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Abstract : The notion of Γ-semigroup introduced in [1] as a generalization of a
semigroup. In this paper, we investigate the formation of quotient and generated
Γ-semigroups and Γ-ideals. Also, by a congruence relation ρ on a Γ-semigroup
S, we construct the quotient Γ-semigroup S : ρ and discuss on the behavior of
some diagrams of quotients and their commutativity. In particular, we prove that
the product of quotient Γ-semigroups is isomorphic to the quotient of product of
Γ-semigroups.
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1 Introduction and Preliminaries

A semigroup is an algebraic structure consisting of a non-empty set S together
with an associative binary operation. The formal study of semigroups began in
the early 20th century. Semigroups are important in many areas of mathematics,
for example, coding and language theory, automata theory, combinatorics and
mathematical analysis. In 1986, Sen and Saha [1] defined the notion of a Γ-
semigroup as a generalization of a semigroup. Many classical notions of semigroups
have been extended to Γ-semigroups and a lot of results on Γ-semigroups are
published by a lot of mathematicians, for instance, Chattopadhyay [2, 3], Chinram
and Tinpun [4], Hila [5–10], Saha [11], Sen et al. [1, 12–15].

Copyright c⃝ 2013 by the Mathematical Association of Thailand.
All rights reserved.



564 Thai J. Math. 11 (2013)/ H. Hedayati

Let S and Γ be two non-empty sets. S is called a Γ-semigroup ([11, 1]) if
there exists a mapping S × Γ × S −→ S written as (x, γ, y) 7→ xγy satisfying
(xγy)βz = xγ(yβz) for all x, y, z ∈ S and γ, β ∈ Γ. In this case by (S,Γ) we mean
S is a Γ-semigroup.

Let S be a Γ-semigroup. A non-empty subset A of S is called a Γ-sub-semigroup
of S, if AΓA ⊆ A. A non-empty Γ-sub-semigroup I of S is called a Γ-ideal of S, if
IΓS ⊆ I and SΓI ⊆ I. Also, S is called a commutative Γ-semigroup, if xγy = yγx
for all x, y ∈ S and γ ∈ Γ.

Example 1.1.

(1) Let S = [0, 1] and Γ = { 1
n | n is a positive integer}. Then S is a commutative

Γ-semigroup under the usual multiplication.

(2) Let S be the set of all 3×2 matrices and Γ be the set of all 2×3 matrices over
a field. Then for A,B ∈ S, the product AB can not be defined i.e., S is not
a semigroup under the usual matrix multiplication. But for all A,B,C ∈ S
and P,Q ∈ Γ we have APB ∈ S and since the matrix multiplication is
associative, we have (APB)QC = AP (BQC). Hence S is a Γ-semigroup.

In what follows, S is a Γ-semigroup unless otherwise specified.

Lemma 1.2. Let Λ be a non-empty index set and {Iλ}λ∈Λ be a family of Γ-ideals
of (S,Γ). Then ∩λ∈ΛIλ is a Γ-ideal of (S,Γ).

Proof. It is easy to verify that ∩λ∈ΛIλ is a Γ-sub-semigroup of S. Also, we have
(∩λ∈ΛIλ)ΓS = ∩λ∈Λ(IλΓS) ⊆ ∩λ∈ΛIλ and SΓ(∩λ∈ΛIλ) = ∩λ∈Λ(SΓIλ) ⊆ ∩λ∈ΛIλ.
Therefore, ∩λ∈ΛIλ is a Γ-ideal of (S,Γ).

In the next theorem, we see that the lattice of Γ-ideals of a Γ-semigroup S, is
a complete lattice.

Theorem 1.3. Let L be the set of all Γ-ideals of (S,Γ). Then (L,⊆,∧,∨) is a
complete lattice, where I ∧ J = I ∩ J and I ∨ J = ⟨I ∪ J⟩ the unique smallest
Γ-ideal containing I ∪ J .

Proof. It is a consequence of Lemma 1.2.

Let S be a Γ-semigroup. An equivalence relation ρ on S is called congruence if
xρy implies that (xγz)ρ(yγz) and (zγx)ρ(zγy) for all x, y, z ∈ S and γ ∈ Γ, where
by xρy we mean (x, y) ∈ ρ.

