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Abstract : This paper studied an insurance model under the condition that the
claims can be control by reinsurance and an insurance company requires a sufficient
initial capital to ensure a ruin probability will not exceed a given quantity α.The
objective is to find the minimum initial capital for a given ruin probability under
the condition that the claims can be controlled by reinsurance. The existence
of the minimum initial capital was proved and an example in approximating the
minimum initial capital for exponential claims was finally given.
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1 Introduction

In this paper, we assume that all processes are defined in a probability space
(Ω,=, P ). Claims happen at the times Ti, satisfying 0 = T0 ≤ T1 ≤ T2 ≤ · · · . We
call them arrivals. The nth claim arriving at time Tn causes the claim size Yn.
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The interarrival, Zn := Tn − Tn−1 is the length of time between the (n − 1)th

claim and the nth claim. By a period n, we shall mean the random interval
[Tn−1, Tn), n ≥ 1.

Now let a constant c0 represent the premium rate for one unit time; the random

variable c0

n∑

i=1

Zi = c0Tn describes the inflow of capital into the business in [0, Tn],

and
n∑

i=1

Yi describes the outflow of capital due to payments for claims occurring

in [0, Tn]. Therefore, the quantity

X0 = x, Xn = x + c0

n∑

i=1

Zi −
n∑

i=1

Yi, n = 1, 2, 3, . . . (1.1)

is the discrete-time surplus process at time Tn with the constant x ≥ 0 as initial
capital.

The general approach to studying ruin probability in the discrete-time surplus
process; Chan and Zhang [3], Pavlovao and Willmot [11], Dickson [4] Li [8][9] and
Rongming and Haifeng [12]. The researcher studied the ruin probability in term
of initial capital x.

In this paper, we study the minimum initial capital x for the discrete-time sur-
plus process under the condition that the claims can be controlled by reinsurance
and the given boundary of the ruin probability.

2 Model Descriptions

Let {Xn, n ≥ 0} be the surplus process which can be controlled by choosing
a retention level b ∈ [b, b], 0 ≤ b ≤ b ≤ b ≤ ∞, of a reinsurance for one period.
Next, for each level b, an insurer pays a premium rate to a reinsurer which is
deducted from c0. As a result, the insurer’s income rate will be represented by
a function c(b). The level b stands for the control action without reinsurance, so
that c0 = c(b) and the level b is the smallest retention level which can be chosen.
As a consequence, we obtain the net income rate c(b) where 0 ≤ c(b) ≤ c0 for all
b ∈ [b, b] and c(b) is non-decreasing. The premium rate for one unit time c0 and
the net income rate c(b) are assumed to be satisfied the following:

c0 >
E[Y ]
E[Z]

and c(b) >
E[h(b, Y )]

E[Z]
(2.1)

where Y is a claim size and Z is an interarrival.
Moreover, by the expected value principle c0 and c(b) can be calculated as

follows:

c0 = (1 + θ0)
E[Y ]
E[Z]

and

c(b) = c0 − (1 + θ1)
E[Y − h(b, Y )]

E[Z]
(2.2)
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where 0 < θ0 < 1 and 0 < θ1 < 1 are the safety loadings of the insurer and the
reinsurer respectively. The measurable function h(b, y) is the part of the claim size
y paid by the insurer, and the remaining part y−h(b, y) which is called reinsurance
recovery paid by the reinsurer. In the case of an excess of loss reinsurance, we
have

h(b, y) = min{b, y} with retention level 0 ≤ b ≤ b ≤ b = ∞.

In the case of a proportional reinsurance, we have

h(b, y) = by with retention level 0 ≤ b ≤ b ≤ b = 1.

For each n ∈ {1, 2, 3, . . .}, let bn−1 be a retention level (control action) at the
time Tn−1 and let Zn = 1. Therefore, we can modify the surplus process (1.1) to
be the following:

Xn = x +
n∑

i=1

c(bi−1)−
n∑

i=1

h(bi−1, Yi) (2.3)

where X0 = x.
We see that the process {Xn, n ≥ 0} is driven by the sequence of retention

level (control actions) {bn−1, n ≥ 1} and the sequence of claims {Yn, n ≥ 1}. So,
we make the following assumption:

Assumption 1. Independence Assumption (IA)
The sequence of claims {Yn, n ≥ 1} is independent and identically distributed (iid)
random variables.

From Assumption IA, it follows that {h(bn−1, Yn), n ≥ 1} is an independent se-
quence.

