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1 Introduction and Preliminaries

The notion of ideal convergence was first introduced by Kostyrko [1] as a
generalization of statistical convergence which was further studied in topological
spaces by Das et al., see [2]. More applications of ideals can be seen in ([2, 3]).
We continue in this direction and introduce I-convergence of generalized sequences
with respect to Musielak-Orlicz function.

A family Z C 2% of subsets of a non empty set X is said to be an ideal in X if

1. oI
2. ABeZimply AUBeZT

3. AcZ, BC Aimply B €I,
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while an admissible ideal Z of X further satisfies {} € Z for each x € X see [1].
A sequence (zp,)nen in X is said to be I-convergent to 2 € X, if for each € > 0 the
set A(e) = {n € N : ||z, — z|| > €} belongs to Z, see [1]. For more details about
ideal convergence sequence spaces (see [4-9]) and references therein.

Let X be a linear metric space. A function p : X — R is called paranorm, if

1. p(x) >0, for all z € X,

2. p(—x) =p(x), for all x € X,

3. p(x +y) < p(x) +p(y), for all z,y € X,
4

. if (M) is a sequence of scalars with A,, — X as n — oo and (z,,) is a sequence
of vectors with p(z, —x) — 0 as n — oo, then p(A,x, —Az) — 0 as n — oo.

A paranorm p for which p(z) = 0 implies = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric of

any linear metric space is given by some total paranorm (see [10, Theorem 10.4.2,
p. 183)).

An orlicz function M is a function, which is continuous, non-decreasing and
convex with M(0) =0, M(z) > 0 for z > 0 and M(x) — oo as © —> oo. Lin-
denstrauss and Tzafriri [11] used the idea of Orlicz function to define the following
sequence space. Let w be the space of all real or complex sequences x = (zy), then

e frews Sar () <)

which is called as an Orlicz sequence space. The space ¢j; is a Banach space with

the norm
[|z|| :inf{p>O:ZM(|xk|) < 1}.

k=1 P

It is shown in [11] that every Orlicz sequence space ¢, contains a subspace iso-
morphic to £,(p > 1). The Ay—condition is equivalent to M (Lx) < k(L)M (z) for
all values of x > 0, and for L > 1. A sequence M = (M) of Orlicz function is
called a Musielak-Orlicz function see ([12, 13]). A sequence N' = (Ny) defined by

Ni(v) = sup{|v|u — My(u) :u >0}, k=1,2,...

is called the complementary function of a Musielak-Orlicz function M. For a
given Musielak-Orlicz function M, the Musielak-Orlicz sequence space t 4 and its
subspace ha4 are defined as follows

tm={x €w:Ipm(cx) < oo for some ¢ > 0},

hpm={xz €w:Ipm(cx) < oo forall ¢ > 0},

where Iy is a convex modular defined by

IM(.I‘) = ZMk(xk),x = (Cﬂk) €itm.
k=1
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We consider t, equipped with the Luxemburg norm

||| :inf{k >0 Iy (%) < 1}

or equipped with the Orlicz norm
0 _ 1
[|z||” = inf %(1+IM(k:p)):k>O .

The notion of difference sequence spaces was introduced by Kizmaz [14], who
studied the difference sequence spaces I (A), ¢(A) and ¢o(A). The notion was
further generalized by Et and Colak [15] by introducing the spaces I, (A™), c(A™)
and co(A™).

Let n be non-negative integers, then for Z = ¢, ¢y and [, we have sequence
spaces

Z(A™) ={z = (zx) € w: (A"zy) € Z}

for Z = ¢, ¢ and lo, where A"z = (A"zy) = (A" oy, — A" 1ay) and Ay, = 2,
for all k¥ € N, which is equivalent to the following binomial representation

Az, = zn:(q)v ( Z ) Thto.

v=0

Taking n = 1, we get the spaces oo (A), ¢(A) and ¢p(A) studied by Kizmaz [14].
For more details about sequence spaces (see [16-19]) and references therein.

