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1 Introduction and Preliminaries

The notion of ideal convergence was first introduced by Kostyrko [1] as a
generalization of statistical convergence which was further studied in topological
spaces by Das et al., see [2]. More applications of ideals can be seen in ([2, 3]).
We continue in this direction and introduce I-convergence of generalized sequences
with respect to Musielak-Orlicz function.

A family I ⊂ 2X of subsets of a non empty set X is said to be an ideal in X if

1. ϕ ∈ I

2. A,B ∈ I imply A ∪B ∈ I

3. A ∈ I, B ⊂ A imply B ∈ I,
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while an admissible ideal I of X further satisfies {x} ∈ I for each x ∈ X see [1].
A sequence (xn)n∈N in X is said to be I-convergent to x ∈ X, if for each ϵ > 0 the
set A(ϵ) = {n ∈ N : ||xn − x|| ≥ ϵ} belongs to I, see [1]. For more details about
ideal convergence sequence spaces (see [4–9]) and references therein.

Let X be a linear metric space. A function p : X → R is called paranorm, if

1. p(x) ≥ 0, for all x ∈ X,

2. p(−x) = p(x), for all x ∈ X,

3. p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence
of vectors with p(xn−x) → 0 as n → ∞, then p(λnxn−λx) → 0 as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [10, Theorem 10.4.2,
p. 183]).

An orlicz function M is a function, which is continuous, non-decreasing and
convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as x −→ ∞. Lin-
denstrauss and Tzafriri [11] used the idea of Orlicz function to define the following
sequence space. Let w be the space of all real or complex sequences x = (xk), then

ℓM =

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
< ∞

}
which is called as an Orlicz sequence space. The space ℓM is a Banach space with
the norm

||x|| = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

It is shown in [11] that every Orlicz sequence space ℓM contains a subspace iso-
morphic to ℓp(p ≥ 1). The ∆2−condition is equivalent to M(Lx) ≤ k(L)M(x) for
all values of x ≥ 0, and for L > 1. A sequence M = (Mk) of Orlicz function is
called a Musielak-Orlicz function see ([12, 13]). A sequence N = (Nk) defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, . . .

is called the complementary function of a Musielak-Orlicz function M. For a
given Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its
subspace hM are defined as follows

tM = {x ∈ w : IM(cx) < ∞ for some c > 0},

hM = {x ∈ w : IM(cx) < ∞ for all c > 0},
where IM is a convex modular defined by

IM(x) =

∞∑
k=1

Mk(xk), x = (xk) ∈ tM.
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We consider tM equipped with the Luxemburg norm

||x|| = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf

{
1

k
(1 + IM(kx)) : k > 0

}
.

The notion of difference sequence spaces was introduced by Kizmaz [14], who
studied the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion was
further generalized by Et and Çolak [15] by introducing the spaces l∞(∆n), c(∆n)
and c0(∆

n).
Let n be non-negative integers, then for Z = c, c0 and l∞, we have sequence

spaces
Z(∆n) = {x = (xk) ∈ w : (∆nxk) ∈ Z}

for Z = c, c0 and l∞ where ∆nx = (∆nxk) = (∆n−1xk −∆n−1xk) and ∆0xk = xk

for all k ∈ N, which is equivalent to the following binomial representation

∆nxk =
n∑

v=0

(−1)v
(

n
v

)
xk+v.

Taking n = 1, we get the spaces l∞(∆), c(∆) and c0(∆) studied by Kizmaz [14].
For more details about sequence spaces (see [16–19]) and references therein.

Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence
of positive real numbers and u = (uk) be any sequence of strictly positive real
numbers. We define the following sequence spaces in the present paper:

cI(M, u, p,∆n) =

{
x = (xk) ∈ w : I − lim

k
Mk

(
|uk∆

nxk − L|
ρ

)pk

= 0,

for some L andρ > 0

}
,

cI0(M, u, p,∆n) =

{
x = (xk) ∈ w : I−lim

k
Mk

(
|uk∆

nxk|
ρ

)pk

= 0, for some ρ > 0

}
and

l∞(M, u, p,∆n) =

{
x = (xk) ∈ w : sup

k
Mk

(
|uk∆

nxk|
ρ

)pk

< ∞, for some ρ > 0

}
.