Definition 2.1. Let N ∈ {1, 2, 3, . . .} be a time horizon (number of periods). A
plan for the time N is a (finite) sequence π = {bn−1}N

n=1 of bn−1 ∈ [b, b] for
n = 1, 2, 3, . . . , N . A set of all plans for the time horizon N over a control space
[b, b] is denoted by P(N, [b, b]). A plan π ∈ P(N, [b, b]) is said to be stationary, if
b0 = b1 = · · · = bN−1.

3 Main Results

In this section, we consider a finite-time ruin probability of the discrete-time
surplus process in equation (2.3) where the sequence of claims {Yn, n ≥ 1} satisfy
Assumption IA. Let FY1 be the distribution function of Y1, i.e.,

FY1(y) = P (Y1 ≤ y).

Let N ∈ {1, 2, 3, . . .} be a time horizon and x ≥ 0 be an initial capital. The
survival probability at a time n ∈ {1, 2, 3, . . . , N} is defined by

ϕn(x, π) := P (X1 ≥ 0, X2 ≥ 0, X3 ≥ 0, . . . , Xn ≥ 0|X0 = x) (3.1)
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where π ∈ P(N, [b, b]). Moreover, the ruin probability at a time n ∈ {1, 2, 3, . . . , N}
is defined by

Φn(x, π) = 1− ϕn(x, π). (3.2)

Definition 3.1. Let {Xn, n ≥ 0} be the surplus process in equation (2.3), driven by
the sequence of control actions {bn−1, n ≥ 1} and the sequence of claims {Yn, n ≥
1}. Let {c(bn−1)}n≥1 be a sequence of net income rates and x ≥ 0 be an initial
capital. For each time horizon N ∈ {1, 2, 3, . . .}, let π ∈ P(N, [b, b]) and α ∈ (0, 1).
If ΦN (x, π) ≤ α, then x is called an acceptable initial capital corresponding to
(α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1). Particularly, if

x∗ = min
x≥0

{x : ΦN (x, π) ≤ α}

exists, x∗ is called the minimum initial capital corresponding to
(α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).

3.1 Ruin and Survival Probability

We defined a total claim process by

Sn := h(b0, Y1) + h(b1, Y2) + · · ·+ h(bn−1, Yn)

for all n ∈ {1, 2, 3, . . .}. The survival probability at the time horizon N as men-
tioned in equation (3.1) can be expressed as follows:

ϕN (x, π) = P

(
S1 ≤ x + c(b0), S2 ≤ x +

2∑
n=1

c(bn−1), . . . , SN ≤ x +
N∑

n=1

c(bn−1)

)

= P

(
N⋂

n=1

{
Sn ≤ x +

n∑

k=1

c(bk−1)

})
. (3.3)

From equation (3.3), we have

ϕN (x, π) = E

[
N∏

n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− x

)]
,

where

1A(x) =
{

1 , x ∈ A
0 , else ,

for all A ⊆ R. For each a ∈ R and x ≥ 0, we obtain

1(−∞,0](a− x) =
{

1 , x ≥ a
0 , x < a.
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Then 1(−∞,0](a − x) is non-decreasing in x and right continuous on [0,∞). This

implies that
N∏

n=1

1(−∞,0](an−x) is also non-decreasing in x and right continuous on

[0,∞) where an ∈ R,n = 1, 2, 3, . . . , N . For each plan π = {b0, b1, b2, . . . , bN−1},
by the Dominated Convergence Theorem, we get

lim
u→x+

ϕN (u, π) = lim
u→x+

E

[
N∏

n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− u

)]

= E

[
lim

u→x+

N∏
n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− u

)]

= E

[
N∏

n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− x

)]

= ϕN (x, π).

Therefore, ϕN (x, π) is non-decreasing in x and right continuous on [0,∞). This
implies that ΦN (x, π) = 1− ϕN (x, π) is non-increasing in x and also right contin-
uous on [0,∞).

Theorem 3.2. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]), and let x ≥ 0 be given.
Then

lim
x→∞

ϕN (x, π) = 1 and lim
x→∞

ΦN (x, π) = 0.

Proof : Firstly, we will show the following relation
N⋂

n=1

{ω : h(bn−1, Yn)(ω) ≤ x + c(bn−1)} ⊆
N⋂

n=1

{
ω : Sn(ω) ≤ Nx +

n∑

k=1

c(bk−1)

}
.

(3.4)

Let ω0 ∈
N⋂

n=1

{ω : h(bn−1, Yn)(ω) ≤ x + c(bn−1)} be given. For each n ∈ {1, 2, 3, . . . , N},
we have h(bn−1, Yn)(ω0) ≤ x + c(bn−1). Thus,

Sn(ω0) =
n∑

k=1

h(bk−1, Yk)(ω0)

≤ nx +
n∑

k=1

c(bk−1)

≤ Nx +
n∑

k=1

c(bk−1).