Let S1 be a Γ1-semigroup and S2 a Γ2-semigroup. Then (f, g) : (S1,Γ1) −→
(S2,Γ2) is called a homomorphism if f : S1 −→ S2 and g : Γ1 −→ Γ2 are functions
and f(xγy) = f(x)g(γ)f(y) for all x, y ∈ S1 and γ ∈ Γ1.
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2 Properties of Γ-Ideals and Γ-Semigroups

Some comprehensive studies on Γ-semigroups and some related extended struc-
tures can be found in [16–27]. In this section, we investigate some interesting
properties of Γ-semigroups and Γ-ideals. For instance, the following theorems are
theorem of quotient Γ-semigroup and correspondence theorem.

Theorem 2.1. Let S be a commutative Γ-semigroup and I a non-empty subset of
S. Then S/I = {xΓI | x ∈ S} is a Γ-semigroup.

Proof. We define ∗ : S/I × Γ× S/I −→ S/I by (xΓI) ∗ γ ∗ (yΓI) = xγyΓI for all
xΓI, yΓI ∈ S/I and γ ∈ Γ. We prove that ∗ is well-defined. Let xΓI = x′ΓI,
γ = γ′ and yΓI = y′ΓI. We have

(xΓI) ∗ γ ∗ (yΓI) = xγyΓI = xγ′y′ΓI

= y′γ′xΓI = y′γ′x′ΓI

= x′γ′y′ΓI = (x′ΓI) ∗ γ′ ∗ (y′ΓI).

Thus ∗ is well-defined. Also, for all x, y, z ∈ S and γ, β ∈ Γ, we have

((xγI) ∗ γ ∗ (yΓI)) ∗ β ∗ (zΓI) = ((xγy)ΓI) ∗ β ∗ (zΓI)
= (xγy)βzΓI = xγ(yβz)ΓI

= xγ((yΓI) ∗ β ∗ (zΓI))
= (xΓI) ∗ γ ∗ ((yΓI) ∗ β ∗ (zΓI)).

Therefore, S/I is a Γ-semigroup.

Theorem 2.2 (Correspondence Theorem). Let S be a commutative Γ-semigroup
and J a Γ-ideal of S such that ∅ ̸= I ⊆ J . Then J/I is a Γ-ideal of (S/I,Γ).
Conversely, let K be a Γ-ideal of (S/I,Γ). Then there exists a Γ-ideal J of (S,Γ)
such that I ⊆ J and K = J/I.

Proof. We prove J/I ∗ Γ ∗ S/I ⊆ J/I. Let jΓI ∈ J/I, γ ∈ Γ and xΓI ∈ S/I. We
have (jΓI)∗γ ∗ (xΓI) = jγxΓI ∈ J/I. Similarly, we can prove that S/I ∗Γ∗J/I ⊆
J/I. Therefore, J/I is a Γ-ideal of S/I.

Conversely, let K be a Γ-ideal of (S/I,Γ). Put J = {x ∈ S | xΓI ∈ K}. We
prove that JΓS ⊆ J . Suppose that x ∈ J , r ∈ S and γ ∈ Γ. Then xΓI ∈ K and
rγI ∈ S/I. Hence xγrΓI = (xΓI) ∗ γ ∗ (rΓI) ∈ K. Thus xγr ∈ J . Similarly, we
can prove that SΓJ ⊆ J . Therefore, J is a Γ-ideal of (S,Γ).

Theorem 2.3. Let A be a Γ-ideal and B a Γ-sub-semigroup of a commutative
Γ-semigroup S. Then A∩B and A∪B are Γ-sub-semigroups of (S,Γ). Moreover,
there is a homomorphism from B/(A ∩B) to (A ∪B)/A.

Proof. We prove A ∩B and A ∪B are Γ-sub-semigroups of (S,Γ). We have

(A ∩B)Γ(A ∩B) = AΓA ∩AΓB ∩BΓA ∩BΓB

⊆ A ∩AΓB ∩BΓA ∩B ⊆ A ∩B.
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Similarly, we can prove that (A ∪ B)Γ(A ∪ B) ⊆ A ∪ B. Now, we define ψ :
B/(A∩B) −→ (A∪B)/A by ψ(bΓ(A∩B)) = bΓA for all b ∈ B. Let 1Γ : Γ −→ Γ
be the identity map. If bΓ(A ∩ B), b′Γ(A ∩ B) ∈ B/(A ∩ B) and γ ∈ Γ, then we
have

ψ(bΓ(A ∩B) ∗ γ ∗ b′Γ(A ∩B)) = ψ(bγb′Γ(A ∩B))

= bγb′ΓA = (bΓA) ∗ γ ∗ (b′ΓA)
= ψ(bΓ(A ∩B)) ∗ 1Γ(γ) ∗ ψ(b′Γ(A ∩B)).