We can write

mI(M, u, p,∆n) = cI(M, u, p,∆n) ∩ l∞(M, u, p,∆n)
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and
mI

0(M, u, p,∆n) = cI0(M, u, p,∆n) ∩ l∞(M, u, p,∆n).

If we take p = (pk) = 1 for all k ∈ N, we have

cI(M, u,∆n) =

{
x = (xk) ∈ w : I − lim

k
Mk

(
|uk∆

nxk − L|
ρ

)
= 0,

for some L and ρ > 0

}
,

cI0(M, u,∆n) =

{
x = (xk) ∈ w : I − lim

k
Mk

(
|uk∆

nxk|
ρ

)
= 0, for some ρ > 0

}
and

l∞(M, u,∆n) =

{
x = (xk) ∈ w : sup

k
Mk

(
|uk∆

nxk|
ρ

)
< ∞, for some ρ > 0

}
.

If we take u = (uk) = 1 for all k ∈ N, we have

cI(M, p,∆n) =

{
x = (xk) ∈ w : I − lim

k
Mk

(
|∆nxk − L|

ρ

)pk

= 0,

for some L and ρ > 0

}
,

cI0(M, p,∆n) =

{
x = (xk) ∈ w : I − lim

k
Mk

(
|∆nxk|

ρ

)pk

= 0, for some ρ > 0

}
and

l∞(M, p,∆n) =

{
x = (xk) ∈ w : sup

k
Mk

(
|∆nxk|

ρ

)pk

< ∞, for some ρ > 0

}
.

If we take n = 0, we have

cI(M, u, p) =

{
x = (xk) ∈ w : I − lim

k
Mk

(
|ukxk − L|

ρ

)pk

= 0,

for some L and ρ > 0

}
,

cI0(M, u, p) =

{
x = (xk) ∈ w : I − lim

k
Mk

(
|ukxk|

ρ

)pk

= 0, for some ρ > 0

}
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and

l∞(M, u, p) =

{
x = (xk) ∈ w : sup

k
Mk

(
|ukxk|

ρ

)pk

< ∞, for some ρ > 0

}
.

If we take M(x) = M(x), p = (pk) = 1, u = (uk) = 1 and n = 0, we get the spaces
which were studied by Tripathy and Hazarika [20]. The following inequality will
be used throughout the paper. If 0 ≤ pk ≤ sup pk = H, D = max(1, 2H−1) then

|ak + bk|pk ≤ D{|ak|pk + |bk|pk} (1.1)

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.
The main aim of this paper is to study some ideal convergence sequence spaces

defined by a Musielak-Orlicz function. We also make an effort to study some
topological properties and prove some inclusion relation between these spaces.

2 Main Results

Theorem 2.1. Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a
bounded sequence of positive real numbers and u = (uk) be any sequence of strictly
positive real numbers. Then cI(M, u, p,∆n), cI0(M, u, p,∆n),mI(M, u, p,∆n) and
mI

0(M, u, p,∆n) are linear spaces over the field of complex numbers C.

Proof. Let x = (xk), y = (yk) ∈ cI(M, u, p,∆n) and let α, β be scalars. Then
there exist positive numbers ρ1 and ρ2 such that

I − lim
k

Mk

(
|uk∆

nxk − L1|
ρ1

)pk

= 0, for some L1 ∈ C

and

I − lim
k

Mk

(
|uk∆

nyk − L2|
ρ2

)pk

= 0, for some L2 ∈ C.

