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1 Introduction

Most of the modern engineering structures are generally made up of multi-
phase porous continuum and the classical theory, which represents a fluid satu-
rated porous medium as a single phase material, is inadequate to represent the
mechanical behavior of such materials especially when the pores are filled with
liquid. In this case the solid and liquid phases have the different motions. Due
to these different motions, the different material properties and the complicated
geometry of pore structure, the mechanical behavior of a fluid saturated porous
medium becomes more difficult. So the researchers from time to time have tried to
overcome this difficulty and a considerable work is available in the literature. For
more detail and for the historical review on the subject of multiphase continuum
mechanics, the reader is referred to the work of Boer and Ehlers [1] or Boer [2].

Based on the work of von Terzaghi [3, 4], Biot [5] proposed a general theory
of three-dimensional deformations of fluid saturated porous solids. Then the wave
propagation and the dynamic extensions were done by Biot [6–8]. Using his theory,
Biot [9] studied the bending of a poro-elastic plate and on the basis of Biot’s
model, Taber [10] and Theodorakopoulos and Beskos [11] presented a general
theory of poro-elastic flexural plates under quasi-static and dynamic conditions
respectively. Biot theory is based on the assumption of compressible constituents
and till recently, some of his results have been taken as standard references and
the basis for subsequent analysis in acoustic, geophysics and other such fields.
Although Biot’s model was broadly accepted and applied, it has some shortcomings
because it originated from experience, lacking strong mechanic foundation.

The theory of waves in plates was originally developed by Horace Lamb [12]
and these waves are frequently referred to as Lamb waves. These are the waves
generated in plates with free boundaries and with an infinite number of modes for
symmetric and skew symmetric displacements within the plates. Wu and Zhu [13,
14] presented an analytical technique to asses the effect of viscous fluid loading on
the propagation properties of Lamb waves in fluid loaded solids. But all this work
is based on the theory where the plate is considered to be made up of single phase
material. Based on the Fillunger model [15] (which is further based on the concept
of volume fractions combined with surface porosity coefficients), Bowen [16], Boer
and Ehlers [17, 18], Ehlers [19] developed and used another interesting theory in
which all the constituents of a porous medium are assumed to be incompressible.
There are reasonable grounds for the assumption that the constituents of many
fluid saturated porous media are incompressible. Take, for example, the compo-
sitions of soil, the solid constituents are incompressible and liquid constituents
which are generally water or oils are also incompressible. Moreover in an empty
porous solid as a case of classical theory the change in volume is due to the change
in porosity during the propagation of a longitudinal wave. The assumption of
incompressible constituents does not only meet the properties appearing in many
branches of engineering practice, but it also avoids the introduction of many com-
plicated material parameters as considered in the Biot theory. So this model meets
the requirements of further scientific developments. Based on this theory Boer et
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al. [20], Liu and Boer [21], Yan et al. [22] and Svanadze [23] have studied the
various problems of wave propagation in fluid saturated incompressible porous
media. Kumar and Hundal [24] have discussed the corresponding Lamb waves in
a fluid-saturated incompressible porous plate.

In the present paper we have discussed the analysis of Lamb type wave propa-
gation in an infinite fluid saturated incompressible elastic plate bordered on both
sides with layers or half-spaces of inviscid liquid. The implicit frequency equations
connecting the phase velocity with wave number and other physical parameters
are derived. The various cases as the propagation of leaky Rayleigh and Lamb
type waves in the context of fluid saturated incompressible porous plate are also
considered. The theoretical results obtained for symmetric and skew-symmetric
modes of wave propagation have been verified numerically for a particular model
and are discussed.

