Thai Journal of Mathematics (2003) 1: 21-28

k-Rotundity of Quotient Spaces

C. Yunan and D. LiFen 1

Abstract: In this paper, we prove that if M is a closed and proximinal subspace of Banach space X, $[x] \in S(X/M)$ and every point on $[x] \cap S(X)$ is a k-extreme point of B(X), then [x] is a k-extreme point of B(X/M). Moreover, we get that if X is k-rotund Banach space and M is a closed and proximinal subspace of X, then the quotient space X/M is also k-rotund. It is shown that if Φ does not satisfy the Δ_2 -condition, then E_{Φ}^0 is not proximinal in L_{Φ}^0 and the quotient space L_{Φ}^0/E_{Φ}^0 is not k-rotund (even if L_{Φ}^0 is rotund.)

Keywords: Quotient space, k–extreme point, k–rotund, proximal. **2000 Mathematics Subject Classification:** 46B20, 46E30

1 Introduction

In 1960, Singer[1] introduced the k-rotund Banach spaces. The definition play a important role in approximation, control theory and so on. Let X be a Banach space and X^{*} be its dual space. By B(X) and S(X) we denote the closed unit ball and the unit sphere of X, respectively. A point $x \in S(X)$ is called a *k*-extreme point of B(X) provided that $\{x_i\}_{i=1}^{k+1} \subset S(X)$, $x = \frac{x_1 + \dots + x_k}{k+1}$ imply that $\{x_i\}_{i=1}^{k+1}$ are linearly dependent. Obviously, if every point on S(X) is a k-extreme point, then X is a k-rotund space.

Let M be a closed subspace of a Banach space X. We denote by X/M the quotient space of X modulo M. It is well known that X/M equipped with the norm $\|[x]\| = \inf\{\|y\| : y \in [x]\}$, where $[x] = \{y \in X : y - x \in M\}$ is also a Banach space. The subspace M of X is called proximal in X if for any $x \in X$ there is $y \in X$ such that $\|[x]\| = \|x - y\|$.

A mapping $\Phi: R \to [0, \infty)$ is said to be an Orlicz function if Φ vanishes only at zero, Φ is even, convex and left continuous on whole nonnegative line R^+ . We define its complementary function $\Psi: R \to [0, \infty)$ by the

¹Suppoted by NSF of CHINA, Grand number:10171025

formula

$$\Psi(x) = \sup\{|x| \, y - \Phi(y) : y \ge 0\}$$

Denote by p(x), q(x) the right derivative of Φ and Ψ , respectively.

Let (G, \sum, μ) be a measure space with a σ -finite, nonatomic and complete measure μ and $L^0(\mu)$ be the set of all μ -equivalence classes of real and \sum -measurable function defined on G. For a given Orlicz function Φ we define on $L^0(\mu)$ the convex modular I_{Φ} by

$$I_{\Phi}(x) = \int_{G} \Phi(x(t)) dt.$$

The linear space L_{Φ} defined by

$$L_{\Phi} = \{ x \in L^{0}(\mu) : I_{\Phi}(cx) < \infty, \text{ for some } c > 0 \text{ depending on } x \}$$

is called the Orlicz space generated by Φ . We consider L_{Φ} equipped with the Amemiya-Orlicz norm

$$|x||^{0} = \inf\{\frac{1}{h}(1 + I_{\Phi}(hx)) : h > 0\}.$$

To simplify the notation we write L_{Φ}^{0} in place of $(L_{\Phi}^{0}, \|\cdot\|^{0})$. The Luxemburg norm in L_{Φ} is defined by

$$||x|| = \inf\{\lambda > 0 : I_{\Phi}(\frac{x}{\lambda}) \le 1\}.$$

For any x in $L_{\Phi}^{0} \setminus \{0\}$, the set of all numbers h > 0 such that $||x|| = \frac{1}{h}(1 + I_{\Phi}(hx))$ is denoted by H(x). It is well known that $H(x) = [h_x^*, h_x^{**}]$, where $h_x^* = \inf\{h > 0 : I_{\Psi}(p(h \mid x \mid)) \ge 1\}$ and $h_x^{**} = \sup\{h > 0 : I_{\Psi}(p(h \mid x \mid)) \le 1\}$ if $h_x^* < \infty$ and $H(x) = \phi$ if $h_x^* = \infty$. It is also known that if Φ satisfied the condition : $\frac{\Phi(u)}{u} \to +\infty$ as $u \to +\infty$, then $H(x) \ne \phi$ for any $x \in L_{\Phi} \setminus \{0\}$.(see [2]). And if $\lim_{u \to \infty} \frac{\Phi(u)}{u} = a < \infty$ then $||x||^0 = a \int_G |x(t)| dt$ (see [3]).