Therefore, (ψ, 1Γ) : (B/(A ∩B),Γ) −→ ((A ∪B)/A,Γ) is a homomorphism.

Let A be a non-empty subset of a Γ-semigroup S. Put

X = {B | B is a Γ-ideal of (S,Γ) containing A}.

Then X ̸= ∅, because S ∈ X. Let ⟨A⟩ = ∩B∈XB. Clearly, A ⊆ ⟨A⟩. By Lemma
1.2, ⟨A⟩ is a Γ-ideal of (S,Γ). Also, ⟨A⟩ is the smallest Γ-ideal of (S,Γ) containing
A. ⟨A⟩ is called the Γ-ideal of S generated by A.

Theorem 2.4. If A is a non-empty subset of (S,Γ), then ⟨A⟩ = A∪SΓA∪AΓS∪
SΓAΓS.

Proof. We prove that B = A ∪ SΓA ∪ AΓS ∪ SΓAΓS is a Γ-ideal of (S,Γ). We
have

SΓB = SΓ(A ∪ SΓA ∪AΓS ∪ SΓAΓS)
= SΓA ∪ SΓSΓA ∪ SΓAΓS ∪ SΓSΓAΓS
⊆ SΓA ∪ SΓA ∪ SΓAΓS ∪ SΓAΓS
= SΓA ∪ SΓAΓS ⊆ B.

Also, we have

BΓS = (A ∪ SΓA ∪AΓS ∪ SΓAΓS)ΓS
= AΓS ∪ SΓAΓS ∪AΓSΓS ∪ SΓAΓSΓS
⊆ AΓS ∪ SΓAΓS ∪AΓS ∪ SΓAΓS
= AΓS ∪ SΓAΓS ∪AΓS ⊆ B.

Therefore, B is a Γ-ideal of (S,Γ). Since A ⊆ B, then ⟨A⟩ ⊆ B. Let I be a
Γ-ideal of (S,Γ) such that A ⊆ I. Then SΓA ⊆ SΓI ⊆ I, AΓS ⊆ IΓS ⊆ I and
SΓAΓS ⊆ SΓIΓS ⊆ I, which imply that B = A ∪ SΓA ∪ AΓS ∪ SΓAΓS ⊆ ⟨A⟩.
Therefore, B = ⟨A⟩ and the proof is completed.

Theorem 2.5. Let S be a commutative Γ-semigroup, A ⊆ S and I a Γ-ideal of
(S,Γ). Then (I : A) = {x ∈ S | xγa ∈ I, for all a ∈ A and γ ∈ Γ} is a Γ-ideal of
(S,Γ).
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Proof. Suppose that x ∈ (I : A), r ∈ S and β ∈ Γ. Then xγa ∈ I for all a ∈ A
and γ ∈ Γ. It implies that (rβx)γa ∈ I. Thus rβx ∈ (I : A). Similarly, we can
prove that xβr ∈ (I : A). Therefore, (I : A) is a Γ-ideal of (S,Γ).

Theorem 2.6. Let S be a commutative Γ-semigroup. If I is a Γ-ideal of (S,Γ),
∅ ̸= A ⊆ S and γ ∈ Γ, then the following statements hold:

(1) I ⊆ (I : A) ⊆ (I : AΓA) ⊆ (I : AγA).

(2) If A ⊆ I, then (I : A) = S.

Proof. (1) If x ∈ I, then xΓA ⊆ IΓS ⊆ I. Thus x ∈ (I : A). If x ∈ (I : A), then
xΓ(AΓA) = (xΓA)ΓA ⊆ IΓA ⊆ I. Thus x ∈ (I : AΓA). Finally, if x ∈ (I : AΓA),
then xΓ(AγA) ⊆ xΓ(AΓA) ⊆ I. Hence x ∈ (I : AγA).

(2) Let A ⊆ I and x ∈ S. Then xΓA ⊆ SΓI ⊆ I, so x ∈ (I : A). Thus
(I : A) = S.

Theorem 2.7. Let S be a commutative Γ-semigroup. If I is a Γ-ideal of (S,Γ)
and ∅ ̸= A ⊆ S, then (I : A) = ∩a∈A(I : a) = (I : A\I).

Proof. We have (I : A) ⊆ ∩a∈A(I : a). Let x ∈ ∩a∈A(I : a). Then xΓa ⊆ I for all
a ∈ A. So ∩a∈A(I : a) ⊆ (I : A). Hence (I : A) = ∩a∈A(I : a). Again by Theorem
2.6, we have (I : A) = ∩a∈A(I : a) = (I : A\I).