2 Formulation of the Problem and Its Solution

Consider an infinite fluid saturated incompressible porous elastic rectangular
plate of thickness 2d. The plate is bordered on top and bottom with infinitely long
homogeneous inviscid liquid layers each of thickness h. If h→ ∞, then the problem
becomes the case of leaky Lamb type waves in a fluid saturated incompressible
porous plate. The coordinate system is selected with x, y-plane coinciding with
the middle surface of the plate, x-axis along the length and z-axis normal to it
along the thickness (Fig. 1). The surfaces z = ± d are subjected to different
boundary conditions. Following Boer and Ehlers [18, 20] the equations governing
the deformation of an incompressible porous medium saturated with non-viscous
fluid in the absence of body forces are

∇.
(

ηSu̇S + ηFu̇F

)

= 0, (2.1)

(

λS + µS
)

∇ (∇.uS) + µS∇2uS − ηS∇p − ρSüS + Sv (u̇F − u̇S) = 0, (2.2)

ηF∇p + ρFüF + Sv (u̇F − u̇S) = 0, (2.3)

TS

E = 2µSES + λS (ES.I) I, (2.4)

ES =
1

2
(grad uS + gradT uS), (2.5)

where ui, u̇i and üi (i = F, S) denote the displacements, velocities and acceler-
ations of solid and fluid phases respectively and p is the effective pore pressure
of the incompressible pore fluid. ρSand ρF are the densities of the solid and fluid
phases respectively. TS

E
is the stress in the solid phase and ES is the linearized

Langrangian strain tensor. λS and µS are the macroscopic Lame’s parameters of
the porous solid and ηS, ηF are the volume fractions satisfying

ηS + ηF = 1. (2.6)
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In the case of isotropic permeability, the tensor SV describing the coupled inter-
action between the solid and fluid is given by Boer and Ehlers [18, 20] as

SV =

(

ηF
)2
γFR

KF
I = SvI, (2.7)

where γFR is the effective specific weight of the fluid and KF is the Darcy’s per-
meability coefficient of the porous medium. Equations governing the motion of a
liquid are given by Ewing et al. [25] as

λL∇
(

∇uL
)

= ρL ∂
2uL

∂t2
, (2.8)

τL
mn = λL∇uLδmn,m, n = 1, 2, 3. (2.9)

In these two equations uL is the displacement vector, λL is the bulk modulus of
the liquid, ρL is its density and τL

mn are the components of the stress in the liquid.
For further considerations, it is convenient to introduce, in equations (2.1)-

(2.9), the dimensionless quantities defined as:

x′ =
ω′

c1
x, z′ =

ω′

c1
z, t′ = ω′t,u′S =

(

λS + 2µS

E

ω′

c1

)

uS,u′F =

(

λS + 2µS

E

ω′

c1

)

uF,

p′ =
p

E
,T

′
S

E
=

TS

E

E
, τ

′L
m n =

τL
m n

E
,u′L =

(

λS + 2µS

E

ω′

c1

)

uL. (2.10)

In these relations E is the Young’s modulus of the solid phase, ω′ is the char-
acteristic frequency of the medium and c1 is the velocity of a longitudinal wave
propagating in a fluid saturated incompressible porous medium and is given by
[20] as

c1 =

√

√

√

√

(ηF)
2 (
λS + 2µS

)

(ηF)
2
ρS + (ηS)

2
ρF
. (2.11)

If the pore liquid is absent or gas is filled in the pores, then ρFis very small as
compare to ρSand can be neglected. So the relation (2.11) reduces to

c0 =

√

λS + 2µS

ρS
. (2.12)

This gives the velocity of the longitudinal wave propagating in an incompressible
empty porous solid, where the change in volume is due to the change in porosity
and is a well-known result of the classical theory of elasticity [25]. In an incom-
pressible non-porous solid medium ηF → 0, then (2.11) yields c1 = 0 and is
physically acceptable as a longitudinal wave cannot propagate in an incompress-
ible medium.
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The equations (2.1)-(2.5), (2.8) and (2.9) with the help of (2.10) reduce to the
dimensionless form and after slashing the dashes, the dimensionless displacement
vectors ui (i = S, F, L) are expressed in terms of potential ϕi and ψi as:

ui = gradϕi − curlψi. (2.13)

