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k-Rotundity of Quotient Spaces
C. Yunan and D. LiFen !

Abstract: In this paper, we prove that if M is a closed and proximinal subspace
of Banach space X , [z] € S(X/M) and every point on [z] NS(X) is a k—extreme
point of B(X), then [z] is a k—extreme point of B(X/M). Moreover, we get that
if X is k-rotund Banach space and M is a closed and proximinal subspace of X,
then the quotient space X/M is also k-rotund. It is shown that if ® does not
satisfy the Ay—condition, then E$ is not proximinal in LY and the quotient space
LY /EY is not k-rotund (even if LY is rotund.)
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1 Introduction

In 1960, Singer[1] introduced the k-rotund Banach spaces. The definition
play a important role in approximation, control theory and so on. Let X be
a Banach space and X* be its dual space. By B(X) and S(X) we denote the
closed unit ball and the unit sphere of X, respectively. A point x € S(X)
is called a k—extreme point of B(X) provided that {J:l}f;rll c S(X),

x = % imply that {xz}f’:ll are linearly dependent. Obviously, if every
point on S(X) is a k—extreme point, then X is a k-rotund space.

Let M be a closed subspace of a Banach space X. We denote by X/M
the quotient space of X modulo M. It is well known that X /M equipped
with the norm ||[z]|| = inf{||y|| : y € [x]}, where [z] ={y e X :y—2x € M}
is also a Banach space. The subspace M of X is called proximal in X if for
any = € X there is y € X such that ||[z]|| = ||z — y]| -

A mapping ¢ : R — [0, 00) is said to be an Orlicz function if ® vanishes
only at zero, ® is even, convex and left continuous on whole nonnegative
line RT. We define its complementary function ¥ : R — [0,00) by the
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formula
V(x) = sup{lz|y — ®(y) : y = 0}
Denote by p(z), q(x) the right derivative of ® and ¥, respectively.

Let (G,>, 1) be a measure space with a o—finite, nonatomic and com-
plete measure p and L°(x) be the set of all u-equivalence classes of real
and Y —measurable function defined on G. For a given Orlicz function ®
we define on L°(u) the convex modular Ig by

Io (2) = / (o (1)) dt.
G
The linear space Lg defined by
Lo = {x € L°(u) : Ip (cz) < 0o, for some ¢ > 0 depending on '}

is called the Orlicz space generated by ®. We consider Lg equipped with
the Amemiya-Orlicz norm

|z]® = inf{%(l + In(ha)) : h > 0}

To simplify the notation we write LY in place of (LY ,||- |°). The Luxemburg
norm in Lg is defined by

|| = inf{\ > 0 : Lb(;) <1).

For any z in L} \{0}, the set of all numbers h > 0 such that ||z| =
3+(1+ Ip(hw)) is denoted by H(z). It is well known that H(z) = [h}, hi*],
where hX = inf{h > 0: Iy(p(h |z |)) > 1} and hL* = sup{h > 0: Ig(p(h |
z|)) <1} if Al < oo and H(z) = ¢ if h} = oo. It is also known that if &
satisfied the condition : # — 400 as u — +oo, then H(z) # ¢ for any
x € Ly \{0}.( see [2] ). And if uliﬁnoloy = a < oo then ||z|° = a [qlx(t)|dt
( see [3]).

We say an Orlicz function ® satisfies the Ag—condition (® € Ay for
short) if there are [ > 2 and ug > 0 such that ®(2u) < [®(u) whenever
| w |> up . In the sequel Eg denotes the space of these x € Lg that
Iy (cx) < oo for all ¢ > 0. We write shortly E$ in place of (E3, ||-|°). Tt is
well known that Ly = Eg if and only if & € As.

We say a point w is a point of strict convexity of ® (we write w € SC(®))
if for every u,v € R such that u # v and w = (u + v) there holds

U+ v 1

) < 5(@(u) + @(v)).