For a given ϵ > 0, we have

D1 =

{
k ∈ N : Mk

(
|uk∆

nxk − L1|
ρ1

)pk

>
ϵ

2

}
(2.1)

D2 =

{
k ∈ N : Mk

(
|uk∆

nyk − L2|
ρ2

)pk

>
ϵ

2

}
. (2.2)

Let ρ3 = max
{
2|α|ρ1, 2|β|ρ2

}
. Since M = (Mk) is non-decreasing and convex
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function, we have

lim
k

Mk

(
|uk∆

n((αxk + βyk)− (αL1 + βL2))|
ρ3

)pk

≤ lim
k

Mk

(
|α||uk∆

nxk − L1|
ρ3

+
|β||uk∆

nyk − L2|
ρ3

)pk

≤ lim
k

Mk

(
|uk∆

nxk − L1|
ρ1

)pk

+ lim
k

Mk

(
|uk∆

nyk − L2|
ρ2

)pk

.

Now by (2.1) and (2.2), we have{
k ∈ N : lim

k
Mk

(
|uk∆

n((αxk + βyk)− (αL1 + βL2))|
ρ3

)pk

> ϵ

}
⊂ D1 ∪D2.

Therefore αxk + βyk ∈ cI(M, u, p,∆n). Hence cI(M, u, p,∆n) is a linear space.
Similarly we can prove that cI0(M, u, p,∆n),mI(M, u, p,∆n) and mI

0(M, u, p,∆n)
are linear spaces.

Theorem 2.2. Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a
bounded sequence of positive real numbers and u = (uk) be any sequence of strictly
positive real numbers. Then l∞(M, u, p,∆n) is a paranormed space with paranorm
defined by

g(x) = inf

{
ρ > 0 : sup

k
Mk

(
|uk∆

nxk|
ρ

)pk

≤ 1

}
.

Proof. It is clear that g(x) = g(−x). Since Mk(0) = 0, we get g(0) = 0. Let us
take x = (xk) and y = (yk) in l∞(M, u, p,∆n). Let

B(x) =

{
ρ > 0 : sup

k
Mk

(
|uk∆

nxk|
ρ

)pk

≤ 1,

}
,

B(y) =

{
ρ > 0 : sup

k
Mk

(
|uk∆

nyk|
ρ

)pk

≤ 1,

}
.

Let ρ1 ∈ B(x) and ρ2 ∈ B(y). Then if ρ = ρ1 + ρ2, then we have

sup
k

Mk

(
|uk∆

n(xk + yk)|
ρ

)
≤

(
ρ1

ρ1 + ρ2

)
sup
k

Mk

(
|uk∆

nxk|
ρ1

)

+

(
ρ2

ρ1 + ρ2

)
sup
k

Mk

(
|uk∆

nyk|
ρ2

)
.
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Thus sup
k

Mk

( |uk∆
n(xk + yk)|
ρ1 + ρ2

)pk

≤ 1 and

g(x+ y) ≤ inf{(ρ1 + ρ2) > 0 : ρ1 ∈ B(x), ρ2 ∈ B(y)}
≤ inf{ρ1 > 0 : ρ1 ∈ B(x)}+ inf{ρ2 > 0 : ρ2 ∈ B(y)}
= g(x) + g(y).

Let σs → σ where σ, σs ∈ C and let g(xs − x) → 0 as s → ∞. We have to show
that g(σsxs − σx) → 0 as s → ∞. Let

B(xs) =

{
ρs > 0 : sup

k
Mk

(
|uk∆

n(xs
k)|

ρs

)pk

≤ 1,

}
,

B(xs − x) =

{
ρ′s > 0 : sup

k
Mk

(
|uk∆

n(xs
k − xk)|

ρ′s

)pk

≤ 1,

}
.