3 Congruence Relations on the Product of
Γ-Semigroups

Let ρ be a congruence relation on (S,Γ). By S : ρ we mean the set of all
equivalence classes of the elements of S with respect to ρ, that is S : ρ = {ρ(x) |
x ∈ S}.

Lemma 3.1. Let ρ be a congruence relation on (S,Γ). Then ρ(xγy) = ρ(ρ(x)γρ(y))
for all x, y ∈ S and γ ∈ Γ.

Proof. Clearly ρ(xγy) ⊆ ρ(ρ(x)γρ(y)). Let z ∈ ρ(ρ(x)γρ(y)), then z ∈ ρ(x′γy′) for
some x′ ∈ ρ(x) and y′ ∈ ρ(y). In other hand, ρ is a congruence relation on (S,Γ),
so ρ(xγy) = ρ(x′γy′). This implies that z ∈ ρ(xγy). Therefore, ρ(ρ(x)γρ(y)) ⊆
ρ(xγy).

In the next theorem, we demonstrate how to construct a new Γ-semigroups by
using congruence relations.

Theorem 3.2. Let ρ be a congruence relation on (S,Γ). Then S : ρ is a Γ-
semigroup.
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Proof. Define the map ⊙ : (S : ρ) × Γ × (S : ρ) −→ (S : ρ) by ρ(x) ⊙ γ ⊙ ρ(y) =
ρ(xγy) for all x, y ∈ S and γ ∈ Γ. Let ρ(x) = ρ(x′) and ρ(y) = ρ(y′). By Lemma
3.1, we have

ρ(x)⊙ γ ⊙ ρ(y) = ρ(xγy) = ρ(ρ(x)γρ(y))

= ρ(ρ(x′)γρ(y′)) = ρ(x′)⊙ γ ⊙ ρ(y′).

Thus ⊙ is well-defined. Also for all ρ(x), ρ(y), ρ(z) ∈ S : ρ and γ, β ∈ Γ we have

(ρ(x)⊙ γ ⊙ ρ(y))⊙ β ⊙ ρ(z) = ρ(xγy)⊙ β ⊙ ρ(z)

= ρ((xγy)βz) = ρ(xγ(yβz))

= ρ(x)⊙ γ ⊙ ρ(yβz)

= ρ(x)⊙ γ ⊙ (ρ(y)⊙ β ⊙ ρ(z)).

Therefore, S : ρ is a Γ-semigroup.

Lemma 3.3. If ΠS : S −→ S : ρ is defined by ΠS(x) = ρ(x) and 1Γ is the identity
map on Γ, then (ΠS , 1Γ) : (S,Γ) −→ (S : ρ,Γ) is an epimorphism.

Proof. Let x, y ∈ S and γ ∈ Γ. By Theorem 3.2, we have

ΠS(xγy) = ρ(xγy) = ρ(x)⊙ γ ⊙ ρ(y) = ΠS(x)⊙ 1Γ(γ)⊙ΠS(y).

Clearly, ΠS is onto. Therefore, (ΠS , 1Γ) is an epimorphism.

In the following, we show how to use a Γ-ideal and a congruence relation on a
Γ-semigroup S to construct a new Γ-ideal of S and to investigate the relationship
between them.

Theorem 3.4. Let ρ be a congruence relation on (S,Γ). If I is a Γ-ideal of (S,Γ),
then CI = {x ∈ S | xρa, ∃a ∈ I} is a Γ-ideal of (S,Γ) and I ⊆ CI .

Proof. Clearly I ⊆ CI . Let x ∈ CI , r ∈ S and γ ∈ Γ. Then xρa for some a ∈ I.
In other hand ρ is a congruence relation which implies that (xγr)ρ(aγr). Thus
xγr ∈ CI . Similarly, we can prove that rγx ∈ CI . Therefore CI is a Γ-ideal of
(S,Γ).

Theorem 3.5. If I is a Γ-ideal of (S,Γ), then I : ρ is a Γ-ideal of (S : ρ,Γ).

Proof. Suppose that ρ(x) ∈ I : ρ, ρ(r) ∈ S : ρ and γ ∈ Γ. Then, by Theorem 3.2,
ρ(x)⊙γ⊙ρ(r) = ρ(xγy) ∈ I : ρ. Similarly, we can prove that ρ(r)⊙γ⊙ρ(x) ∈ I : ρ.
Therefore, I : ρ is a Γ-ideal of (S : ρ,Γ).