We say an Orlicz function Φ satisfies the Δ_2 -condition ($\Phi \in \Delta_2$ for short) if there are $l \geq 2$ and $u_0 > 0$ such that $\Phi(2u) \leq l\Phi(u)$ whenever $|u| \geq u_0$. In the sequel E_{Φ} denotes the space of these $x \in L_{\Phi}$ that $I_{\Phi}(cx) < \infty$ for all c > 0. We write shortly E_{Φ}^0 in place of $(E_{\Phi}^0, \|\cdot\|^0)$. It is well known that $L_{\Phi} = E_{\Phi}$ if and only if $\Phi \in \Delta_2$.

We say a point w is a point of strict convexity of Φ (we write $w \in SC(\Phi)$) if for every $u, v \in R$ such that $u \neq v$ and $w = \frac{1}{2}(u+v)$ there holds

$$\Phi(\frac{u+v}{2}) < \frac{1}{2}(\Phi(u) + \Phi(v)).$$

22

2 Main Results

Theorem 2.1 If M is a closed and proximal subspace of Banach space X, $[x] \in S(X/M)$ and every point on $[x] \cap S(X)$ is a k-extreme point of B(X), then [x] is a k-extreme point of B(X/M).

Proof. Suppose $[x_1], \dots, [x_{k+1}] \in S(X/M), [x] = \frac{[x_1] + \dots + [x_{k+1}]}{k+1}$. We have to show that $\{[x_i]\}_{i=1}^{k+1}$ are linearly dependent. By the proximation of M in X, there is $x'_i \in [x_i]$ such that $\|x'_i\| = \|[x_i]\| = 1$. Then

$$[x] = \frac{[x_1^{'}] + \dots + [x_{k+1}^{'}]}{k+1} = [\frac{x_1^{'} + \dots + x_{k+1}^{'}}{k+1}]$$

and

$$1 = \|[x]\| = \left\| \left[\frac{x_1^{'} + \dots + x_{k+1}^{'}}{k+1} \right] \right\| \le \left\| \frac{x_1^{'} + \dots + x_{k+1}^{'}}{k+1} \right\| \le \frac{\left\| x_1^{'} \right\| + \dots + \left\| x_{k+1}^{'} \right\|}{k+1} = 1$$

which implies

$$\left\|\frac{x_1' + \dots + x_{k+1}'}{k+1}\right\| = 1.$$

This shows

$$\frac{x_1' + \dots + x_{k+1}'}{k+1} \in [x] \cap S(X).$$

By the assumption, $\frac{x'_1 + \dots + x'_{k+1}}{k+1}$ is a k-extreme point of B(X). It follows that $\{x'_i\}_{i=1}^{k+1}$ are linearly dependent. Therefore, $\{[x_i]\}_{i=1}^{k+1}$ are linearly dependent. The proof is finished.

By Theorem 2.1, we may get the following Theorem 2.2 directed.

Theorem 2.2 If X is a k-rotund Banach space and M is its closed proximal subspace, then the Banach space X/M is also k-rotund.

Theorem 2.3 Let Φ is an Orlicz function with $\lim_{u\to\infty} \frac{\Phi(u)}{u} = \infty$. Then $x \in S(L_{\Phi}^0)$ is a k-extreme point of $B(L_{\Phi}^0)$ if and only if x is an extreme point, i.e., $\mu\{t \in G : hx(t) \notin SC(\Phi)\} = 0$ for any $h \in H(x)$.