That is ω0 ∈
{

ω : Sn(ω) ≤ Nx +
n∑

k=1

c(bk−1)

}
. Therefore (3.4) follows. By As-

sumption IA, the process {h(bn−1, Yn), n ≥ 1} is an independent sequence, then
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we have

P

(
N⋂

n=1

{h(bn−1, Yn) ≤ x + c(bn−1)}
)

=
N∏

n=1

P (h(bn−1, Yn) ≤ x + c(bn−1)) .

(3.5)
Note that Yn ≥ h(bn−1, Yn) for all n ∈ {1, 2, 3, . . . , N}, then

{ω : Yn(ω) ≤ x + c(bn−1)} ⊆ {ω : h(bn−1, Yn)(ω) ≤ x + c(bn−1)}.

From equation (3.5), we get

P

(
N⋂

n=1

{h(bn−1, Yn) ≤ x + c(bn−1)}
)

≥
N∏

n=1

P (Yn ≤ x + c(bn−1))

=
N∏

n=1

FYn
(x + c(bn−1)) . (3.6)

Moreover, it follows from equation (3.3) that

ϕN (Nx, π) = P

(
N⋂

n=1

{
Sn ≤ Nx +

n∑

k=1

c(bk−1)

})
. (3.7)

Thus

N∏
n=1

FYn (x + c(bn−1)) ≤ P

(
N⋂

n=1

{h(bn−1, Yn) ≤ x + c(bn−1)}
)

≤ P

(
N⋂

n=1

{
Sn ≤ Nx +

n∑

k=1

c(bk−1)

})
(By (3.4))

= ϕN (Nx, π) ≤ 1. (By equation (3.7))

Since FYn(x + c(bn−1)) → 1 as x →∞ for n = 1, 2, 3, . . . , N , then

N∏
n=1

FYn (x + c(bn−1)) → 1 as x →∞.

Hence ϕN (x, π) → 1 and ΦN (x, π) = 1 − ϕN (x, π) → 0 for x → ∞. The proof is
now complete.
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Corollary 3.3. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]), α ∈ (0, 1), and let x ≥ 0 be
given. Then there exists x̃ ≥ 0 such that, for all x ≥ x̃, x is an acceptable initial
capital corresponding to (α,N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).

Proof : Let
x̃ = sup{x ≥ 0 | ΦN (x, π) > α}.

We consider by cases:

Case 1. ΦN (x̃, π) > α. Since ΦN (x, π) is non-increasing in x, then ΦN (x, π) ≤ α
for all x > x̃, i.e., ΦN (x, π) ≤ α on (x̃,∞). Thus

lim
x→x̃+

ΦN (x, π) ≤ α.

Since ΦN (x, π) right continuous on (x̃,∞) and non-increasing in x, then

α < ΦN (x̃, π) = lim
x→x̃+

ΦN (x, π) ≤ α.

Hence, ΦN (x̃, π) = α. As a result x̃ is a smallest real constant such that, for all
x ≥ x̃, x is an acceptable initial capital corresponding to
(α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).

Case 2. ΦN (x̃, π) ≤ α. Since ΦN (x, π) is non-increasing in x, then ΦN (x, π) > α
for all x < x̃ and ΦN (x, π) ≤ α for all x ≥ x̃, i.e., x̃ is a smallest real con-
stant such that, for all x ≥ x̃, x is an acceptable initial capital corresponding to
(α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).

3.2 Bounds of the Ruin Probability

In this part, we shall describe the upper bound of the ruin probability with
negative exponential. In order to prove the following lemma, we shall use an
equivalent definition of the ruin probability which will be given as follows:

Φn(x, π) = P

(
max

1≤k≤n

(
k∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

)
, n = 1, 2, 3, . . . .

Lemma 3.4. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, α ∈ (0, 1), and
let x ≥ 0 be given. Then the ruin probability at the time N satisfies the following
equation

ΦN (x, π) = Φ1(x, π) +
∫

{y:0≤h(b0,y)≤x+c(b0)}

ΦN−1(x + c(b0)− h(b0, y), π)dFY1(y)

(3.8)
where Φ0(x, π) = 0.
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Proof : We prove equation (3.8) by induction. We start with N = 1. Since
Φ0(x, π) = 0 for all x ≥ 0, then

∫

{y:0≤h(b0,y)≤x+c(b0)}

Φ0(x + c(b0)− h(b0, y), π)dFY1(y) = 0.