We take x−z plane as the plane of incidence and assume all the physical quantities
to depend upon x, z and time t. Also the inviscid liquid does not support shear
motion so the shear modulus of liquid vanishes and hence the potential ψL also
vanish. So the equations (2.1)-(2.3) and (2.8) with the help of (2.13) yields the
following equations

∂2ϕS

∂x2
+
∂2ϕS

∂ z2
− ηSp − δ21

∂2ϕS

∂ t2
− δ2

(ηF)
2

∂ϕS

∂ t
= 0, (2.14)

δ2
(

∂2ψS

∂x2
+
∂2ψS

∂z2

)

− δ21
∂2ψS

∂ t2
+ δ2

(

∂ψF

∂ t
− ∂ψF

∂ t

)

= 0, (2.15)

ϕF = − ηS

ηF
ϕS, (2.16)

ηFp +
ρF

ρS
δ21
∂2ϕF

∂t2
+ δ2

(

∂ϕF

∂ t
− ∂ϕS

∂ t

)

= 0, (2.17)

ρF

ρS
δ21
∂2ψF

∂ t2
+ δ2

(

∂ψF

∂ t
− ∂ ψS

∂ t

)

= 0, (2.18)

∂2ϕLj

∂x2
+
∂2ϕLj

∂z2
= δ23

∂2ϕLj

∂t2
, (2.19)

where

δ =
β0

c0
, δ1 =

c1
c0
, β0 =

√

µS

ρS
, δ2 =

SV c2
1

ω′ρSc2
0

, δ3 =
c1
αL

, αL =

√

λL

ρL
(2.20)

and j = 1, 2 stands for top and bottom liquid layers respectively.
The solutions of equations (2.14)-(2.19) for the harmonic waves are given by

ϕS = (P1cos ξ1z + P2sin ξ1z) ei(kx sin θ−ω t), (2.21)

ϕF = − ηS

ηF
(P1cos ξ1z + P2sin ξ1z) ei(kx sin θ−ω t), (2.22)

ψS = (P3cos ξ2z + P4sin ξ2z) ei(kx sin θ−ω t), (2.23)

ψF =
i

i + Pω
(P3cos ξ2z + P4sin ξ2z) ei(kx sin θ−ω t), (2.24)

ϕL1 = P5sin {ξ3 (z − (d + h))} ei(kx sin θ−ω t)d < z < d+ h, (2.25)
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ϕL2 = −P6sin {ξ3 (z − (d + h))} ei(kx sin θ−ω t)(d+ h) < z < −− d, (2.26)

where

ξ21 = k2

(

c2 + i
Qc

k
− S2

1

)

, (2.27)

ξ22 = k2

[{

δ21 +
δ2P (1 + iPω)

(1 + P2ω2)

}

( c

δ

)2

− S2
1

]

, (2.28)

ξ23 = k2
(

δ23c
2 − S2

1

)

, (2.29)

P =
δ21ρ

F

δ2ρS
,Q =

δ2

(ηF)
2 , S1 = sin θ (2.30)

and Pm, (m = 1, 2, ..., 6) are the arbitrary constants. The phase velocity ω

k
of the

waves is denoted by c and θ is the angle of inclination of wave normal with the
axis of symmetry. With the help of (2.4), (2.5), (2.9) and (2.13) the expressions
for displacements, stresses and pore-pressure are obtained as

uS = {ikS1(P1cos ξ1z + P2sin ξ1z) + ξ2(−P3 sin ξ2z + P4 cos ξ2z)}ei(kx sin θ−ω t),
(2.31)

wS = {ξ1 (−P1 sin ξ1z + P2 cos ξ1z) − ikS1 (P3 cos ξ2z + P4 sin ξ2z)} ei(kx sin θ−ω t),
(2.32)

uF =

{

−k
ηS

ηF
(P1cos ξ1z + P2sin ξ1z) +

iξ2
(1 + iPω)

(−P3 sin ξ2z + P4 cos ξ2z)

}

× ei(kx sin θ−ω t), (2.33)

wF = −
{

ηS

ηF
ξ1 (−P1 sin ξ1z + P2 cos ξ1z) +

kS1

(1 + iPω)
(P3 cos ξ2z + P4 sin ξ2z)