Let M = (M) be a Musielak-Orlicz function, p = (pi) be a bounded sequence
of positive real numbers and v = (ug) be any sequence of strictly positive real
numbers. We define the following sequence spaces in the present paper:

Pk

Az — L
I (M,u,p, A™) = {x: (z) €Ew: I—liian ('ukzk|> =0,

for some L andp > O},

Pk
ATL
c(l)(/\/l,u,p7 A") = {x = (z) Ew: I—li}gan ('ukm) =0, for some p > 0}
p

and

Pk
A’ﬂ
loo(M,u,p, A™) = {z = (zx) € w: sup My, <M> < o0, for some p > O}.
k p

We can write

mI(M’u7p7 An) = CI(M7u’p)An) m lOO(M7u’p)An)
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and
mé(M?u7p’ An) = Cé(M’u7p7 An) m ZOO(M’U7P7 An)'

If we take p = (p) = 1 for all k£ € N, we have

(M, u, A™) = {x— (%) gw;]_hian(mkAw> —0,
p

for some L and p > O},

cd(M,u, A™) = {x =(zx)€w:I— lilgan <|Uk‘A$k|> =0, for some p > 0}
p
and

An
loo(Mu, A™) = {w = (x) € w : sup My, <w> < oo, for some p > O}.
k

If we take u = (ug) = 1 for all £k € N, we have

Pk

A"xy — L
(M, p, A™) = {ac =(xg) €Ew:I— lilgan <|x2|> =0,

for some L and p > 0},

Pk
An
cé(/\/hp, A™) = {m =(xp) Ew: I — liian <|xk|> =0, for some p > O}
p

and

Pk
ATL
<xk> < o0, for some p > 0}.
k p

looc(M,p, A™) = {:c = (z1) € w : sup M,

If we take n = 0, we have

Pk
CI(M7U,p){x(xk)ewfhian<W> :0’
P

for some L and p > O},

Pk
cd(M,u,p) = {x =(xx) €w:I— 1i£1Mk (W) = 0, for some p > O}
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and
| | Pk
loo(M,u,p) = {x = (zx) € w: sup My, <ukxk> < o0, for some p > O}.
k p

If we take M(z) = M(x), p = (pr) = 1, u = (ug) = 1 and n = 0, we get the spaces
which were studied by Tripathy and Hazarika [20]. The following inequality will
be used throughout the paper. If 0 < pr < suppp = H, D = max(1,27~1) then

lax + b |P* < D{|ag|* + |bg|P*} (1.1)

for all k and ay, b, € C. Also |a|P* < max(1, |a|?) for all a € C.

The main aim of this paper is to study some ideal convergence sequence spaces
defined by a Musielak-Orlicz function. We also make an effort to study some
topological properties and prove some inclusion relation between these spaces.

2 Main Results

Theorem 2.1. Let M = (My) be a Musielak-Orlicz function, p = (pr) be a
bounded sequence of positive real numbers and u = (ug) be any sequence of strictly
positive real numbers. Then ¢! (M, u, p, A™), cb(M,u,p, A™), m! (M, u,p, A™) and
mb(M,u,p, A™) are linear spaces over the field of complex numbers C.

Proof. Let x = (z),y = (yr) € ¢! (M,u,p,A") and let a, 3 be scalars. Then
there exist positive numbers p; and py such that

A"z — L Pk
I — lim M, <|ukxk1> =0, for some L; € C
k P1
and
A" — L Pk
I— lillcn My, <|Ukyk2|> =0, for some Ly € C.
P2

For a given € > 0, we have

Pk
A"z, — L
Dl{keN:Mk<W> N
1

N

} (2.1)

Ay, — Lo\
m:{keN:m(“kyH) >6}. (2.2)
P2 2

Let p3 = max{2|a\p1,2|ﬂ|p2}. Since M = (M) is non-decreasing and convex
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function, we have

lim M ( u A" (0t + Bye) — (L + mm)”
P3

Pk
< tim g, [ 1l A" @ = L] |Bllu Ay — Lol
* 3 P3
Pk Pi
An _ L A’I’L _ L
< lim My, w + lim My, w .
k P1 k P2

