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k-Rotundity of Quotient Spaces

C. Yunan and D. LiFen 1

Abstract: In this paper, we prove that if M is a closed and proximinal subspace
of Banach space X , [x] ∈ S(X/M) and every point on [x] ∩ S(X) is a k–extreme
point of B(X), then [x] is a k–extreme point of B(X/M). Moreover, we get that
if X is k–rotund Banach space and M is a closed and proximinal subspace of X,
then the quotient space X/M is also k–rotund. It is shown that if Φ does not
satisfy the 42–condition, then E0

Φ is not proximinal in L0
Φ and the quotient space

L0
Φ/E0

Φ is not k–rotund (even if L0
Φ is rotund.)
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1 Introduction

In 1960, Singer[1] introduced the k–rotund Banach spaces. The definition
play a important role in approximation, control theory and so on. Let X be
a Banach space and X∗ be its dual space. By B(X) and S(X) we denote the
closed unit ball and the unit sphere of X, respectively. A point x ∈ S(X)
is called a k–extreme point of B(X) provided that {xi}k+1

i=1 ⊂ S(X) ,
x = x1+···+xk

k+1 imply that {xi}k+1
i=1 are linearly dependent. Obviously, if every

point on S(X) is a k–extreme point, then X is a k–rotund space.
Let M be a closed subspace of a Banach space X. We denote by X/M

the quotient space of X modulo M. It is well known that X/M equipped
with the norm ‖[x]‖ = inf{‖y‖ : y ∈ [x]}, where [x] = {y ∈ X : y− x ∈ M}
is also a Banach space. The subspace M of X is called proximal in X if for
any x ∈ X there is y ∈ X such that ‖[x]‖ = ‖x− y‖ .

A mapping Φ : R → [0,∞) is said to be an Orlicz function if Φ vanishes
only at zero, Φ is even, convex and left continuous on whole nonnegative
line R+. We define its complementary function Ψ : R → [0,∞) by the
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formula
Ψ(x) = sup{|x| y − Φ(y) : y ≥ 0}.

Denote by p(x), q(x) the right derivative of Φ and Ψ, respectively.
Let (G,

∑
, µ) be a measure space with a σ−finite, nonatomic and com-

plete measure µ and L0(µ) be the set of all µ-equivalence classes of real
and

∑
–measurable function defined on G. For a given Orlicz function Φ

we define on L0(µ) the convex modular IΦ by

IΦ (x) =
∫

G
Φ(x(t))dt.

The linear space LΦ defined by

LΦ = {x ∈ L0(µ) : IΦ (cx) < ∞, for some c > 0 depending on x}

is called the Orlicz space generated by Φ. We consider LΦ equipped with
the Amemiya-Orlicz norm

‖x‖0 = inf{1
h

(1 + IΦ(hx)) : h > 0}.

To simplify the notation we write L0
Φ in place of (L0

Φ ,‖·‖0). The Luxemburg
norm in LΦ is defined by

‖x‖ = inf{λ > 0 : IΦ(
x

λ
) ≤ 1}.

For any x in L0
Φ \{0}, the set of all numbers h > 0 such that ‖x‖ =

1
h(1 + IΦ(hx)) is denoted by H(x). It is well known that H(x) = [h∗x, h∗∗x ],
where h∗x = inf{h > 0 : IΨ(p(h | x |)) ≥ 1} and h∗∗x = sup{h > 0 : IΨ(p(h |
x |)) ≤ 1} if h∗x < ∞ and H(x) = φ if h∗x = ∞. It is also known that if Φ
satisfied the condition : Φ(u)

u → +∞ as u → +∞, then H(x) 6= φ for any
x ∈ LΦ\{0}.( see [2] ). And if lim

u→∞
Φ(u)

u = a < ∞ then ‖x‖0 = a
∫
G |x(t)| dt

( see [3]).
We say an Orlicz function Φ satisfies the ∆2–condition (Φ ∈ ∆2 for

short) if there are l ≥ 2 and u0 > 0 such that Φ(2u) ≤ lΦ(u) whenever
| u |≥ u0 . In the sequel EΦ denotes the space of these x ∈ LΦ that
IΦ (cx) < ∞ for all c > 0. We write shortly E0