If ρs ∈ B(xs) and ρ′s ∈ B(xs − x) then we observe that

Mk

(
|uk∆

n(σsxs
k − σxk)

ρs|σs − σ|+ ρ′
s|σ|

)
≤ Mk

(
|uk∆

n(σsxs
k − σxs

k)|
ρs|σs − σ|+ ρ′

s|σ|
+

|(σxs
k − σxk)|

ρs|σs − σ|+ ρ′
s|σ|

)

≤ |σs − σ|ρs
ρs|σs − σ|+ ρ′

s|σ|
Mk

(
(|uk∆

nxs
k|)

ρs

)

+
|σ|ρ′

s

ρs|σs − σ|+ ρ′
s|σ|

Mk

(
|uk∆

n(xs
k − xk)|

ρ′
s

)
.

From the above inequality, it follows that

Mk

(
|uk∆

n(σsxs
k − σxk)|

ρs|σs − σ|+ ρ′
s|σ|

)pk

≤ 1

and consequently,

g(σsxs − σx) ≤ inf{(ρs|σs − σ|+ ρ
′

s|σ|) > 0 : ρs ∈ B(xs), ρ
′

s ∈ B(xs − x)}
≤ (|σs − σ|) > 0 inf{ρ > 0 : ρs ∈ B(xs)}

+ (|σ|) > 0 inf{(ρ
′

s)
pn
H : ρ

′

s ∈ B(xs − x)}
−→ 0 as s −→ ∞.

This completes the proof.

Theorem 2.3. Let M′ = (M ′
k) and M′′ = (M ′′

k ) are Musielak-orlicz functions
that satisfies the ∆2-condition. Then

(i) Z(M′′, u, p,∆n) ⊆ Z(M′ ◦M′′, u, p,∆n),
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(ii) Z(M′, u, p,∆n) ∩ Z(M′′, u, p,∆n) ⊆ Z(M′ +M′′, u, p,∆n) for Z = cI , cI0,
mI , mI

0.

Proof. Let x = (xk) ∈ cI0(M′′, u, p,∆n). Then there exist ρ > 0 such that

I − lim
k

M ′′
k

(
|uk∆

nxk|
ρ

)pk

= 0. (2.3)

Let ϵ > 0 and choose δ with 0 < δ < 1 such that M ′
k(t) < ϵ for 0 ≤ t ≤ δ. Write

yk = M ′′
k (

|uk∆
nxk|
ρ )pk and consider

lim
0≤yk≤δ,k∈N

M ′
k(yk) = lim

yk≤δ,k∈N
M ′

k(yk) + lim
yk>δ,k∈N

M ′
k(yk).

Since M = (Mk) satisfies ∆2-condition, we have

lim
yk≤δ,k∈N

M ′
k(yk) ≤ M ′

k(2) lim
yk≤δ,k∈N

(yk). (2.4)

For yk > δ, we have

yk <
yk
δ

< 1 +
yk
δ
.

Since M′ = (M ′
k) is non-decreasing and convex, it follows that

M ′
k(yk) < M ′

k(1 +
yk
δ
) <

1

2
M ′

k(2) +
1

2

M ′
k(2yk)

δ
.

Since M′ = (M ′
k) is satisfies ∆2-condition, we have

M ′
k(yk) <

1

2
K

yk
δ
M ′

k(2) +
1

2
K

yk
δ
M ′

k(2) = K
yk
δ
M ′

k(2).

Hence
lim

yk>δ,k∈N
M ′

k(yk) ≤ max(1,Kδ−1M ′
k(2)) lim

yk≤δ,k∈N
(yk) (2.5)

from equation (2.3), (2.4) and (2.5), we have x = (xk) ∈ cI0(M′ ◦ M′′, u, p,∆n).
Thus cI0(M′′, u, p,∆n) ⊆ cI0(M′ ◦M′′, u, p,∆n). Similarly we can prove the other
cases.

(ii) Let x = (xk) ∈ cI0(M′, u, p,∆n)∩ cI0(M′′, u, p,∆n). Then there exist ρ > 0
such that

I − lim
k

M ′
k

(
|uk∆

nxk|
ρ

)pk

= 0

and

I − lim
k

M ′′
k

(
|uk∆

nxk|
ρ

)pk

= 0.