Theorem 3.6. If J is a Γ-ideal of (S : ρ,Γ), then there exists a Γ-ideal I of (S,Γ)
such that J = I : ρ.
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Proof. Put I = {x ∈ S | ρ(x) ∈ J}. We have

ρ(x) ∈ J =⇒ x ∈ I =⇒ ρ(x) ∈ I : ρ,

and
ρ(x) ∈ I : ρ =⇒ ∃a ∈ I, ρ(x) = ρ(a) =⇒ ρ(x) = ρ(a) ∈ J.

Thus J = I : ρ. Now, suppose that x ∈ I, r ∈ S and γ ∈ Γ. Then ρ(x) ∈ J and
by Theorem 3.2, ρ(xγy) = ρ(x)⊙ γ ⊙ ρ(r) ∈ J . Hence xγr ∈ I. Similarly, we can
prove that rγx ∈ I. Therefore, I is a Γ-ideal of (S,Γ).

Lemma 3.7. Let Sλ be a Γλ-semigroup (λ ∈ Λ). Then
∏
λ∈Λ Sλ = {(xλ)λ∈Λ |

xλ ∈ Sλ} is a
∏
λ∈Λ Γλ-semigroup.

Proof. Define ◦ : (
∏
λ∈Λ Sλ)× (

∏
λ∈Λ Γλ)× (

∏
λ∈Λ Sλ) −→

∏
λ∈Λ Sλ by (xλ)λ∈Λ ◦

(γλ)λ∈Λ◦(yλ)λ∈Λ = (xλγλyλ)λ∈Λ for all (xλ)λ∈Λ, (yλ)λ∈Λ ∈
∏
λ∈Λ Sλ and (γλ)λ∈Λ ∈∏

λ∈Λ Γλ. It is easy to verify that ◦ is well-defined. We have

((xλ)λ∈Λ ◦ (γλ)λ∈Λ ◦ (yλ)λ∈Λ) ◦ (βλ)λ∈Λ ◦ (zλ)λ∈Λ =

(xλγλyλ)λ∈Λ ◦ (βλ)λ∈Λ ◦ (zλ)λ∈Λ =

((xλγλyλ)βλzλ)λ∈Λ = (xλγλ(yλβλzλ))λ∈Λ =

(xλ)λ∈Λ ◦ (γλ)λ∈Λ ◦ (yλβλzλ)λ∈Λ =

(xλ)λ∈Λ ◦ (γλ)λ∈Λ ◦ ((yλ)λ∈Λ ◦ (βλ)λ∈Λ ◦ (zλ)λ∈Λ)

for all (xλ)λ∈Λ, (yλ)λ∈Λ, (zλ)λ∈Λ ∈
∏
λ∈Λ Sλ and (γλ)λ∈Λ, (βλ)λ∈Λ ∈

∏
λ∈Λ Γλ.

Therefore,
∏
λ∈Λ Sλ is a

∏
λ∈Λ Γλ-semigroup.

In the next lemma, we investigate the behavior of congruence relations on the
product of Γ-semigroups.

Lemma 3.8. Let ρλ be a congruence relation on (Sλ,Γλ) for all λ ∈ Λ. Then ρ is
a congruence relation on (

∏
λ∈Λ Sλ,

∏
λ∈Λ Γλ) where (aλ)λ∈Λρ(bλ)λ∈Λ if and only

if aλρλbλ for all aλ, bλ ∈ Sλ and λ ∈ Λ.

Proof. If (xλ)λ∈Λρ(yλ)λ∈Λ, then xλρλyλ for all λ ∈ Λ. Hence (xλγλzλ)ρλ(yλγλzλ)
for all zλ ∈ Sλ, γλ ∈ Γλ and λ ∈ Λ. Hence

((xλ)λ∈Λ ◦ (γλ)λ∈Λ ◦ (zλ)λ∈Λ)ρ((yλ)λ∈Λ ◦ (γλ)λ∈Λ ◦ (zλ)λ∈Λ).

Similarly, we can prove that

((zλ)λ∈Λ ◦ (γλ)λ∈Λ ◦ (xλ)λ∈Λ)ρ((zλ)λ∈Λ ◦ (γλ)λ∈Λ ◦ (yλ)λ∈Λ).

Therefore, ρ is a congruence relation on (
∏
λ∈Λ Sλ,

∏
λ∈Λ Γλ).

