

k − xj
k)

g(xi − xj)

)]pk
)∥∥∥∥∥

F

6 1.

We choose γ with γH ‖ek‖F > 1 and x0 > 0, such that

γH ‖ek‖F

xH
0

2

[
p

(x0

2

)]pk

> 1,

where p is the kernel associated with M . Hence,

k−s

[
M

(
qk(xi

k − xj
k)

g(xi − xj)

)]pk

‖ek‖F 6 γH ‖ek‖F

xH
0

2

[
p

(x0

2

)]pk

for each k ∈ N. Using the integral representation of Orlicz function M , we get

k−s
[
qk(xi

k − xj
k)

]pk

6 γHxH
0

[
g(xi − xj)

]H
. (2.1)

For given ε > 0, we choose an integer i0 such that

g(xi − xj) <
ε1/H

γx0
for all i, j > i0. (2.2)

¿From (2.1) and (2.2) we get

k−s
[
qk(xi

k − xj
k)

]pk

< ε for all i, j > i0

and so,
qk(xi

k − xj
k) < ε for all i, j > i0.

Hence, there exists a sequence x = (xk) such that xk ∈ Xk for each k ∈ N and

qk(xi
k − xk) < ε as i →∞,

for each fixed k ∈ N. For given ε > 0, choose an integer n > 1 such that g(xi−xj) <
ε/2, for all i, j > n and a ρ > 0, such that g(xi − xj) < ρ < ε/2. Since F is a
normal space and (ek) is a Schauder basis of F ,
∥∥∥∥∥

n∑

k=1

k−s

[
M

(
qk(xi

k − xj
k)

ρ

)]pk

ek

∥∥∥∥∥
F

6
∥∥∥∥∥

(
k−s

[
M

(
qk(xi

k − xj
k)

ρ

)]pk
)∥∥∥∥∥

F

6 1.

Since M is continuous, so by taking j → ∞ and i, j > n in the above inequality
we get ∥∥∥∥∥

n∑

k=1

k−s

[
M

(
qk(xi

k − xk)
2ρ

)]pk

ek

∥∥∥∥∥
F

< 1.
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Letting n → ∞, we get g(xi − x) < 2ρ < ε for all i > n. That is to say that(
xi

)
converges to x in the paranorm of F (Xk,M, p, s). Now, we should show that

x ∈ F (Xk, M, p, s). Since xi =
(
xi

k

) ∈ F (Xk,M, p, s), there exists a ρ > 0 such
that (

k−s

[
M

(
qk(xi

k)
ρ

)]pk
)
∈ F .

Since qk(xi
k−xk) → 0 as i →∞, for each fixed k we can choose a positive number

δi
k satisfying 0 < δi

k < 1 such that

k−s

[
M

(
qk(xi

k − xk)
ρ

)]pk

< δi
kk−s

[
M

(
qk(xi

k)
ρ

)]pk

.

Consider

M

(
qk(xk)

2ρ

)
= M

(
qk(xi

k + xk − xi
k)

2ρ

)

6 M

(
qk(xi

k)
ρ

)
+ M

(
qk(xi

k − xk)
ρ

)

Hence,

k−s

[
M

(
qk(xk)

2ρ

)]pk

6 k−s

[
M

(
qk(xi

k)
ρ

)
+ M

(
qk(xi

k − xk)
ρ

)]pk

6 Ck−s

{[
M

(
qk(xi

k)
ρ

)]pk

+
[
M

(
qk(xi

k − xk)
ρ

)]pk
}

< C
(
1 + δi

k

)
k−s

[
M

(
qk(xi

k)
ρ

)]pk

.

Since F is normal, (
k−s

[
M

(
qk(xk)

2ρ

)]pk
)
∈ F ,

that is, x = (xk) ∈ F (Xk,M, p, s). This step completes the proof. ¤

Theorem 2.4 Let M and M1 be two Orlicz functions. If M satisfies the ∆2-
condition, then

F (Xk, M1, p, s) ⊆ F (Xk,M ◦M1, p, s) .