Proof. We only need to prove necessity. Suppose $\mu\{t \in G : hx(t) \notin SC(\Phi)\} > 0$. Since complementary set of $SC(\Phi)$ is the union of at most countably many open intervals, there exists an interval (a, b) such that

$$\mu\{t \in G : hx(t) \in (a + \varepsilon, b - \varepsilon)\} > 0 \ (\varepsilon > 0)$$

and that Φ is affine on $[a, b] : \Phi(u) = Au + B$ for $u \in [a, b]$. Divide the set $G_0 = \{t \in G : hx(t) \in (a + \varepsilon, b - \varepsilon)\}$ into k+1 sets G_0^1, \dots, G_0^{k+1} with $\mu(G_0^1) = \dots = \mu(G_0^{k+1})$ and let

$$x_j(t) = x\chi_{G\backslash G_0}(t) + (x+\varepsilon)\chi_{G_0^j}(t) + (x-\frac{\varepsilon}{k})\chi_{G_0\backslash G_0^j}(t)$$

for $j = 1, \dots, k+1$. Then $x = \frac{x_1 + \dots + x_{k+1}}{k+1}$ and $\{x_i\}_{i=1}^{k+1}$ are linearly independent. Otherwise, we may assume $x_{k+1}(t) = \sum_{j=1}^{k} \beta_j x_j(t)$. Then we have $x(t) = \sum_{j=1}^{k} \beta_j x(t)$ when $t \in G \setminus G_0$ and so $\sum_{j=1}^{k} \beta_j = 1$. Thus we get a contradiction:

$$x(t) + \varepsilon = \sum_{j=1}^{k} \beta_j (x(t) - \frac{\varepsilon}{k}) = x(t) - \frac{\varepsilon}{k},$$

when $t \in G_0^{k+1}$. Notice that

$$\int_{G_0} \Phi(hx_j(t))dt = \int_{G_0^j} [A(x(t) + \varepsilon) + B]dt$$
$$+ \int_{G_0 \setminus G_0^j} [A(x(t) - \frac{\varepsilon}{k}) + B]dt = \int_{G_0} \Phi(hx(t))dt$$

for $j = 1, \dots, k+1$, we find

$$\|x_j\|^0 \le \frac{1}{h} [1 + \int_G \Phi(hx_j(t))dt] = \frac{1}{h} [1 + \int_G \Phi(hx(t))dt] = \|x\|^0 = 1.$$

This shows a contradiction to the fact that x is a k-extreme point. \Box

Theorem 2.4 Let Φ be arbitrary Orlicz function. Then L_{Φ}^{0} is k-rotund if and only if Φ is strictly convex in the whole line and $\lim_{u\to\infty} \frac{\Phi(u)}{u} = \infty$.

Proof. We only need to prove that $\lim_{u\to\infty} \frac{\Phi(u)}{u} = \infty$. If $\lim_{u\to\infty} \frac{\Phi(u)}{u} = a < \infty$, then there exists $\delta > 0$ such that

$$||x||^0 = a \int_G |x(t)| dt$$

whenever $\mu(\operatorname{supp}(x)) \leq \delta$. By the continuous of integral, there exist G_1, \cdots $G_{k+1} \subset \operatorname{supp}(x)$ with $G_i \cap G_j = \phi$ for $i, j = 1, \cdots, k+1$ and $i \neq j$ such that

$$\int_{G_i} |x(t)| \, dt = \frac{1}{k+1} \int_G |x(t)| \, dt$$

for $i = 1, \dots k + 1$. Put

$$x_i = a(k+1)x(t)\chi_{G_i}$$

for $i = 1, \dots k + 1$. Then

$$||x_i||^0 = a(k+1) \int_{G_i} |x(t)| \, dt = a \int_G |x(t)| \, dt = 1$$

and

$$\|x_1 + x_2 + \dots + x_k\|^0 = a(k+1) \int_{\substack{k=1\\i=1}}^{k+1} G_i |x(t)| dt = \sum_{i=1}^{k+1} a \int_G |x(t)| dt = k+1.$$

It is clear that $\{x_i\}_{i=1}^{k+1}$ are linearly independent, a contradiction. \Box **Remark:** If $\lim_{u\to\infty}\frac{\Phi(u)}{u} < \infty$, then $\Phi \in \Delta_2$.

The next theorem shows that the assumption in Theorem 2.2 that M is proximal is essential in general.

Theorem 2.5 If Φ is an arbitrary Orlicz function such that $\Phi \notin \Delta_2$, then E_{Φ}^0 is not proximal in L_{Φ}^0 and L_{Φ}^0/E_{Φ}^0 is not k-rotund.