This proves equation (3.8) for N = 1. Now assume that equation (3.8) holds for
1 < n ≤ N − 1. Then

ΦN (x, π) = P

(
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

)

= P

({
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

}
⋂

Ω

)

= P

({
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

} ⋂{{
h(b0, Y1)− c(b0) > x

}

⋃ {
h(b0, Y1)− c(b0) ≤ x

}})

= P

(
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) > x

)

+ P

(
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) ≤ x

)
.

Since π is stationary and {Yn}n≥1 is an iid sequence, then
{

ω ∈ Ω : max
1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)(ω)− c(bi−1))

)
> x, h(b0, Y1)(ω)− c(b0) > x

}

= {ω ∈ Ω : h(b0, Y1)(ω)− c(b0) > x} .

This result implies

ΦN (x, π) = P (h(b0, Y1)− c(b0) > x)

+P

(
max

2≤n≤N

(
h(b0, Y1)− c(b0) +

n∑

i=2

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) ≤ x

)

= Φ1(x, π)

+P

(
h(b0, Y1)− c(b0) + max

2≤n≤N

(
n∑

i=2

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) ≤ x

)

= Φ1(x, π)

+ E

[
1

h(b0,Y1)−c(b0)≤x, h(b0,Y1)−c(b0)+ max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
>x

]
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= Φ1(x, π)

+ E

[
1

h(b0,Y1)−c(b0)≤x
· 1

h(b0,Y1)−c(b0)+ max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
>x

]

= Φ1(x, π)

+ E

[
E

[
1h(b0,Y1)−c(b0)≤x · 1

h(b0,Y1)−c(b0)+ max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
>x
|σ(Y1)

]]

= Φ1(x, π)

+E

[
1h(b0,Y1)≤x+c(b0) · E

[
1

max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
+(h(b0,Y1)−x−c(b0))>0

|σ(Y1)

]]

= Φ1(x, π) + E
[
1

h(b0,Y1)≤x+c(b0) · E
[
1(0,∞)(Z + W )|σ(Y1)

]]
(3.9)

where Z = max
2≤n≤N

(
n∑

i=2

(h(bi−1, Yi)− c(bi−1))

)
and W = h(b0, Y1)− x− c(b0).

Since {h(bn−1, Yn)}n≥1 is an independent sequence, then Z and W are
independent. It follows from [5, exercise 9, page 341] that

E
[
1(0,∞)(Z + W )|σ(Y1)

]
=

∫

ω∈ Ω

1(0,∞)(Z(ω) + W |σ(Y1))dPZ(ω)

=
∫

R

1(0,∞)(z + W )dFZ(z).

This implies that

ΦN (x, π) = Φ1(x, π) + E


1h(b0,Y1)≤x+c(b0) ·




∫

R

1(0,∞)(z + W )dFZ(z)







= Φ1(x, π)+E


1h(b0,Y1)≤x+c(b0) ·




∫

R

1(0,∞)(z + h(b0, Y1)− x− c(b0))dFZ(z)







= Φ1(x, π)+
∫

{ω∈Ω:h(b0,Y1)(ω)∈[0,x+c(b0)]}




∫

R

1(0,∞)(z + h(b0, Y1)(ω)− x− c(b0))dFZ(z)


 dP (ω)

= Φ1(x, π) +
∫

{ω∈Ω:h(b0,Y1)(ω)∈[0,x+c(b0)]}

E
[
1Z>x+c(b0)−h(b0,Y1)(ω)

]
dP (ω)

= Φ1(x, π) +
∫

{ω∈Ω:h(b0,Y1)(ω)∈[0,x+c(b0)]}

P (Z > x + c(b0)− h(b0, Y1)(ω)) dP (ω)
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= Φ1(x, π) +
∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

P (Z > x + c(b0)− h(b0, y)) dFY1(y)

= Φ1(x, π) +
∫

{y:0≤h(b0,y)≤x+c(b0)}

ΦN−1(x + c(b0)− h(b0, y), π)dFY1(y).

This proves equation (3.8).

Remark 3.5. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, α ∈ (0, 1). As-
sume that {Yn, n ≥ 1} is an iid sequence of exponential distribution with intensity
λ > 0, i.e., Y1 has the probability density function

f(y) = λe−λy.

By Lemma 3.4, the ruin probability can be written in a recursive form as
follows:

Case 1: For an excess of loss reinsurance, we get

Φn(x, π) = Φn−1(x, π) +
[λ(x + nc(b0))]

n−1

(n− 1)!
e−λ[x+nc(b0)]

x + c(b0)
x + nc(b0)

(3.10)

for b0 ≥ x + c(b0) and n = 1, 2, 3, . . . , N .