Proof. Let x ∈ F (Xk,M1, p, s). Then
(

k−s

[
M1

(
qk(xk)

ρ

)]pk
)
∈ F

for some ρ > 0. Since M satisfies the ∆2-condition, we have

k−s

[
M

(
M1

(
qk(xk)

ρ

))]pk

6 k−s

[
KM1

(
qk(xk)

ρ

)
M(1)

]pk

6 max
(
1, [KM(1)]h

)
k−s

[
M1

(
qk(xk)

ρ

)]pk

.
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Thus, we obtain by the normality of F that x ∈ F (Xk,M ◦M1, p, s). ¤

Theorem 2.5 Let M1 and M2 be two Orlicz functions. Then the following inclu-
sions are hold for non-negative real numbers s1, s2, s:

(i) F (Xk, M1, p, s) ∩ F (Xk,M2, p, s) ⊆ F (Xk, M1 + M2, p, s),

(ii) If lim sup
t→∞

M1(t)/M2(t) < ∞, then F (Xk,M2, p, s) ⊆ F (Xk,M1, p, s),

(iii) If s1 6 s2, then F (Xk,M1, p, s1) ⊆ F (Xk,M1, p, s2),

(iv) If F1 ⊆ F2, then F1 (Xk, M1, p, s) ⊆ F2 (Xk,M1, p, s).

Proof. (i) Let x ∈ F (Xk,M1, p, s) ∩ F (Xk,M2, p, s). Then there exist some
ρ1, ρ2 > 0 such that

(
k−s

[
M1

(
qk(xk)

ρ1

)]pk
)

,

(
k−s

[
M2

(
qk(xk)

ρ2

)]pk
)
∈ F .

Letting ρ = max(ρ1, ρ2), we get

k−s

[
(M1 + M2)

(
qk(xk)

ρ

)]pk

6 k−s

[
M1

(
qk(xk)

ρ1

)
+ M2

(
qk(xk)

ρ2

)]pk

6 C

{
k−s

[
M1

(
qk(xk)

ρ1

)]pk

+ k−s

[
M2

(
qk(xk)

ρ2

)]pk
}

.

Since F is a normal space, x ∈ F (Xk,M1 + M2, p, s).
(ii) We can find K > 0 such that M1(t)/M2(t) 6 K for all t > 0, since

lim sup
t→∞

M1(t)/M2(t) < ∞. Let x ∈ F (Xk,M2, p, s). There exists a ρ > 0 such

that
M1

(
qk(xk)

ρ

)

M2

(
qk(xk)

ρ

) 6 K.

Hence

k−s

[
M1

(
qk(xk)

ρ

)]pk

6 max
(
1,Kh

)
k−s

[
M2

(
qk(xk)

ρ

)]pk

.

Since F is normal, x ∈ F (Xk,M1, p, s).
The proofs of the cases (iii) and (iv) are trivial. ¤

Corollary 1 We have

(i) F (Xk, p, s) ⊆ F (Xk,M, p, s) for any Orlicz function M satisfying the ∆2-
condition,

(ii) F (Xk, M, p) ⊆ F (Xk,M, p, s) for any Orlicz function M .
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3 A Closed Subspace of F (Xk,M, p, s)

We define [F (Xk, M, p, s)] by

[F (Xk,M, p, s)] =
{

x = (xk) : xk ∈ Xk for each k ∈ N and
(

k−s

[
M

(
qk(xk)

ρ

)]pk
)
∈ F for every ρ > 0

}
.

The space [F (Xk,M, p, s)] is clearly a subspace of F (Xk,M, p, s), and its topology
is introduced by the paranorm of F (Xk,M, p, s) given by (1.1).

Theorem 3.1 [F (Xk,M, p, s)] is a complete paranormed space with the paranorm
given by (1.1) if (Xk, qk) is complete seminormed space for each k ∈ N.

Proof. Since F (Xk,M, p, s) is just shown that a complete paranormed space
under the paranorm (1.1) and [F (Xk,M, p, s)] is a subspace of F (Xk, M, p, s),
it is sufficient to show that it is closed. For this let us consider

(
xi

)
=

((
xi

k

)) ∈
[F (Xk,M, p, s)] such that g

(
xi − x

) → 0 as i →∞, where x = (xk) ∈ F (Xk,M, p, s).
So for given ξ > 0, we can choose an integer i0 such that

g
(
xi − x

)
< ξ/2, ∀i > i0.

Consider

k−s

[
M

(
qk(xk)

ξ

)]pk

6 k−s

[
1
2
M

(
qk(xi

k − xk)
ξ/2

)
+

1
2
M

(
qk(xi

k)
ξ/2

)]pk

6 Ck−s

{[
M

(
qk(xi

k − xk)
g (xi − x)

)]pk

+
[
M

(
qk(xi

k)
ξ/2

)]pk
}

.