Proof. It is well known that the spaces L_{Φ}/E_{Φ} and L_{Φ}^0/E_{Φ}^0 are isometric under the identity operator. Recall that we know that

$$||x|| < ||x||^0$$
 for any $x \in L_{\Phi} \setminus \{0\}$

Assuming that E_{Φ}^0 is proximal in L_{Φ}^0 and taking any $x \in L_{\Phi}^0/E_{\Phi}^0$, we can find $y \in E_{\Phi}^0$ such that $\|[x]\| = \|x - y\|^0$. Hence, we get

$$||x - y||^0 = ||[x]|| \le ||x - y||$$
,

which yields the equality $||x - y||^0 = ||x - y||$, contradicting inequality $||x - y||^0 < ||x - y||$ whence the proof of the fact that E_{Φ}^0 is not proximal in L_{Φ}^0 will be finished.

Now, we claim the fact that L^0_{Φ}/E^0_{Φ} is not k-rotund if $\Phi \notin \Delta_2$ (even if Φ is strictly convex). It is well known that if $\Phi \notin \Delta_2$ then there exist $\alpha_j \uparrow \infty$ such that $\Phi(\alpha_1) \geq 1/\mu F$ and

$$\Phi((1+\frac{1}{j})\alpha_j) > 2^j \Phi(\alpha_j) \ (j \in N)$$

where $F \in \Sigma$ with $\mu F > 0$ are given previously. Select a sequence $\{F_j\}$ of disjoint subsets of F such that

$$\Phi(\alpha_j)\mu F_j = 2^{-j} \ (j \in N)$$

and define

$$x(t) = \sum_{j=1}^{\infty} \alpha_j \chi_{F_j}(t) \; .$$

Then

$$I_{\Phi}(x) = \int_{G} \Phi(x(t))dt = \sum_{j=1}^{\infty} \Phi(\alpha_j)\mu F_j = 1 < +\infty.$$

But for any $\lambda < 1$, let $n_0 \in N$ satisfy $\frac{1}{\lambda} \ge 1 + 1/n_0$. We have

$$I_{\Phi}\left(\frac{x}{\lambda}\right) = \int_{G} \Phi\left(\frac{x(t)}{\lambda}\right) dt = \sum_{j=1}^{\infty} \Phi\left(\frac{1}{\lambda}\alpha_{j}\right) \mu F_{j}$$
$$> \sum_{j=n_{0}}^{\infty} \Phi\left(\left(1+\frac{1}{j}\right)\alpha_{j}\right) \mu F_{j} > \sum_{j=n_{0}}^{\infty} 2^{j} \Phi(\alpha_{j}) \mu F_{j} = +\infty$$

This shows $x \in L^0_{\Phi}/E^0_{\Phi}$.

Let

$$y_i(t) = \sum_{j=1}^{2^{k+1}} \varepsilon_{i,j} \alpha_j \chi_{F_j}(t) + \sum_{j=2^{k+1}+1}^{2^{k+2}} \varepsilon_{i,j-2^{k+1}} \alpha_j \chi_{F_j}(t) + \cdots$$

for $i = 1, \dots, k+1$, where $\varepsilon_{i,j} = \pm 1, i = 1, \dots, k+1, j = 1, \dots, 2^{k+1}$. For convenience, we may assume that $\varepsilon_{i,1} = 1$ for $i = 1, \dots, k+1$. Then $I_{\Phi}(y_i) = I_{\Phi}(x)$ and so $y_i \in L_{\Phi}^0/E_{\Phi}^0$,

$$\|[y_i]\| = \inf\{\lambda > 0 : I_{\Phi}(\frac{y_i}{\lambda}) < \infty\} = 1$$

for $i = 1, \dots, k + 1$. Moreover

$$I_{\Phi}\left(\frac{\sum_{i=1}^{k+1} y_i}{k+1}\right) \le \frac{1}{k+1} \sum_{i=1}^{k+1} I_{\Phi}(y_i) = 1$$

and for any $\lambda < 1$

$$I_{\Phi}\left(\frac{\sum\limits_{i=1}^{k+1} y_i}{\lambda(k+1)}\right) \ge \sum\limits_{s=0}^{\infty} \Phi\left(\frac{1}{\lambda}\alpha_{s2^{k+1}+1}\right) \mu F_{s2^{k+1}+1} = +\infty,$$

which shows that

$$\left\|\sum_{i=1}^{k+1} [y_i]\right\| = \left\|\left[\sum_{i=1}^{k+1} y_i\right]\right\| = k+1.$$