®
( 2 2
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2 Main Results

Theorem 2.1 If M is a closed and proximal subspace of Banach space X ,
[z] € S(X/M) and every point on [z]NS(X) is a k—extreme point of B(X),
then [x] is a k—extreme point of B(X/M) .

Proof. Suppose [z1],- - -, [zp4+1] € S(X/M), [z] = [xl]Jrki;W We have
to show that {[z;]}*7] are linearly dependent. By the proximation of M in
X, there is z; € [x;] such that ) = ||[z;]|| = 1. Then

i
L,

2]+ A ] _ @it T

] = k1 T
and / ’ / /
Tyt T Tyt Ty
1= =
L | [
o[ -+ ]
- k+1 B
which implies
Tyt |
kE+1
This shows ) )
Tyt Ty
NS(X).
Tk € ()
By the assumption, mkiif“l is a k—extreme point of B(X). It follows that
{2;}5+] are linearly dependent. Therefore, {[z;]}¥*! are linearly dependent.
The proof is finished. O

By Theorem 2.1, we may get the following Theorem 2.2 directed.

Theorem 2.2 If X is a k—rotund Banach space and M is its closed prox-
imal subspace, then the Banach space X/M is also k—rotund.
®(u)

Theorem 2.3 Let ® is an Orlicz function with lim —= = oo. Then
uU—00

z € S(LY) is a k-extreme point of B(LY) if and only if x is an extreme
point, i.e., p{t € G : ha(t) ¢ SC(®)} =0 for any h € H(x).
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Proof. We only need to prove necessity. Suppose u{t € G : hx(t) ¢
SC(®)} > 0. Since complementary set of SC(®) is the union of at most
countably many open intervals, there exists an interval (a,b) such that

p{t € G:hx(t) e (a+e,b—e)} >0 (e >0)

and that ® is affine on [a,b] : ®(u) = Au+ B for u € [a,b]. Divide the
set Go = {t € G : hx(t) € (a+¢,b—¢)} into k+1 sets G, - - -, G with
u(GY) = -+ = n(GE ) and let

5
2j(t) = ax\Go (1) + (& + €)Xy (1) + (& = )X g5 (1)
forj =1,---k+1. Then z = % and {z;}*! are lincarly inde-

k
pendent. Otherwise, we may assume zj41(t) = Y Gjz;(t). Then we have
j=1

k k
z(t) = > Bjx(t) when t € G\Gp and so ) [; = 1. Thus we get a contra-
j=1 j=1

diction:

when t € G’g“. Notice that

/ (ha;(t))dt = / [A(z(t) + €) + Bldt
Go

G
€

+ /G GO = 1)+ Bl /G B(ha(t))dt
for j=1,---, k4 1,we find
ol < 31+ [ @) = 111+ [ Shae)ar = o] =1

This shows a contradiction to the fact that = is a k—extreme point. O

Theorem 2.4 Let ® be arbitrary Orlicz function. Then LY is k-rotund if
D(u)

and only if ® is strictly conver in the whole line and lim —~ = oo
U—0o0
iy Pw) iy 2w
Proof. We only need to prove that lim —= = oo. If lim —~ = a < oo,
uU— 00 Uu—0o0

then there exists § > 0 such that

el = a /G (1)) dt
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whenever p(supp(z)) < 0. By the continuous of integral, there exist Gy, - -
-, Gy1 Csupp(z) with G;NGj = ¢ for 4,5 =1,---,k+ 1 and i # j such

that )
t)| dt = —— t)| dt
[ onde= 2 [

fori=1,---k+ 1. Put

2 = a(k + Da(t)xe,

(3

fori=1,---k+ 1. Then

- x =a x =
il Wl)/@' (t)] dt /G| ()] dt =1

and

k+1
|1 + 29+ -+ 2x)° = a(k+1) %H |z(t)| dt = Za/ |z(t)|dt = k+1.
2 Gi i-1 /G

i=1

It is clear that {x@}fill are linearly independent, a contradiction. Il

Remark: If lim 2 < 00, then & € As.

u—oo Y

The next theorem shows that the assumption in Theorem 2.2 that M
is proximal is essential in general.