Case 2: For a proportional reinsurance, we get

Φ0(x, π) = 0 and

Φn(x, π) = Φn−1(x, π)+
1

(n− 1)!

[
λ

b0
(x + nc(b0))

]n−1

e−
λ
b0

(x+nc(b0)) x + c(b0)
x + nc(b0)

(3.11)

for all n = 1, 2, 3, . . . , N . Further, for b0 = b̄0 = 1, we also obtained the
recursive form as follows :

Φ0(x, π) = 0 and

Φn(x, π) = Φn−1(x, π) +
1

(n− 1)!
[λ(x + nc0)]

n−1
e−λ(x+nc0)

x + c0

x + nc0

for all n = 1, 2, 3, . . . , N .

Definition 3.6. (Sub-adjustment coefficient). Let s > 0 and Y be a non-
negative random variable. If there exists d0 > 0 such that

E
[
ed0Y

]
≤ ed0s, (3.12)

then d0 is called a sub-adjustment coefficient of (s, Y ). Specifically, if (3.12)
is an equality then d0 is called an adjustment coefficient of (s, Y ).
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Theorem 3.7. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, and let
c(b0) > 0 be a net income rate. If d0 > 0 is a sub-adjustment coefficient of
(c(b0), h(b0, Y1)), then

Φn(x, π) ≤ e−d0x, (3.13)

for all x ≥ 0 and all n = 1, 2, 3, . . . , N.

Proof : Let x ≥ 0 and d0 > 0 be a sub-adjustment coefficient of (c(b0), h(b0, Y1)),
i.e.,

E
[
ed0h(b0,Y1)

]
≤ ed0c(b0).

We will prove this theorem by induction. We start with n = 1,

Φ1(x, π) = P (h(b0, Y1) > x + c(b0))
= P (d0h(b0, Y1) > d0(x + c(b0)))
= P (ed0h(b0,Y1) > ed0(x+c(b0)))

≤ E
[
ed0h(b0,Y1)

]

ed0(x+c(b0))
(By Markov’s inequality)

≤ ed0c(b0)

ed0(x+c(b0))
= e−d0x.

Let k ≤ N − 1. Assume that inequality (3.13) holds for 1 < n ≤ k. Next,
we shall show that inequality (3.13) holds for n = k + 1. By Lemma 3.4
and inductive assumption, we get

Φk+1(x, π)

= Φ1(x, π) +
∫

{y:0≤h(b0,y)≤x+c(b0)}

Φk(x + c(b0)− h(b0, y), π)dFY1(y)

≤ Φ1(x, π) +
∫

{y:0≤h(b0,y)≤x+c(b0)}

e−d0(x+c(b0)−h(b0,y))dFY1(y). (3.14)

Next, we will calculate the first term of right-hand side of inequality (3.14).

Φ1(x, π)
= P (h(b0, Y1) > x + c(b0))

= P
(
ed0h(b0,Y1)1(x+c(b0),∞)(h(b0, Y1)) > ed0(x+c(b0))

)

≤ E
[
ed0h(b0,Y1)1(x+c(b0),∞)(h(b0, Y1))

]

ed0(x+c(b0))
(By Markov’s inequality)
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=

∫

R

ed0h(b0,y)1(x+c(b0),∞)(h(b0, y))dFY1(y)

ed0(x+c(b0))

=

∫

{y:x+c(b0)<h(b0,y)<∞}

ed0h(b0,y)dFY1(y)

ed0(x+c(b0))

=
∫

{y:x+c(b0)<h(b0,y)<∞}

e−d0(x+c(b0)−h(b0,y))dFY1(y).

Thus inequality (3.14) can be modified to be the following

Φk+1(x, π)

≤
∫

{y:x+c(b0)<h(b0,y)<∞}

e−d0(x+c(b0)−h(b0,y))dFY1(y)

+
∫

{y:0≤h(b0,y)≤x+c(b0)}

e−d0(x+c(b0)−h(b0,y))dFY1(y)

=
∫

{y:0≤h(b0,y)<∞}

e−d0(x+c(b0)−h(b0,y))dFY1(y)

=
e−d0x

ed0c(b0)

∫

{y:0≤h(b0,y)<∞}

ed0h(b0,y)dFY1(y)

=
e−d0x

ed0c(b0)
E

[
ed0h(b0,Y1)

]

≤ e−d0x

ed0c(b0)
ed0c(b0) = e−d0x.