Now by (2.1) and (2.2), we have

n . Pk
{keN:hEleCukA ((awk+/3y;) (aL1+6L2))> >€}CD1UD2.
3

Therefore axy, + Byr € ¢! (M,u,p, A™). Hence ¢! (M, u,p, A™) is a linear space.
Similarly we can prove that cf(M,u, p, A™), m! (M, u, p, A™) and m{ (M, u,p, A™)
are linear spaces. O

Theorem 2.2. Let M = (My) be a Musielak-Orlicz function, p = (pr) be a

bounded sequence of positive real numbers and u = (uy) be any sequence of strictly
positive real numbers. Then lo (M, u, p, A™) is a paranormed space with paranorm

defined by
lupg Ay | e
g(x) = inf {p > 0 : sup My, <H> < 1}.
k p

Proof. 1t is clear that g(r) = g(—z). Since My (0) = 0, we get g(0) = 0. Let us
take © = (zx) and y = (yg) in loo (M, u, p, A™). Let

AT |Pk
B(:c){p>0:supMk<M> gl,},
k p

Pk
A?’L
B(y):{p>0:supM;€<ukpyk|> gl,}.
k

Let p1 € B(x) and py € B(y). Then if p = p1 + p2, then we have

A™ A™
sup M, |upg A" (x5 + yr)| < 1 sup My |up A"y |
k p p1+ p2 k P1
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lup A™ (2 + Y|

Thus sup My, (
k P11+ p2

Pk
) <1 and

g9(z +y) <inf{(p1 +p2) > 0: p1 € B(x), p2 € B(y)}
<inf{p; > 0:p; € B(z)} +inf{p2 > 0: po € B(y)}
=g(z) + 9(y).

Let 0° — o where 0,0° € C and let g(z® — ) — 0 as s — co. We have to show
that g(o®2® —ox) — 0 as s — oco. Let

Pk
B(z*®) = {ps > 0 : sup My, (MW) <1, },
k

ps
Pk
A" (5 —
B(z® —x) =4 pl, > 0: sup My w <1, ;.
k Ps
If ps € B(z®) and p, € B(z® — ) then we observe that

Mk<|ukA”(stZka)> B Mk<|ukm<as;y;ax;)| L lloa} —owy)] )

pslos —al + pilo| pslos —al+pilol  pslo® — ol + pilo]

<o —alps [ (uxA"2R])
pslo® — ol + pilo] Ps

olos <|uw<zz—xk.>|>.

I k: !’
pslos — ol + pglo] Ps

From the above inequality, it follows that

(1o —em)
pslo® = ol + plol

and consequently,
inf{(pslo* — o] + plol) > 0: ps € B(a*), p, € B(a" — )}
(lo® —o]) > 0inf{p > 0: p, € B(z*)}

+(lo]) > 0inf{(p) # : p, € B(a® — )}
— 0 as s — oo.

g(c°z® —ox) <
<

This completes the proof. O

Theorem 2.3. Let M' = (M}) and M" = (M}!) are Musielak-orlicz functions
that satisfies the Ag-condition. Then

(i) Z(M//)u7p7 An) g Z(M/OM//7 u7p7 An)!
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(i1) Z(M' u,p, AM) N Z(M" ju,p, A™) C Z(M' + M ju,p, A™) for Z = !, cf,

m!, md.
Proof. Let x = (zx) € ¢t (M",u,p, A™). Then there exist p > 0 such that
Pk
A?’L
I —lim My, (lu’“m’“l> = 0. (2.3)
p

Let € > 0 and choose 0 with 0 < 6 < 1 such that M (t) < e for 0 < ¢ < §. Write
Yk = Mé’(%)pk and consider

li M; = 1 M li M; .
0<ys SOkEN k() v SOREN k(yk)+yk>lér,rlieN k()

Since M = (M},) satisfies Ap-condition, we have

li M; < MJ(2) i . 24
poaim _ Mi(ye) < Mi(2) | lim (ye) (2.4)
For y, > d, we have
Yk Yk
<= <14 =
T S
Since M’ = (M) is non-decreasing and convex, it follows that