Φ in place of (E0
Φ, ‖·‖0). It is

well known that LΦ = EΦ if and only if Φ ∈ ∆2.
We say a point w is a point of strict convexity of Φ (we write w ∈ SC(Φ))

if for every u, v ∈ R such that u 6= v and w = 1
2(u + v) there holds

Φ(
u + v

2
) <

1
2
(Φ(u) + Φ(v)).



k-Rotundity of Quotient Spaces 23

2 Main Results

Theorem 2.1 If M is a closed and proximal subspace of Banach space X ,
[x] ∈ S(X/M) and every point on [x]∩S(X) is a k–extreme point of B(X),
then [x] is a k–extreme point of B(X/M) .

Proof. Suppose [x1], · · ·, [xk+1] ∈ S(X/M), [x] = [x1]+···+[xk+1]
k+1 . We have

to show that {[xi]}k+1
i=1 are linearly dependent. By the proximation of M in

X, there is x
′
i ∈ [xi] such that

∥∥∥x′
i

∥∥∥ = ‖[xi]‖ = 1. Then

[x] =
[x

′
1] + · · ·+ [x

′
k+1]

k + 1
= [

x
′
1 + · · ·+ x

′
k+1

k + 1
]

and

1 = ‖[x]‖ =

∥∥∥∥∥[x
′
1 + · · ·+ x

′
k+1

k + 1
]

∥∥∥∥∥ ≤
∥∥∥∥∥x

′
1 + · · ·+ x

′
k+1

k + 1

∥∥∥∥∥
≤

∥∥∥x′
1

∥∥∥+ · · ·+
∥∥∥x′

k+1

∥∥∥
k + 1

= 1

which implies ∥∥∥∥∥x
′
1 + · · ·+ x

′
k+1

k + 1

∥∥∥∥∥ = 1.

This shows
x

′
1 + · · ·+ x

′
k+1

k + 1
∈ [x] ∩ S(X).

By the assumption,
x

′
1+···+x

′
k+1

k+1 is a k–extreme point of B(X). It follows that
{x′

i}
k+1
i=1 are linearly dependent. Therefore, {[xi]}k+1

i=1 are linearly dependent.
The proof is finished. �

By Theorem 2.1, we may get the following Theorem 2.2 directed.

Theorem 2.2 If X is a k–rotund Banach space and M is its closed prox-
imal subspace, then the Banach space X/M is also k–rotund.

Theorem 2.3 Let Φ is an Orlicz function with lim
u→∞

Φ(u)
u = ∞. Then

x ∈ S(L0
Φ) is a k-extreme point of B(L0

Φ) if and only if x is an extreme
point, i.e., µ{t ∈ G : hx(t) /∈ SC(Φ)} = 0 for any h ∈ H(x).
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Proof. We only need to prove necessity. Suppose µ{t ∈ G : hx(t) /∈
SC(Φ)} > 0 . Since complementary set of SC(Φ) is the union of at most
countably many open intervals, there exists an interval (a, b) such that

µ{t ∈ G : hx(t) ∈ (a + ε, b− ε)} > 0 (ε > 0)

and that Φ is affine on [a, b] : Φ(u) = Au + B for u ∈ [a, b]. Divide the
set G0 = {t ∈ G : hx(t) ∈ (a + ε, b − ε)} into k+1 sets G1