This proves equation (3.13) for n = k + 1 and concludes the proof.

Corollary 3.8. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, α ∈
(0, 1), and let c(b0) > 0 be a net income rate. Assume that d0 > 0 is a sub-
adjustment coefficient of (c(b0), h(b0, Y1)), then there exists an acceptable
initial capital x(x ≥ 0) corresponding to (α,N, {c(bn−1) = c(b0)}n≥1,
{h(b0, Yn)}n≥1) such that

0 ≤ x ≤ − lnα

d0
or α ≤ e−d0x.
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Proof : Let d0 > 0 be a sub-adjustment coefficient of (c(b0), h(b0, Y1)). By
Theorem 3.7, we have

ΦN (u, π) ≤ e−d0u,

for all u ≥ 0. Let α ∈ (0, 1). By Corollary 3.3, there exists v ≥ 0
which is an acceptable initial capital corresponding to (α, N, {c(bn−1) =
c(b0)}n≥1, {h(b0, Yn)}n≥1). By Definition 3.1, we have

ΦN (v, π) ≤ α.

Since ΦN (v, π) is non-increasing in v for each π, then there exists 0 ≤ x ≤ v
such that α = ΦN (x, π) ≤ e−d0x. Hence x is an acceptable initial capital
corresponding to (α, N, {c(bn−1) = c(b0)}n≥1, {h(b0, Yn)}n≥1). The proof is
now complete.

Note:It’s known that a large initial capital results in a small ruin proba-
bility. However, an insurance company usually does not posses unlimited
initial capital, but only a small initial capital, that must be sufficient for
a predetermined solvency (not ruin) condition for the firm is preferable.
If an acceptable ruin probability is fixed, the firm can find an interval of
acceptable initial capital by virtue of Corollary (3.8).

Example 3.9. (Exponential claims under the proportional reinsurance).
We assume that {Yn}n≥1 is a sequence of claims with iid exponential Exp(1),
and {Xn}n≥0 is a sequence of surplus which satisfies the model (2.3). Let
N ∈ {1, 2, 3, . . .}, and π ∈ P(N, [b, b]) be stationary. Suppose that h(b0, y)
is the proportional reinsurance with retention level b0, and c(b0) > 0 is a
net income rate which is calculated by the expected value principle, i.e.,

c(b0) = c0 − (1 + θ1)E[Y1 − h(b0, Y1)] = θ0 − θ1 + b0(1 + θ1). (3.15)

Assume that α = 0.05, θ0 = θ1 = 0.1, and b0 = 0.6. Then there exists an
adjustment coefficient d0 = 0.2935569060 of (c(b0), b0Y1) such that

0 ≤ x ≤ −ln0.05
0.2935569060

= 10.20494566

which is an interval of acceptable initial capital with corresponding to
(1, N, {c(bn−1) = c(b0)}n≥1, {b0Yn}n≥1)

Let
f(d) := E

[
edb0Y1

]
− edc(b0).



556 Thai J. Math. 11 (2013)/ A. Intarasit et al.

Note that

E
[
edb0Y1

]
=

∞∫

0

edb0yfY1(y)dy =

∞∫

0

edb0ye−ydy =
1

1− db0
and

edc(b0) = edb0(1+θ1). (3.16)

By Definition 3.6, d0 is an adjustment coefficient of (c(b0), b0Y1) if f(d0) =
0. Hence E

[
ed0b0Y1

]
= ed0c(b0). By substitute b0 and θ1 into equation

(3.16), we get

1
1− 0.6d0

= e0.66d0 .

Solving for d0, we get d0 = 0.2935569060. By Corollary 3.8, we get

0 ≤ x ≤ −ln0.05
0.2935569060

= 10.20494566

which is an interval of acceptable initial capital with corresponding to
(0.05, N, {c(bn−1) = 0.66}n≥1, {0.6Yn}n≥1). This means that ΦN (x, π) ≤
0.05 for all 0 ≤ x ≤ 10.20494566.