Since (
k−s

[
M

(
qk(xi

k − xk)
g (xi − x)

)]pk
)

,

(
k−s

[
M

(
qk(xi

k)
ξ/2

)]pk
)
∈ F

and F is normal space,
(

k−s

[
M

(
qk(xk)

ξ

)]pk
)
∈ F .

This implies x = (xk) ∈ [F (Xk,M, p, s)] which shows that [F (Xk,M, p, s)] is
complete. ¤

Proposition 1 [F (Xk,M, p, s)] is an AK-space.

Proof. Let x = (xk) ∈ [F (Xk,M, p, s)]. Therefore,
(

k−s

[
M

(
qk(xk)

ρ

)]pk
)
∈ F
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for every ρ > 0. Since (ek) is a Schauder basis of F , for a given ε ∈ (0, 1), we can
find an arbitrary positive integer m0 such that

∥∥∥∥∥
∞∑

k=m0

k−s

[
M

(
qk(xk)

ε

)]pk

ek

∥∥∥∥∥
F

< 1. (3.1)

Using the definition of the paranorm, we have

g
(
x− x[m]

)
= inf



ξpn/H > 0:

∥∥∥∥∥
∞∑

k=m+1

k−s

[
M

(
qk(xk)

ξ

)]pk

ek

∥∥∥∥∥

1/H

F

6 1, n ∈ N


 ,

where x[m] denotes the m-th section of x. ¿From this equality and (3.1), it is
obvious that

g
(
x− x[m]

)
< ε for all m > m0.

Therefore [F (Xk,M, p, s)] is an AK-space. ¤

Theorem 3.2 Let
(
xi

)
=

((
xi

k

))
be a sequence of the elements of [F (Xk, M, p, s)]

and x = (xk) ∈ [F (Xk,M, p, s)]. Then xi → x in [F (Xk,M, p, s)] iff

(i) xi
k → xk in Xk for each k > 1,

(ii) g(xi) → g(x) as i →∞.

Proof. The necessity part is obvious.
Sufficiency. Suppose that (i) and (ii) hold, and let m be an arbitrary positive

integer. Then

g(xi − x) 6 g(xi − xi[m]) + g(xi[m] − x[m]) + g(x[m] − x),

where xi[m], x[m] denote the m-th sections of xi and x, respectively. Letting i →∞,
we get

lim sup
i→∞

g(xi − x) 6 lim sup
i→∞

g(xi − xi[m]) + lim sup
i→∞

g(xi[m] − x[m]) + g(x[m] − x)

6 2g(x[m] − x).

Since m is arbitrary, letting m →∞, we get lim sup
i→∞

g
(
xi − x

)
= 0, i.e. g

(
xi − x

) →
0 as i →∞. ¤

Theorem 3.3 [F (Xk,M, p, s)] is separable if for each k ∈ N, Xk is.

Proof. Suppose Xk is separable for each k ∈ N. Then, there exists a countable
dense subset Uk of Xk. Let Z denotes the set of finite sequences z = (zk) where
zk ∈ Uk for each k ∈ N and

(zk) = (z1, z2, . . . , zm, θm+1, θm+2, . . .)
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for arbitrary m ∈ N. Obviously, Z is a countable subset of [F (Xk,M, p, s)]. We
shall prove that Z is dense in [F (Xk,M, p, s)]. Let x ∈ [F (Xk,M, p, s)]. Since
[F (Xk,M, p, s)] is an AK-space, g

(
x− x[m]

) → 0 as m →∞. So for a given ε > 0,
there exists an integer m1 > 1 such that

g
(
x− x[m]

)
< ε/2 for all m > m1.

If we take m = m1, then
g

(
x− x[m1]

)
< ε/2.

Let us choose y = (yk) = (y1, y2, . . . , ym1 , θm1+1, θm1+2, . . .) ∈ Z such that

qk

(
x

[m1]
k − yk

)
<

ε

2M (1) m1 ‖ek‖F

for each k ∈ N.

Now

g (x− y) = g
(
x− x[m1] + x[m1] − y

)

6 g
(
x− x[m1]

)
+ g

(
x[m1] − y

)
< ε.

This implies that Z is dense in [F (Xk,M, p, s)]. Hence [F (Xk,M, p, s)] is separa-
ble. ¤

Acknowledgement

The first author would like to express his great thanks to Professor Feyzi
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