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1 Introduction

Assuming that f, g(> 0) € L*(0,00), [|f|| = { [;~ f*(x)dz}= > 0, ||g]| > 0, we
have the following Hilbert’s integral inequality (cf. [1]):

<[ fx)g(y)
A ] ()

where the constant factor 7 is the best possible. If a,,b, > 0,a = {an}So_; €
b= {b,}22, € I lal| = {300, a2}z > 0,|[b]] > 0, then we still have the
following discrete Hilbert’s inequality with the same best possible constant factor

e
S ) ambn
S > 2 < aall ol (12)
m=1n=1
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Inequalities (1.1) and (1.2) are important in analysis and its applications (cf. [2—
4]). Also we have the following Mulholland’s inequality with the same best possible
constant factor 7 (cf. [1, 5]):

Zzlnmn W{Zmafnani} . (1.3)
m=2 n=2

m=2n=2

In 1998, by introducing an independent parameter A € (0,1], Yang [6] gave
an extension of (1.1). Refining the corresponding results from paper [6], Yang
[7] gave some best extensions of (1.1) and (1.2) as follows: If p > 1,1—17 + % =
1, A A1, A2 € Ry A+ X2 = A\ ka(2, y) is a non-negative homogeneous function of de-
gree =\, k(A1) = [~ ka(t, 1)#1 Ldt € R+ Bz )—xp<1—h>— w(:c) = pa1—A2)—1
F(= 0) € Lyg(0,00) = {flllfllps == {fg ¢ )lPdr}r < oo},g(> 0) €
Lg.4(0,00), [[fllp.¢> [19lg0 >0, then we have

/OOO /OOO B2, ) (@)g(v)dady < KOOI f1lp.ollglla.v, (1.4)

where the constant factor k(A1) is the best possible. Moreover if ky(z,y) is also
finite and ky(z,y)z™ ~L(ka(x,y)y*2 1) is decreasing for > 0(y > 0), then for

e’} 1
am,bn > 0, a = {am}_1 € by = {alllallp,¢ == {322, ¢(n)|an|P}? < oo}, b =
{bn}oly € lgys |lallp.e, 1[bllg,y > 0, we have

YD kalmin)ambn < k()llallpollbllg. (1.5)

m=1n=1

where the constant factor k(A1) is still the best possible. For p = ¢ = 2,\ =
1,k (x,y) = u ;A1 = A2 = 3, (1.3) reduces to (1.1), and (1.4) reduces to (1.2).

On half- dlscrete Hilbert-type inequalities with the non-homogeneous kernels,
Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove
that the the constant factors in inequalities are the best possible. In addition, Yang
[8] gave a result by introducing an interval variable and proved that the constant
factor is the best possible. Recently, Yang [9] gave the following half-discrete
Hilbert’s inequality with the best possible constant factor B(A1, A2)(A, A1 > 0,0 <
Ao < 1AL+ A = /\)

/ 1) 3 Tt < BOw )l (1.6)

n:l

where B(-,-) is the usual Beta function.

In this paper, by using the way of weight functions and technique of real
analysis, a half-discrete Mulholland’s inequality with a best constant factor is
given as follows:

/ff@)i

1
jo%s) e} 2
1:;nda: <7 {/1 xf%x)d:c%nai} . (1.7)
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A best extension of (1.7) with multi-parameters as (1.6), some equivalent forms,
the operator expressions are considered.

2 Some Lemmas

Lemma 2.1. Let A, A\1 > 0,0 < Ay < 1, A1 + Ao = A, and let the weight functions
w(n) and w(x) be define as follows:

1

w(n) := (Inn)*? /100 W(lnx)hfldz,n € N\{1}, (2.1)
(@) = (Inz)™ Hﬁgv@mh*@e@m) (2.2)
n=2
Then
w(z) < w(n) = B(A1, A2). (2.3)

Proof. Setting t = ﬁ]‘—z in (2.1), by calculation, we have

L -1
= 7o dt = B(A1, \a2).
w(n) /0 L (A1, A2)

Since for fixed x > 1, the function

1
1 Ao—1 —
(Iny) y(lnz + Iny) M (Iny)t—>2

M) = gy

is strictly decreasing for y € (1,00), it follows that

o 1
w(z) < (Inz A1/ ——(Iny)**dy
(@) < e [Ty
t=(lny)/(Inx) [ tr2~1
2 dt = B(A2, A1) = B(A1, A
| gt = BOww) = BOw )

0 (2.3) holds. O

Lemma 2.2. Let the assumptions of Lemma 2.1 be fulfilled and additionally, let
p>1, 1—17 + % =1,a, > 0,n € N\{1}, f(x) be a non-negative measurable function
in [1,00). Then we have the following inequalities:

J = {i (lnnzj&—l [/100 (h{(;;)ydxr}%

n=2

{/100 w(x)iﬂpl(lnx)p(l)‘l)1fp(x)dx} B (2.4)

Q=

< [B(A1, A2)]



484 Thai J. Math. 11 (2013)/ B. Yang

et (& e ]
b= {/ e (@) l; anm)A] d}
< {B()\l,)\z) inq_l(lnn)qu_’\z)_la%}q : (2.5)

n=2

Proof. (i) By Holder’s inequality with weight (cf. [10]) and (2.3), it follows

* _f@ 1" ® 1 [(Ina)-M/a g/
[/1 (lnxn)AdI] = {/1 (In xn)> {(lnn)(l—/\z)/p nl/pf(x)}
(Inn)A=22)/p pl/p] P
[(ln:v)(l—/\l)/q xl/q} x}

S 1 xp_l(lnx)(l_kl)(p_l)
< P(x)d
_/1 (In zn)> n(lnn)l—A2 fr(@)de

° 1 pal(lnp)(-A)e-n P
X dx
{/1 (In zn)> z(lnz)l—H }

Inn)2(1=A2)=1 P~ poo p—1 (1 2 (1=A1)(p—1)
= {w(n)k} /1 (Inz) fP(x)dx

nl=a n(Inzn)*(Inn)l—>2

_ B )P0 /°° 2P~ (Inz) 1=2) (=D
= (Inn)pra—1 1 n(lnzn)*(Inn)i—*

fP(z)dz.

Then, by Lebesgue term by term integration theorem (cf. [11]), we have
1
1 2P~ (In z)(1-A) (=1 v
B(A1, A2)]4 P(z)d
b2l {Z/ n(Inzn)*(Inn)l—>2 JH(@)da

1
1 Ip nz)(t=2) -1 v
Al7)\2 a {/ lnxn 1nn)17)\2 fp($)d$

= [B(\, M) {/ w(z)a’™ 1(1n$)p(1A1)1fp(x)d:c}%,

1

and (2.4) follows. Another application of Hélder’s inequality with weight yields

o an, ‘17 o 1 (In )(1 M)/q g (lnn)(l X2)/p p1/p q
lz <1nm>*] _{Z@nww [(1 n) (1= A2>/pnw} {anx)l 074 g1/ ”

n=2
o0 221 (Inz)1-Ae-1 |
7;2 ln:vn n(lnn)l—A2

> anl(lnn)(lfb)(qfl)

q
. nz ln:vn z(Inz)t-M @
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2[w(z)]1 ! & 1 (M-t o
= Moo T 2 e e ()R
n=2

Moreover, by Lebesgue term by term integration theorem, we have

& 1 (nax)y—t 11—
L, < a=1(nn)@=DA=A2) 4a g
1 < {/1 1;2 Toan) . n? " (lnn) aldx

_ {Z o [ %dz] nq1<1nn>q<“2>1az}

1
q

e

n=2
1
oo q
= {Zw(n)nql(lnn)q(lh)lcb?l} ,
n=2
and then, in view of (2.3), inequality (2.5) follows. O

3 Main Results

In the following, we set two functions ®(z) and ¥(n) as:
®(z) := 2 H(Inz)P M)z e (1,00)),
W(n) :=n? ' (Inn)1=22)"1(n e N\{1}),

wherefrom [®(z)]177 = (ng)™ 71 [U(n)|t=P = %, and consider the

x
following main result:

Theorem 3.1. Ifp>1,4 + ¢ =10 >0,0<X <1, M + X2 = A, f(2),a, >0,
feLlpa(l,00),a={an}rls €lgw, ||fllpe >0 and ||al|q,w > 0, then we have the
following equivalent inequalities:

o > fl@)
I.—ngzan/1 (1nxn)Adx

-/ 103 fmgeds < B lbllals, G

= (Inn)Pra—1 [ [ r p)®
J:{Z(l )n [/1 (h{in)ydf}} < B(AL A2)[|flp.@, (3.2)

© (ng)d-1 [ 4, | i
L= {/1 ( )a: [Z (lnxn)k‘| dw} < B()\l,/\2)||a||q7\p, (3.3)

n=2

where the same constant factor B(A1,A2) in the above inequalities is the best
possible.