Example 3.10. (Exponential claims under the excess of loss reinsurance).
We assume that {Yn}n≥1 and {Xn}n≥0 are the sequences given in example
3.9. Let N ∈ {1, 2, 3, . . .}, and π ∈ P(N, [b, b]) be stationary. Suppose that
h(b0, y) is the excess of loss reinsurance with retention level b0. By expected
value principle, the net income rate c(b0) satisfies the following equation

c(b0) = c0− (1 + θ1)E[Y1− h(b0, Y1)] = θ0− θ1 + (1 + θ1)[1− e−b0 ]. (3.17)

Assume that α = 0.05, θ0 = θ1 = 0.1 and b0 = 100. Then there exists a
sub-adjustment coefficient d0 = 0.17 of (c(b0), h(b0, Y1)) such that

0 ≤ x ≤ − ln0.05
0.17

= 17.6220

which is an interval of acceptable initial capital with corresponding to
(0.05, N, {c(bn−1) = c(b0)}n≥1, {h(b0, Yn)}n≥1)

Let
f(d) := E

[
edh(b0,Y1)

]
− edc(b0).
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Note that

E
[
edh(b0,Y1)

]
=

∞∫

0

edh(b0,y)e−ydy =

b0∫

0

edye−ydy +

∞∫

b0

eb0de−ydy =
deb0(d−1) − 1

d− 1
,

and edc(b0) = ed(1+θ1)[1−e−b0 ]. (3.18)

By Definition 3.6, d0 is a sub-adjustment coefficient of (c(b0), h(b0, Y1)) if
f(d0) ≤ 0. Hence E

[
ed0h(b0,Y1)

] ≤ ed0c(b0). By substitute b0, θ0 and θ1 into
equation (3.18), we get

d0e
100(d0−1) − 1
d0 − 1

≤ e1.1d0[1−e−100].

Solving for d0, we get d0 = 0.17. By Corollary (3.8), we get

0 ≤ x ≤ − ln0.05
0.17

= 17.6220

which is an interval of acceptable initial capital with corresponding to
(0.05, N, {c(bn−1) = 1.1}n≥1, {h(100, Yn)}n≥1). This means that ΦN (x, π) ≤
0.05 for all 0 ≤ x ≤ 17.6220.

3.3 Existence of Minimal Capital

Let α ∈ (0, 1). As a result of Corollary (3.8) that {x ≥ 0 : ΦN (x, π) ≤
α} is a non-empty set. Since the set {x ≥ 0 : ΦN (x, π) ≤ α} is an in-
finite set, then there are many acceptable initial capital corresponding to
(α,N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1). In this section, we will prove the ex-
istence of a minimum initial capital that correspond to (α,N, {c(bn−1)}n≥1,
{h(bn−1, Yn)}n≥1).

Theorem 3.11. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) and let α ∈ (0, 1).
Then there exists x∗ ≥ 0 such that

x∗ = min
x≥0

{x : ΦN (x, π) ≤ α}.

Proof : Let π ∈ P(N, [b, b]) be fixed. We consider by case.

Case 1: For ΦN (0, π) ≤ α. We get min
x≥0

{x : ΦN (x, π) ≤ α} = 0.



558 Thai J. Math. 11 (2013)/ A. Intarasit et al.

Case 2: For ΦN (0, π) > α. Since ΦN (x, π) is non-increasing in x, by
Corollary 3.3, there exists x̃ > 0 such that ΦN (x̃, π) ≤ α. Obviously, there
exists non-empty set A such that A = {x ∈ [0, x̃] : ΦN (x, π) ≤ α}. We
claim that there exists x∗ ∈ [0, x̃] such that

x∗ = min
x∈[0,x̃]

{x : ΦN (x, π) ≤ α} = min
x≥0

{x : ΦN (x, π) ≤ α}.

Next, we prove claim. Since A ⊆ [0, x̃], then there exists x∗ ∈ [0, x̃] such
that x∗ = inf A. For x∗ = x̃, we obtain

x∗ = minA = min
x∈[0,x̃]

{x : ΦN (x, π) ≤ α} = min
x≥0

{x : ΦN (x, π) ≤ α}.

For 0 < x∗ < x̃. We assume that x∗ ∈ [0, x̃] − A. Hence ΦN (x∗, π) > α.
Since x∗ = inf A, then there exists x∗n ∈ A such that x∗ < x∗n ≤ x∗ + 1

n for
n ∈ {1, 2, ...}. Since ΦN (·, π) is right continuous at x∗, then

α < ΦN (x∗, π) = lim
n→∞ΦN (x∗n, π) ≤ α.

Contradiction. Hence x∗ ∈ A and x∗ = min A = min
x∈[0,x̃]

{x : ΦN (x, π) ≤ α}
= min

x≥0
{x : ΦN (x, π) ≤ α}.

This proves case 1 and 2, and conclude the proof.

The next theorem is proved similarly to Theorem 2.8 (Sattayatham et
al. [13]).