In the following theorem, we prove an isomorphism theorem on the product of
Γ-semigroups.
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Theorem 3.9. Let ρλ be a congruence relation on (Sλ,Γλ) for all λ ∈ Λ and ρ
the congruence relation on (

∏
λ∈Λ Sλ,

∏
λ∈Λ Γλ) defined in Lemma 3.8. Then,(∏

λ∈Λ

(Sλ : ρλ),
∏
λ∈Λ

Γλ

)
∼=

(
(
∏
λ∈Λ

Sλ) : ρ,
∏
λ∈Λ

Γλ

)
.

Proof. By Theorem 3.2 and Lemmas 3.7 and 3.8,
∏
λ∈Λ(Sλ : ρλ) and (

∏
λ∈Λ Sλ) : ρ

are
∏
λ∈Λ Γλ-semigroups. Define ψ :

∏
λ∈Λ(Sλ : ρλ) −→ (

∏
λ∈Λ Sλ) : ρ by

ψ((ρλ(xλ))λ∈Λ) = ρ((xλ)λ∈Λ) for all xλ ∈ Sλ (λ ∈ Λ). We show that (ψ, 1∏
λ∈Λ Γλ

)

is an isomorphism between (
∏
λ∈Λ(Sλ : ρλ),

∏
λ∈Λ Γλ) and ((

∏
λ∈Λ Sλ) : ρ,

∏
λ∈Λ Γλ).

We have

(ρλ(xλ))λ∈Λ = (ρλ(yλ)λ∈Λ ⇐⇒
ρλ(xλ) = ρλ(yλ), ∀λ ∈ Λ ⇐⇒ xλρλyλ, ∀λ ∈ Λ ⇐⇒
(xλ)λ∈Λρ(yλ)λ∈Λ ⇐⇒ ρ((xλ)λ∈Λ) = ρ((yλ)λ∈Λ)) ⇐⇒

ψ((ρλ(xλ))λ∈Λ) = ψ((ρλ(yλ))λ∈Λ).

Hence (ψ, 1∏
λ∈Λ Γλ

) is well-defined and one to one. Clearly, (ψ, 1∏
λ∈Λ Γλ

) is onto.

Now, we prove that (ψ, 1∏
λ∈Λ Γλ

) is a homomorphism. We have

ψ((ρλ(xλ))λ∈Λ ◦ (γλ)λ∈Λ ◦ (ρλ(yλ))λ∈Λ) =

ψ((ρλ(xλ)⊙ γλ ⊙ ρλ(yλ))λ∈Λ) =

ψ((ρλ(xλγλyλ))λ∈Λ) = ρ((xλγλyλ)λ∈Λ) =

ρ((xλ)λ∈Λ) ◦ (γλ)λ∈Λ ◦ ρ((yλ)λ∈Λ) =

ψ((ρλ(xλ))λ∈Λ)⊙ 1∏
λ∈Λ Γλ

((γλ)λ∈Λ)⊙ ψ((ρλ(yλ))λ∈Λ).

Therefore, (ψ, 1∏
λ∈Λ Γλ

) is an isomorphism.

In the next theorems, we consider the congruence relation induced by homo-
morphisms and investigate the corresponding results and properties associated
with this congruence relation.

Theorem 3.10. Let (φ, g) : (S1,Γ1) −→ (S2,Γ2) be a homomorphism. Define the
relation ρ(φ,g) on (S1,Γ1) as follows: xρ(φ,g)y if and only if φ(x) = φ(y). Then
ρ(φ,g) is a congruence relation on (S1,Γ1).

Proof. Clearly, ρ(φ,g) is an equivalence relation. Suppose that xρ(φ,g)y. We have

φ(x) = φ(y) =⇒ φ(x)g(γ)φ(z) = φ(y)g(γ)φ(z) =⇒ φ(xγz) = φ(yγz)

for all z ∈ S1 and γ ∈ Γ1. Thus (xγz)ρ(φ,g)(yγz). Similarly, we can prove that
(zγx)ρ(φ,g)(zγy). Therefore, ρ(φ,g) is a congruence relation on (S1,Γ1).

Theorem 3.11. Let (φ, g) : (S1,Γ1) −→ (S2,Γ2) be a homomorphism. Set A =
{I ⊆ S1 | ρ(φ,g) ⊆ I × I} and B = {J | J ⊆ S2}. Then there exists an one to one
map from A to B.
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Proof. Define ψ : A −→ B by ψ(I) = φ(I). Clearly, ψ is well-defined. Suppose
that ψ(I1) = ψ(I2), then φ(I1) = φ(I2). Also we have

x ∈ I1 =⇒ φ(x) ∈ φ(I1) = φ(I2)

=⇒ ∃y ∈ I2, φ(x) = φ(y)

=⇒ (x, y) ∈ ρ(φ,g) ⊆ I2 × I2

=⇒ x ∈ I2 =⇒ I1 ⊆ I2.