It is clear that $\{y_i\}_{i=1}^{k+1}$ are linearly independent. Next, we will prove that $\{[y_i]\}_{i=1}^{k+1}$ are also linearly independent. Suppose that $\{[y_i]\}_{i=1}^{k+1}$ are linearly dependent. Then there exists $\{l_i\}_{i=1}^{k+1} \subset R$ in which there is at least one element which is nozero such that

$$l_1[y_1] + l_2[y_2] + \dots + l_{k+1}[y_{k+1}] = E_{\Phi}^0.$$

This shows that $l_1y_1 + l_2y_2 + \dots + l_{k+1}y_{k+1} \in E^0_{\Phi}$.

For convenience, we may assume that $l_1 \neq 0$. Hence

$$I_{\Phi}\left(\sum_{i=1}^{k+1} l_i y_i\right) \ge \sum_{s=0}^{\infty} \Phi((l_1 + l_2 + \dots + l_{k+1})\alpha_{s2^{k+1}+1})\mu F_{s2^{k+1}+1}.$$

In order to satisfying $l_1y_1 + l_2y_2 + \cdots + l_{k+1}y_{k+1} \in E_{\Phi}^0$, we have $\sum_{i=1}^{k+1} l_i = 0$. Let $\lambda_0 = \sum_{i=2}^{k+1} l_i - l_1$. Then $\lambda_0 \neq 0$. Take some $1 \leq j_0 \leq 2^{k+1}$ such that $\varepsilon_{1,j_0} = -1$, $\varepsilon_{i,j_0} = 1$ for $i = 2, \dots + 1$. Then

$$I_{\Phi}\left(\frac{\sum_{i=1}^{k+1} l_i y_i}{2^{-1}\lambda_0}\right) \ge \sum_{s=0}^{\infty} \Phi\left(\frac{\alpha_{s2^{k+1}+j_0}}{2^{-1}}\right) \mu F_{s2^{k+1}+j_0} = +\infty.$$

So $l_1y_1 + l_2y_2 + \cdots + l_{k+1}y_{k+1} \notin E_{\Phi}^0$. This contradict with $l_1y_1 + l_2y_2 + \cdots + l_{k+1}y_{k+1} \in E_{\Phi}^0$. Whence $\{[y_i]\}_{i=1}^{k+1}$ are also linearly independent. Hence, L_{Φ}^0/E_{Φ}^0 is not k-rotund.

References

- [1] Singer.I.,On the set of best approximation of an element in normed linear space, *Rev.Roum Math Pree Appl.*, 5(1960), MR24 A 1629.
- [2] S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356, 1996.
- [3] Y. Cui, H. Hudzik, M. Nowak, R. Pluciennik, Some geometric properties in Orlicz sequence spaces equipped with Orlicz norm, J. Convex Anal., 6.1 (1999),91-113.
- [4] G. Godini, Characterization of proximinal linear subspaces in normed linear spaces, *Rev. Roumaina Math. Pures Appl.*, 18(1973), 901-906.
- [5] A. S. Granero, H.Hudzik, On some proximinal subspaces of modular spaces, Acta math. Hungarica, 85 (1-2) (1999), 59-79.
- [6] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Campinas, 1989.
- [7] M. A. Krasnoselskii, Ya. B. Rutickii, Convex Functions and Orlicz Spaces. P.Nordhoff Ltd., Groninger, 1961.
- [8] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034,1983.
- [9] T.Wang and S.Chen, k-rotundity of Orlicz spaces, Natur.Sci.J.Harbin Normal Univ.1, (4) (1985),11-15.
- [10] T.Wang and S.Chen, k-rotundity of Sequence Orlicz spaces, Canad. Math. Bull., 34 (1991),128-135.

(Received 5 June 2003)

Cui Yunan Department of Mathematics, Harbin University of Science and Technology, HARBIN,150080, P.R. China E-mail:Cuiya@mail.hrbust.edu.cn

Duan LiFen Department of Mathematics, Tonghua Normal College TONGHUA,134002, P.R. China