Theorem 3.12. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) and let α ∈ (0, 1).
Assume that v0, x0 ≥ 0 such that v0 < x0. Let {vm}m≥1 and {xm}m≥1 be
two real sequences defined by




vm = vm−1 and xm =
xm−1 + vm−1

2
, if ΦN

(
xm−1 + vm−1

2
, π

)
≤ α

vm =
vm−1 + xm−1

2
and xm = xm−1, if ΦN

(
xm−1 + vm−1

2
, π

)
> α

for all m = 1, 2, 3, . . .. If ΦN (x0, π) ≤ α < ΦN (v0, π), then

lim
m→∞xm = min

x≥0
{x : ΦN (x, π) ≤ α} = x∗.
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4 Numerical Results

In this section, we provide numerical illustration of main results. We ap-
proximate the minimal initial capital of the discrete-time surplus process
(2.3) by using Theorem 3.12 according to the following cases:

(a). Proportional Reinsurance.
We assume that {Yn}n≥1 is a sequence of claims with iid exponential Exp(1)
and h(b0, y) is the proportional reinsurance with retention level b0. Let N ∈
{1, 2, 3, . . .} be the time horizon and π = {bn−1 = 0.6}N

n=1 be stationary.
We choose model parameters as follows: θ0 = θ1 = 0.10 which give c(b0) =
0.66 and θ0 = θ1 = 0.25 which give c(b0) = 0.75. Moreover, we choose
α = 0.05, α = 0.1 and α = 0.2. As a result, we get the table of the
minimum initial capital as below :

α = 0.05 α = 0.1 α = 0.2
N θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25
10 3.3909 : 2.7854 2.5919 : 2.0384 1.7358 : 1.2562
20 4.4983 : 3.3728 3.4846 : 2.4796 2.3918 : 1.5524
30 5.2438 : 3.6605 4.0747 : 2.6854 2.8148 : 1.6829
40 5.8067 : 3.8215 4.5137 : 2.7963 3.1233 : 1.7504
50 6.2558 : 3.9175 4.8593 : 2.8605 3.3619 : 1.7884
100 7.6364 : 4.0664 5.8902 : 2.9559 4.0471 : 1.8426
200 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
300 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
400 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
500 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

1, 000 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
5, 000 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497
10, 000 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

Table 1: Minimum initial capital in the case proportional reinsurance.

Table 1 shows an approximation of min
x≥0

{x : ΦN (x, π) ≤ α} with m = 25,

v0 = 0, x0 = 20 as mentioned in Theorem 3.12 and ΦN (x, π) is computed
by using the recursive form as mentioned in equation (3.11). The numerical
results in Table 1 show a minimum initial capital x = 3.3909 for α = 0.05,
N = 10 and θ0 = θ1 = 0.1 etc.



560 Thai J. Math. 11 (2013)/ A. Intarasit et al.

(b). Excess of Loss Reinsurance.
Again we assume that {Yn}n≥1 is a sequence of claims with iid exponential
Exp(1) and h(b0, y) is the excess of loss reinsurance with retention level b0 =
100. Let N ∈ {1, 2, 3, . . .} be the time horizon and π = {bn−1 = 100}N

n=1 be
stationary. We choose model parameters as follows: θ0 = θ1 = 0.10 which
give c(b0) = 1.1 and θ0 = θ1 = 0.25 which give c(b0) = 1.25. Moreover, we
choose α = 0.05, α = 0.1 and α = 0.2. As a result, we get the table of the
minimum initial capital as below :

α = 0.05 α = 0.1 α = 0.2
N θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25
10 5.6515 : 4.6424 4.3198 : 3.3973 2.8930 : 2.0936
20 7.4972 : 5.6213 5.8076 : 4.1327 3.9863 : 2.5874
30 8.7396 : 6.1009 6.7911 : 4.4756 4.6913 : 2.8048
40 9.6779 : 6.3692 7.5229 : 4.6605 5.2054 : 2.9174
50 10.4264 : 6.5291 8.0989 : 4.7675 5.6031 : 2.9806
100 12.7273 : 6.7773 9.8169 : 4.9265 6.7452 : 3.0709
200 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
300 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
400 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
500 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

1, 000 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
5, 000 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828
10, 000 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

Table 2: Minimum initial capital in the case excess of loss reinsurance.

Table 2 shows an approximation of min
x≥0

{x : ΦN (x, π) ≤ α} with m = 25,

v0 = 0, x0 = 20 as mentioned in Theorem 3.12 and ΦN (x, π) is computed
by using the recursive form as mentioned in equation (3.10). The numerical
results in Table 2 show a minimum initial capital x = 5.6515 for α = 0.05,
N = 10 and θ0 = θ1 = 0.1 etc.
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