Similarly, we can prove that I2 ⊆ I1. Thus I1 = I2 and therefore ψ is one to
one.

Theorem 3.12. Let (S1,Γ1)
(φ1,g1)
−−−−→ (S2,Γ2)

(φ2,g2)
−−−−→ (S3,Γ3) be a sequence of ho-

momorphisms. Then

(ψ, g) : (S1 × S1,Γ1 × Γ1) −→ (S2 × S2,Γ2 × Γ2)

defined by ψ(x, y) = (φ1(x), φ1(y)) and g(γ, β) = (g1(γ), g1(β)) for all x, y ∈ S1

and γ, β ∈ Γ1 is a homomorphism such that ψ(ρ(φ1,g1)) ⊆ ρ(φ2,g2). Moreover, if
(φ1, g1) is onto and (φ2, g2) is one to one, then ψ(ρ(φ1,g1)) = ρ(φ2,g2).

Proof. It is easy to verify that (ψ, g) is a homomorphism. We have

ψ(a, b) ∈ ψ(ρ(φ1,g1)), (a, b) ∈ ρ(φ1,g1) =⇒
φ1(a) = φ1(b) =⇒ φ2(φ1(a)) = φ2(φ1(b)) =⇒

(φ1(a), φ1(b)) ∈ ρ(φ2,g2) =⇒ ψ(a, b) ∈ ρ(φ2,g2).

Thus ψ(ρ(φ1,g1)(x)) ⊆ ρ(φ2,g2). Now, if (φ1, g1) is onto and (φ2, g2) is one to
one, then we prove that ψ(ρ(φ1,g1)(x)) = ρ(φ2,g2). It is enough we prove that
ρ(φ2,g2) ⊆ ψ(ρ(φ1,g1)(x)). We have

(t, t′) ∈ ρ(φ2,g2) =⇒ φ2(t) = φ2(t
′)

=⇒ ∃a, b ∈ S, φ1(a) = t, φ1(b) = t′

=⇒ (t, t′) = ψ(a, b) = (φ1(a), φ1(b))

=⇒ (t, t′) ∈ ψ(ρ(φ1,g1)).

Therefore ρ(φ2,g2) ⊆ ψ(ρ(φ1,g1)(x)), which completes the proof.

Theorem 3.13. Let (S1,Γ1)
(φ1,g1)
−−−−→ (S2,Γ2)

(φ2,g2)
−−−−→ (S3,Γ3) be a sequence of ho-

momorphisms. Then Imφ1 × Imφ1 ⊆ ρ(φ2,g2) if and only if φ2 ◦ φ1 is constant.

Proof. (⇐=): Let (x, y) ∈ Imφ1 × Imφ1, then x = φ1(a) and y = φ1(b) for some
a, b ∈ S1. By hypothesis, we have φ2(φ1(a)) = φ2(φ1(b)), which implies that
(φ1(a), φ1(b)) = (x, y) ∈ ρ(φ2,g2). Therefore Imφ1 × Imφ1 ⊆ ρ(φ2,g2).

(=⇒): Let x, y ∈ S1, then (φ1(x), φ1(y)) ∈ Imφ1 × Imφ1 ⊆ ρ(φ2,g2). Hence
φ2(φ1(x)) = φ2(φ1(y)). Therefore, φ2 ◦ φ1 is constant.
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Finally, by the congruence relation induced by homomorphisms, we are able to
establish some isomorphism theorems and investigate the commutativity of some
diagrams.

Theorem 3.14 (Isomorphism Theorem). If (φ, g) : (S1,Γ1) −→ (S2,Γ2) is an ho-
momorphism, then there exists an unique isomorphism (ψ, g) : (S1 : ρ(φ,g),Γ1) −→
(S2,Γ2) such that the following diagram commutes:

where ΠS1
: S1 −→ (S1 : ρ(φ,g)) is defined by ΠS1

(x) = ρ(φ,g)(x) for all x ∈ S1

and 1Γ1 is the identity map on Γ1.