0, · · ·, G
k+1
0 with

µ(G1
0) = · · · = µ(Gk+1

0 ) and let

xj(t) = xχG\G0
(t) + (x + ε)χ

Gj
0
(t) + (x− ε

k
)χ

G0\Gj
0
(t)

for j = 1, · · ·, k + 1. Then x = x1+···+xk+1

k+1 and {xi}k+1
i=1 are linearly inde-

pendent. Otherwise, we may assume xk+1(t) =
k∑

j=1
βjxj(t). Then we have

x(t) =
k∑

j=1
βjx(t) when t ∈ G\G0 and so

k∑
j=1

βj = 1. Thus we get a contra-

diction:

x(t) + ε =
k∑

j=1

βj(x(t)− ε

k
) = x(t)− ε

k
,

when t ∈ Gk+1
0 . Notice that∫

G0

Φ(hxj(t))dt =
∫

Gj
0

[A(x(t) + ε) + B]dt

+
∫

G0\Gj
0

[A(x(t)− ε

k
) + B]dt =

∫
G0

Φ(hx(t))dt

for j = 1, · · ·, k + 1,we find

‖xj‖0 ≤ 1
h

[1 +
∫

G
Φ(hxj(t))dt] =

1
h

[1 +
∫

G
Φ(hx(t))dt] = ‖x‖0 = 1.

This shows a contradiction to the fact that x is a k–extreme point. �

Theorem 2.4 Let Φ be arbitrary Orlicz function. Then L0
Φ is k–rotund if

and only if Φ is strictly convex in the whole line and lim
u→∞

Φ(u)
u = ∞.

Proof. We only need to prove that lim
u→∞

Φ(u)
u = ∞. If lim

u→∞
Φ(u)

u = a < ∞,

then there exists δ > 0 such that

‖x‖0 = a

∫
G
|x(t)| dt
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whenever µ(supp(x)) ≤ δ. By the continuous of integral, there exist G1, · ·
·, Gk+1 ⊂supp(x) with Gi ∩ Gj = φ for i, j = 1, · · ·, k + 1 and i 6= j such
that ∫

Gi

|x(t)| dt =
1

k + 1

∫
G
|x(t)| dt

for i = 1, · · ·k + 1. Put

xi = a(k + 1)x(t)χGi

for i = 1, · · ·k + 1. Then

‖xi‖0 = a(k + 1)
∫

Gi

|x(t)| dt = a

∫
G
|x(t)| dt = 1

and

‖x1 + x2 + · · ·+ xk‖0 = a(k+1)
∫

k+1∑
i=1

Gi

|x(t)| dt =
k+1∑
i=1

a

∫
G
|x(t)| dt = k+1.

It is clear that {xi}k+1
i=1 are linearly independent, a contradiction. �

Remark: If lim
u→∞

Φ(u)
u < ∞, then Φ ∈ ∆2.

The next theorem shows that the assumption in Theorem 2.2 that M
is proximal is essential in general.

Theorem 2.5 If Φ is an arbitrary Orlicz function such that Φ /∈ ∆2, then
E0

Φ is not proximal in L0
Φ and L0

Φ/E0
Φ is not k–rotund.

Proof. It is well known that the spaces LΦ/EΦ and L0
Φ/E0

Φ are isometric
under the identity operator. Recall that we know that

‖x‖ < ‖x‖0 for any x ∈ LΦ\{0}

Assuming that E0
Φ is proximal in L0

Φ and taking any x ∈ L0
Φ/E0

Φ, we can
find y ∈ E0

Φ such that‖[x]‖ =‖ x− y ‖0 . Hence, we get

‖x− y‖0 = ‖[x]‖ ≤ ‖x− y‖ ,

which yields the equality ‖x− y‖0 = ‖x− y‖ , contradicting inequality
‖x− y‖0 < ‖x− y‖ whence the proof of the fact that E0

Φ is not proximal
in L0

Φ will be finished.
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Now, we claim the fact that L0
Φ/E0

Φ is not k–rotund if Φ /∈ ∆2 (even
if Φ is strictly convex). It is well known that if Φ /∈ ∆2 then there exist
αj ↑ ∞ such that Φ(α1) ≥ 1/µF and

Φ((1 +
1
j
)αj) > 2jΦ(αj) (j ∈ N)

where F ∈ Σ with µF > 0 are given previously.. Select a sequence {Fj} of
disjoint subsets of F such that

Φ(αj)µFj = 2−j (j ∈ N)

and define

x(t) =
∞∑

j=1

αjχFj (t) .