486 Thai J. Math. 11 (2013)/ B. Yang

Proof. By Lebesgue term by term integration theorem, there are two expressions
for I in (3.1). In view of (2.4), for w(x) < B(A1, A2), we have (3.2).
By Hoélder’s inequality, we have

e —1 > 1 1
1=3"105(n) | ——f@de|[Wi(n)a,] < Jllallgw.  (34)
Z;[ A (In 2n)* } Y

Then by (3.2), we have (3.1). On the other-hand, assuming that (3.1) is valid,
setting

mw4wmlﬂAm—i—-mmr4merm

(Inzn)>

we have JP~1 = ||al|,w. By (2.4), we find J < co. If J = 0, then (3.2) is naturally
valid; if J > 0, then by (3.1), we have

lallg.w = 77 =1 < B, X)lIfllp.llallg,w,
lallf e =7 < BOw, A2)l[fllp.a,

and we have (3.2), which is equivalent to (3.1).
In view of (2.5), since [ww(z) |77 > [B(\1, A2)]' 79, we have (3.3). By Holder’s
inequality, we find

1_[“@a@ﬂm

Then by (3.3), we have (3.1). On the other-hand, assuming that (3.1) is valid,
setting

o7 (2) ) man] dz < ||f|p.aL. (3.5)

n=2

s 1

fx) = [@(x)]' 71 [Z manl , @ € (1,00),

we have L1 = ||f||p,o. By (2.5), it follows that L < occ. If L = 0, then (3.3) is
naturally valid; if L > 0, then by (3.1), we have

fllpe = L =1 < B(A1, o) fllp.ellallqw,

1l =L < B\, do)l[allqw,

and we have (3.3) which is equivalent to (3.1).

Hence inequalities (3.1), (3.2) and (3.3) are equivalent.

For 0 < & < phy, setting f(z) = 0,z € (1,e); f(z) = %(lnx)’\l_%_l,x €
[e, ), and @, = %(lnn))‘ri_l,n € N\{1}, if there exists a positive number
k(< B(A1,A2)), such that (3.1) is valid as we replace B(A1, A2) by k, then in
particular, it follows

~ &1~ -~
T=3 [ e @i < Kol

© dz ¥ 1 =1 ‘
= kj _
{/e x(Inz)st! } { 2(In2)e+1 + ; n(lnn)st! }
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L /°° AL
x
2(In2)=+1 5 x(lnzx)stl

k € 1 7
=z {2(1n2)s+1 * 2)5} ’ (3.6)

"=

1
k(-
<(€

)

o0

I~ £ 1 e 1 £
I=)1( M*rl—/ ————(nx)M " d
Z( nn) nJ, z(nzn) (Inz) o

n=2

t=(nz)/(Inn) > 1 e 1 A —£—1
= tt T dt
Z (lnn)€+1 ~/1/ Inn (t + 1))\

e E o0
=Bh - +-))
(1 p 2 p

n=2

— Ale)

n( lnn n(lnn)ett

g g

B — —dy— A

r =St 9) [Ty - 4G

LBn =S+ 5= A0

- - - — i 13

c 1 pu 2 » )

0 1 1/Inn 1 .
A) =) ———— g .
(&) ;n(lnn)‘f“/o (t+ 1) (3:7)

We find

0 1 1/Inn Ne
O<A(E)SZWA tM T o dt
n=2

o0

1 1
Vi =D P < 09,

pn ; n(lnn

and then A(e) = O(1)(e — 07). Hence by (3.6) and (3.7), it follows

1

B (Al - %, o + %) —c0(1) < k { 2(ln2)5+1 + (ln12)5 } , (3.8)

and B(A1, A2) < k(e — 07). Hence k = B(A1, A2) is the best value of (3.1).

We confirm that the constant factor B(A1, A2) in (3.2) ((3.3)) is the best pos-
sible. Otherwise we can came to a contradiction by (3.4) ((3.5)) that the constant
factor in (3.1) is not the best possible. O

Remark 3.2.

(i) Define the first type half-discrete Mulholland’s operator T : Ly ¢(1,00) —
lpwr-» as: For f € Ly a(1,00), there exists an unified representation T f
€ l, v1-», satisfying

Tf(n):/loo( L f(@)dr.n e N\{1}.

lnzn)
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(ii)
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Then by (3.2), it follows

T fllp.wr-r < B(A1, A)||f]p.a

and then T is bounded with ||T|| < B(A1,A2). Since by Theorem 1, the
constant factor in (3.2) is the best possible, we have ||T|| = B(A1, A2).

Define the second type half-discrete Mulholland’s operator T : lgv —
Ly o1-a(1,00) as: for a € lyw, there exists an unified representation Ta
€ Lgo1-4(1,00), satisfying

Ta(z) = Z %an,x € (1, 00).

— (Inzn)?
Then by (3.3), it follows
1Tallg.01-0 < B\, Ao)llal g,

and then T is bounded with ||T|| < B(M,\s). Since by Theorem 1, the
constant factor in (3.3) is the best possible, we have ||T'|| = B(A1, A2).

Remark 3.3. Forp=q=2XA=1,X A = X =} in (5.1), (3.2) and (3.3), we
deduce (1.7) and the following equivalent inequalities:

(51 m]} o [Corend e

n=2

[e’e] 1 oo 2 % [ee] 2
a
- L § 28 3.10
/1 - L_2 o xn] i <7 {n_2 nan} ( )

-
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