Proof. Define ψ : (S1 : ρ(φ,g)) −→ S2 by ψ(ρ(φ,g)(x)) = φ(x) for all x ∈ S1. Then,
we have

ρ(φ,g)(x) = ρ(φ,g)(y) ⇐⇒ xρ(φ,g)y ⇐⇒ φ(x) = φ(y),

which implies that ψ is well-defined and one to one. Clearly, ψ is onto. Now, we
prove (ψ, g) is a homomorphism. We have

ψ(ρ(φ,g)(x)⊙ γ ⊙ ρ(φ,g)(y)) = ψ(ρ(φ,g)(xγy))

= φ(xγy) = φ(x)g(γ)φ(y)

= ψ(ρ(φ,g)(x))g(γ)ψ(ρ(φ,g)(y)),

for all ρ(φ,g)(x), ρ(φ,g)(y) ∈ S1 : ρ(φ,g) and γ ∈ Γ1. Therefore, (ψ, g) is a homo-
morphism. Also φ(x) = ψ(ρ(φ,g)(x)) = ψ(ΠS1(x)) and g ◦ 1Γ1 = g, which imply

that the diagram is commutative. Let (ψ, g) : (S1 : ρ(φ,g),Γ1) −→ (S2,Γ2) be a

homomorphism such that ψ ◦ΠS1 = φ. We have

ψ(ρ(φ,g)(x)) = ψ(ΠS1(x)) = φ(x) = ψ(ΠS1(x)) = ψ(ρ(φ,g)(x)).

Therefore, (ψ, g) is unique and the proof is completed.

Theorem 3.15. Let (S1,Γ1)
(φ1,g1)
−−−−→ (S2,Γ2)

(φ2,g2)
−−−−→ (S3,Γ3) be a sequence of ho-

momorphisms. Then there exists an unique homomorphism

(ψ, g1) : (S1 : ρ(φ1,g1),Γ1) −→ (S2 : ρ(φ2,g2),Γ2)
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such that the following diagram is commutative:

(S1,Γ1)
(φ1,g1)

−−− −→ (S2,Γ2)
| |

(ΠS1 , 1Γ1) | | (ΠS2 , 1Γ2)
↓ ↓

(S1 : ρ(φ1,g1),Γ1)
(ψ,g1)

−−− −→ (S2 : ρ(φ2,g2),Γ2)

Moreover, if (φ1, g1) is onto and (φ2, g2) is one to one, then (ψ, g1) is an isomor-
phism.

Proof. Define ψ : S1 : ρ(φ1,g1) −→ S2 : ρ(φ2,g2) by ψ(ρ(φ1,g1)(x)) = ρ(φ2,g2)(φ1(x))
for all ρ(φ1,g1)(x) ∈ S1 : ρ(φ1,g1). We prove that ψ is well-defined:

ρ(φ1,g1)(x) = ρ(φ1,g1)(y) =⇒ φ1(x) = φ1(y)

=⇒ ρ(φ2,g2)(φ1(x)) = ρ(φ2,g2)(φ1(y))

=⇒ ψ(ρ(φ1,g1)(x)) = ψ(ρ(φ2,g2)(y)).

Now, we prove that (ψ, g1) is a homomorphism. We have

ψ(ρ(φ1,g1)(x)⊙ γ ⊙ ρ(φ1,g1)(y)) = ψ(ρ(φ1,g1)(xγy))

= ρ(φ2,g2)(φ1(xγy))

= ρ(φ2,g2)(φ1(x)g1(γ)φ1(y))

= ρ(φ2,g2)(φ1(x))⊙ g1(γ)⊙ ρ(φ2,g2)(φ1(y))

= ψ(ρ(φ1,g1)(x))⊙ g1(γ)⊙ ψ(ρ(φ1,g1)(y)).

Therefore, (ψ, g1) is a homomorphism. Also, we have

ψ(ΠS1(x)) = ψ(ρ(φ1,g1)(x)) = ρ(φ2,g2)(φ1(x)) = ΠS2(φ1(x)),

and g1 ◦ 1Γ1 = 1Γ2 ◦ g1. Therefore, the diagram is commutative. Let (ψ, g1) : (S1 :
ρ(φ1,g1),Γ1) −→ (S2 : ρ(φ2,g2),Γ2) be a homomorphism which makes the diagram
commutative. We have

ψ(ρ(φ1,g1)(x)) = ψ(ΠS1(x)) = ΠS2(φ1(x)) = ρ(φ2,g2)(φ1(x)) = ψ(ρ(φ1,g1)(x)).

Therefore, (ψ, g1) is unique and the proof is completed.
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