}

× ei(kx sin θ−ω t), (2.34)

τzz =

{

(

2δ2k2S2
1 − ω2 − iω δ2

(ηF)2

)

(P1cos ξ1z + P2sin ξ1z)

− 2δ2ξ2ikS1(−P3 sin ξ2z + P4 cos ξ2z)

}

ei(kx sin θ−iωt) (2.35)

τxz =

[

2δ2ikξ1S1(−P1 sin ξ1z + P2 cos ξ1z) +
{

2δ2k2S2
1 − δ21ω

2 − δ2Pω
2

(1 + P2ω2)

}

× (P3 cos ξ2z + P4 cos ξ2z)

]

ei(k x sin θ−iω t) (2.36)
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p = − 1

(ηF)
2

(

ηSρF

ρS
ω2 + iδ2ω

)

(P1cos ξ1z + P2sin ξ1z) ei(k x sin θ−iω t), (2.37)

uL1
z = ξ3P5 cos {ξ3 (z − (d + h))} ei(kx sin θ−iω t)d < z < d+ h, (2.38)

uL2
z = −ξ3P6 cos {ξ3 (z − (d + h))} ei(kx sin θ−iω t),−(d+ h) < z < −d, (2.39)

τL1
zz = −ρ

L

ρS
δ21ω

2P5 sin {ξ3 (z − (d + h))} ei(kx sin θ−iω t)d < z < d+ h, (2.40)

τL2
zz =

ρL

ρS
δ21ω

2P6 sin {ξ3 (z − (d + h))} ei(kx sin θ−iω t)−−(d+h) < z < −d. (2.41)

3 Derivation of Frequency Equations

The boundary conditions at the solid – liquid interfaces z = ± d to be
satisfied are
(i) The total normal stress of the plate should be equal to the pressure of the
liquid. This implies that

τS
zz − p = τLj

zz , j = 1, 2. (3.1)

(ii) The shear stress in the fluid saturated incompressible poro-elastic plate must
vanish, i.e.

τS
xz = 0. (3.2)

(iii) The normal component of the displacement of the solid should be equal to
that of liquid. This leads to

uS

z = uLj
z , j = 1, 2. (3.3)

So using the above boundary conditions, we obtain six simultaneous equations for
the unknowns Pm (m = 1, 2, ..., 6). The condition, for their non trivial solution
leads to a characteristic equation for the propagation modified Lamb waves in a
fluid saturated incompressible porous plate bordered with layers of inviscid liquid
or half-spaces of inviscid liquid on both sides. After some manipulations of the
determinant, we get the following frequency equations for symmetric and skew-
symmetric modes of wave propagation:

tan ξ2d

tan ξ1d
+
R3 (R2ξ3 −RLkS1 tan ξ2d tan ξ3h)

R4 (R1ξ3 + RLξ1 tan ξ1d tan ξ3h)
= 0, (3.4)

tan ξ2d

tan ξ1d
+

R4 (R1ξ3 −RLξ1 cot ξ1d tan ξ3h)

R3 (R2ξ3 +RLkS1 cot ξ1d tan ξ3h)
= 0, (3.5)

where

R1 = 2δ2k2S2
1 −

{

1 − ρF

ρS

ηSδ21

(ηF)
2

}

ω2, (3.6)
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R2 = 2δ2S1ξ2k, (3.7)

R3 = 2ξ1S1k, (3.8)

R4 = 2k2S2
1 −

{

δ21 +
δ2P (1 + iPω)

(1 + P2ω2)

}

(ω

δ

)2

, (3.9)

and

RL =
ρL

ρS
δ21ω

2. (3.10)

Equations (3.4) and (3.5) are the frequency equations for symmetric and skew-
symmetric modes of wave propagation in an infinite fluid saturated incompressible
porous elastic solid rectangular plate bordered with layers of inviscid liquid or
half-spaces of inciscid on both sides.