Then

IΦ(x) =
∫

G
Φ(x(t))dt =

∞∑
j=1

Φ(αj)µFj = 1 < +∞.

But for any λ < 1, let n0 ∈ N satisfy 1
λ ≥ 1 + 1/n0. We have

IΦ(
x

λ
) =

∫
G

Φ(
x(t)
λ

)dt =
∞∑

j=1

Φ(
1
λ

αj)µFj

>

∞∑
j=n0

Φ((1 +
1
j
)αj)µFj >

∞∑
j=n0

2jΦ(αj)µFj = +∞.

This shows x ∈ L0
Φ/E0

Φ.

Let

yi(t) =
2k+1∑
j=1

εi,jαjχFj (t) +
2k+2∑

j=2k+1+1

εi,j−2k+1αjχFj (t) + · · · .

for i = 1, · · ·, k + 1, where εi,j = ±1, i = 1, · · ·, k + 1, j = 1, · · ·, 2k+1.
For convenience, we may assume that εi,1 = 1 for i = 1, · · ·, k + 1. Then
IΦ(yi) = IΦ(x) and so yi ∈ L0

Φ/E0
Φ,

‖[yi]‖ = inf{λ > 0 : IΦ(
yi

λ
) < ∞} = 1
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for i = 1, · · ·, k + 1. Moreover

IΦ


k+1∑
i=1

yi

k + 1

 ≤ 1
k + 1

k+1∑
i=1

IΦ(yi) = 1

and for any λ < 1

IΦ


k+1∑
i=1

yi

λ(k + 1)

 ≥
∞∑

s=0

Φ
(

1
λ

αs2k+1+1

)
µFs2k+1+1 = +∞,

which shows that ∥∥∥∥∥
k+1∑
i=1

[yi]

∥∥∥∥∥ =

∥∥∥∥∥
[

k+1∑
i=1

yi

]∥∥∥∥∥ = k + 1.

It is clear that {yi}k+1
i=1 are linearly independent. Next, we will prove that

{[yi]}k+1
i=1 are also linearly independent. Suppose that {[yi]}k+1

i=1 are linearly
dependent. Then there exists {li}k+1

i=1 ⊂ R in which there is at least one
element which is nozero such that

l1[y1] + l2[y2] + · · ·+ lk+1[yk+1] = E0
Φ.

This shows that l1y1 + l2y2 + · · ·+ lk+1yk+1 ∈ E0
Φ.

For convenience, we may assume that l1 6= 0. Hence

IΦ

(
k+1∑
i=1

liyi

)
≥

∞∑
s=0

Φ((l1 + l2 + · · ·+ lk+1)αs2k+1+1)µFs2k+1+1.

In order to satisfying l1y1+ l2y2+ · · ·+ lk+1yk+1 ∈ E0
Φ, we have

∑k+1
i=1 li = 0.

Let λ0 =
∑k+1

i=2 li − l1. Then λ0 6= 0. Take some 1 ≤ j0 ≤ 2k+1such that
ε1,j0 = −1, εi,j0 = 1 for i = 2, · · ·k + 1. Then

IΦ

(∑k+1
i=1 liyi

2−1λ0

)
≥

∞∑
s=0

Φ
(αs2k+1+j0

2−1

)
µFs2k+1+j0 = +∞.

So l1y1 + l2y2 + · · ·+ lk+1yk+1 /∈ E0
Φ. This contradict with l1y1 + l2y2 + · ·

·+ lk+1yk+1 ∈ E0
Φ. Whence {[yi]}k+1

i=1 are also linearly independent.
Hence, L0

Φ/E0
Φ is not k–rotund. �
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