1 Mj (2yx)

1
Mi(ye) < Mi(1+55) < SM{(2) + =5

o

Since M’ = (Mj)) is satisfies Ay-condition, we have

el

1
M (yr) < =K% 017(2) + 2K 25 ML (2) = K22 0(2).
2775 275 5
Hence
. / < 1 .
pdim M;.(yr) < max(1, K6~ M;(2)) ykgggeN(yk) (2.5)

from equation (2.3), (2.4) and (2.5), we have z = (z1) € cf(M’ o M" u,p, A™).
Thus cf (M, u, p, A™) C cf(M’ o M” ,u,p, A™). Similarly we can prove the other
cases.

(ii) Let = (z) € b (M, u, p, A™) Nt (M, u, p, A™). Then there exist p > 0

such that .
ATL
I —1lim M], (lu’“x’“'> =0
K p

and

Pk
ATL
I—1lim M}’ ('“’f”'> ~0.
k p

The rest of the proof follows from the following equality
Pk Pk Ph
ANG A" AP
lim(Mlit_FM];/)(M) = lim M, <M> + lim M;;/<M> .
keN P keN p keN P

O
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Corollary 2.4. Let M = (My) be a Musielak orlicz function which satisfies Ag-
condition. Then Z(u,p, A™) C Z(M,u,p, A") for Z =c!,cb,m! and m¥.

Proof. The proof follows from Theorem 2.3 by putting M;/(z) = = and M] (x)
My (x)Vz € [0, 00).

ol

Theorem 2.5. The spaces ch(M,u,p, A™) and mi(M,u,p, A™) are solid.

Proof. We shall prove for the space ¢} (M, u, p, A"). Let x = (x1,) € cb(M,u,p, A™).
Then there exist p > 0 such that

| An | Pk
I —lim M, <M> — 0. (2.6)
P

Let (ay) be a sequence of scalars with || <1 V k € N. Then, the result follows
from the following inequality

Pk Pk
A" A"
lim M ('“’“ akx’“') < lim M, ('“’“ x’“')
k P k p

and this completes the proof.
Similarly we can prove for the space m{(M,u, p, A™). O

Corollary 2.6. The spaces c(M,u,p, A™) and mi(M,u,p, A™) are monotone.
Proof. Tt is easy to prove so we omit the details. O

Theorem 2.7. The spaces c/(M,u,p,A") and cb(M,u,p, A™) are sequence
algebra.

Proof. Let x = (z1),y = (yx) € cb(M,u,p, A™). Then

i A" | P
I — lim My, <M> =0, for some p; >0
k P1
and
Jur Ay \ ™
I— lilgan Dk okl =0, for some py > 0.
P2

Let p = p1 + p2. Then we can show that

Pk
kA" (a5, yk)|> o

I—lika<
k P

Thus (zy - yx) € cb(M,u,p, A™). Hence ci(M,u,p, A") is a sequence algebra.
Similarly, we can prove that ¢! (M, u,p, A") is a sequence algebra. O
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Theorem 2.8. Let M = (M},) be Musielak orlicz function. Then
Cé(M’u7p7 An) C CI(M7u’p7 An) C EOO(M’u’p7 An)'

Proof. Let © = (z) € ¢!(M,u,p, A"). Then there exist L € C and p > 0 such
that

Pk
A"z — L
7— hian (M> —0.

p
We have

Pk Pk Pk
A" 1 A"z — L 1(|L
Mk ‘uk l’k‘ < 7Mk |Uk Tk | +Mk7 | ‘
2p 2 p 2\ p

taking supremum over k on both sides, we get © = (21) € loo(M,u,p, A™). The
inclusion (M, u,p, A™) C ¢! (M, u,p, A™) is obvious. Thus

c(l)(/\/l,u,p, A™) C cl(/\/l,u,p, A™) Cloo(M,u,p, A™).

This completes the proof of the theorem. O
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