Theorem 2.5 If ® is an arbitrary Orlicz function such that ® ¢ Ay, then
Eg, 1s not proximal in L% and L%/Eg, 1s not k-rotund.

Proof. It is well known that the spaces Ly/FEg¢ and LY/ES are isometric
under the identity operator. Recall that we know that

lz|l < ||SC||0 for any x € Lg\{0}

Assuming that Ej is proximal in LY and taking any z € LY /EY, we can
find y € E$ such that||[z]|| =| z —y ||° . Hence, we get

0
[ =ylI" = 2]l < llz —wll

which yields the equality ||z —y||® = ||z —y|| , contradicting inequality
|z — y||® < || — y|| whence the proof of the fact that EY is not proximal
in LY will be finished.
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Now, we claim the fact that L}/E} is not k-rotund if ® ¢ Ay (even
if ® is strictly convex). It is well known that if ® ¢ Ay then there exist
a; 1 oo such that ®(aq) > 1/puF and

(1 + ;mj) > 290(aj) (j € N)

where ' € ¥ with pF' > 0 are given previously.. Select a sequence {F}} of
disjoint subsets of F' such that

®(a;)uk; =277 (j € N)
and define
2(t) = ajxr(t) .
j=1

Then
Ip(x) = /Gfb(x(t))dt = Z(I)(aj)qu =1 < +o0.

j=1

But for any A < 1, let ng € N satisty % > 1+ 1/ng. We have

1) = [ @it = ;@Qaj)m

oo 1 o
> (14 gk > > 2Y(ay)uF; = +oo.

Jj=no Jj=mno

This shows z € LY /EQ.

Let
2k+1 2k+2
vi(t) = Y eijagxr () + Y eijoenagxe () + -
j=1 j=2k+141
fori =1,--+, k+1, where g;; = £1,i = 1,-- - k+1,j = 1, - 2k,
For convenience, we may assume that ¢;1 = 1 for 7 = 1,-- -,k 4+ 1. Then

Is(y;) = Ip(z) and so y; € L%/Eg,,

Iyl = inf{A > 0: I(5) < o} = 1
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fori=1,---, k+ 1. Moreover

E+1

Zlyz‘ 1 k+1
Ip | £ < EI =1
[ kot 1 _k+1i:1 <I>(yz)

and for any A < 1

k+1
‘21 Yi 00 )
1=
fo Ak+1) = gé (Aa52k+1+1> pF okt = +00,

which shows that

kt1 kt1
> || = [Zyz] ‘ =k+1
i=1 i=1

It is clear that {y; f:ll are linearly independent. Next, we will prove that
{[y:]}ot} are also linearly independent. Suppose that {[y;]}*F]! are linearly
dependent. Then there exists {/;}**! € R in which there is at least one
element which is nozero such that

LWy + lafya] + - + les1 (Y1) = B3

This shows that l1y1 + loya + - - - + lg1Yk+1 € Eg,
For convenience, we may assume that Iy # 0. Hence

k+1 0
Iy <ley@> > Z‘D((ll Flo+ -+ lpr)agorn 1 ) F i .
=1 s=0

In order to satisfying l1y; +loya+- - -+ lgr1Yx+1 € E%’ we have Zfill I = 0.
Let Ao = Y270 1; — . Then Ao # 0. Take some 1 < jo < 2¥*1such that
€1jo = —1, €ijo =1fori=2,---k+ 1. Then

k+1 00

i l . O ok+1 5

N (W) @ (ST s, = +oc.
s=0

Y

So liyr +laya + -+ - + lr1ypy1 ¢ Eg. This contradict with lyyy + loys + - -
-+ lr1yks1 € ES. Whence {[y;]}¥1] are also linearly independent.
Hence, L} /ES is not k-rotund. O
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