The rest of the proof follows from the following equality

lim
k∈N

(M ′
k +M ′′

k )

(
|uk∆

nxk|
ρ

)pk

= lim
k∈N

M ′
k

(
|uk∆

nxk|
ρ

)pk

+ lim
k∈N

M ′′
k

(
|uk∆

nxk|
ρ

)pk

.
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Corollary 2.4. Let M = (Mk) be a Musielak orlicz function which satisfies ∆2-
condition. Then Z(u, p,∆n) ⊆ Z(M, u, p,∆n) for Z = cI , cI0,m

I and mI
0.

Proof. The proof follows from Theorem 2.3 by putting M ′′
k (x) = x and M ′

k(x) =
Mk(x)∀x ∈ [0,∞).

Theorem 2.5. The spaces cI0(M, u, p,∆n) and mI
0(M, u, p,∆n) are solid.

Proof. We shall prove for the space cI0(M, u, p,∆n). Let x = (xk) ∈ cI0(M, u, p,∆n).
Then there exist ρ > 0 such that

I − lim
k

Mk

(
|uk∆

nxk|
ρ

)pk

= 0. (2.6)

Let (αk) be a sequence of scalars with |αk| ≤ 1 ∀ k ∈ N. Then, the result follows
from the following inequality

lim
k

Mk

(
|uk∆

nαkxk|
ρ

)pk

≤ lim
k

Mk

(
|uk∆

nxk|
ρ

)pk

and this completes the proof.
Similarly we can prove for the space mI

0(M, u, p,∆n).

Corollary 2.6. The spaces cI0(M, u, p,∆n) and mI
0(M, u, p,∆n) are monotone.

Proof. It is easy to prove so we omit the details.

Theorem 2.7. The spaces cI(M, u, p,∆n) and cI0(M, u, p,∆n) are sequence
algebra.

Proof. Let x = (xk), y = (yk) ∈ cI0(M, u, p,∆n). Then

I − lim
k

Mk

(
|uk∆

nxk|
ρ1

)pk

= 0, for some ρ1 > 0

and

I − lim
k

Mk

(
|uk∆

nyk|
ρ2

)pk

= 0, for some ρ2 > 0.

Let ρ = ρ1 + ρ2. Then we can show that

I − lim
k

Mk

(
|uk∆

n(xk · yk)|
ρ

)pk

= 0.

Thus (xk · yk) ∈ cI0(M, u, p,∆n). Hence cI0(M, u, p,∆n) is a sequence algebra.
Similarly, we can prove that cI(M, u, p,∆n) is a sequence algebra.
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Theorem 2.8. Let M = (Mk) be Musielak orlicz function. Then

cI0(M, u, p,∆n) ⊂ cI(M, u, p,∆n) ⊂ ℓ∞(M, u, p,∆n).

Proof. Let x = (xk) ∈ cI(M, u, p,∆n). Then there exist L ∈ C and ρ > 0 such
that

I − lim
k

Mk

(
|uk∆

nxk − L|
ρ

)pk

= 0.

We have

Mk

(
|uk∆

nxk|
2ρ

)pk

≤ 1

2
Mk

(
|uk∆

nxk − L|
ρ

)pk

+Mk
1

2

(
|L|
ρ

)pk

taking supremum over k on both sides, we get x = (xk) ∈ ℓ∞(M, u, p,∆n). The
inclusion cI0(M, u, p,∆n) ⊂ cI(M, u, p,∆n) is obvious. Thus

cI0(M, u, p,∆n) ⊂ cI(M, u, p,∆n) ⊂ ℓ∞(M, u, p,∆n).

This completes the proof of the theorem.

Acknowledgement : The authors thank the referee for his valuable suggestions
that improved the presentation of the paper.
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