4 Some Special Cases

4.1 The Rayleigh–Lamb Frequency Equation for Fluid Satu-

rated Incompressible Porous Plate Having Traction Free

Boundaries

In the absence of liquid layers, equations (3.4) and (3.5), after some simplifi-
cations, reduce to

tan ξ2d

tan ξ1d
+

{

4k2δ2S2
1ξ1ξ2

R1 (k2S2
1 − ξ22)

}±1

= 0, (4.1)

Here the subscripts +1 and –1 refer to the symmetric and skew-symmetric waves.
If the pore liquid is absent or gas is filled in the pores then ρF is very small as
compare to ρS and can be neglected. So after some simplifications equation (4.1)
takes the form

tan ξ′2d

tan ξ′1d
+

{

4k2S2
1ξ

′
1ξ

′
2

(

k2S2
1 − ξ

′2
2

)2

}±1

= 0. (4.2)

Equations (4.2) are the Rayleigh-Lamb frequency equations for straight as well
as crested waves propagating in an empty incompressible porous elastic plate.
ξ′1 and ξ′2 can be obtained from (2.27) and (2.28) by taking P and Q to be zero.
Forθ = π

2 , equation (4.2) is a well known result of classical theory and is available
in the standard texts, e.g., Graff [26].

4.2 Leaky Lamb Waves in a Fluid Saturated Incompressible

Porous Plate

The dispersion relations for leaky Lamb waves, i.e. Lamb waves in a fluid
saturated incompressible porous plate bordered with infinite half spaces of homo-
geneous liquid can be obtained just by letting h → ∞ in equations (3.4) and (3.5)
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so we have
tan ξ2d

tan ξ1d
+
R3 (R2ξ3 − iRLkS1 tan ξ2d )

R4 (R1ξ3 + iRLξ1 tan ξ1d )
= 0, (4.3)

for symmetric mode of waves and

tan ξ2d

tan ξ1d
+

R4 (R1ξ3 − iRLξ1 cot ξ1d )

R3 (R2ξ3 + iRLkS1 cot ξ1d)
= 0, (4.4)

for skew-symmetric modes of wave propagation.

4.3 Waves of Short Wave-Length

Some information on the asymptotic behavior is obtained by letting k → ∞.
In this case we replace ξ1, ξ2 and ξ3 by another complex numbers iξ′1, iξ′2 and
iξ′3 respectively. So for the waves of short wavelength, as k → ∞, the frequency
equations (3.4) and (3.5) for both symmetric and skew- symmetric cases reduce to

ρL

ρS δ2
1c2q

S2
1−δ2

Lc2
=

4δ2S2
1

q
S2
1−c2

s
S2
1 −

�
δ2
1 +

δ2P(1+iPω)

(1+P2ω2)

� �
c
δ

�2
−

�
2δ2S2

1 −

�
1 −

ρF

ρS

ηSδ2
1

(ηF)2

�
c2
� �

2S2
1 −

�
δ2
1 +

δ2P(1+iPω)

(1+P2ω2)

� �
c
δ

�2��
δ2
1 +

δ2P(1+iPω)

(1+P2ω2)

� q
S2
1−c2

(4.5)

Equation (4.5) is the dispersion relation for leaky Rayleigh type waves propagating
in an infinite fluid saturated incompressible porous half-space bordered with a
half-space of a homogeneous inviscid liquid. Again in the absence of liquid layers
(ρL → 0), we have a traction free fluid saturated incompressible plate and in this
case equation (4.5) for the waves of short wave length is simplified to

4S2
1

√

S2
1 −

{

δ21 + δ2P(1+iPω)
(1+P2ω2)

}

(

c
δ

)2

−

�
2S2

1−

�
δ
2
1+

δ2P(1+iPω)

(1+P2ω2)

�
( c

δ )
2
��

2S2
1−

�
1−

ηSρFδ2
1

(ηF)2ρS

�
( c

δ )
2
�

√
S2
1−c2

= 0.

(4.6)
The equation (4.6) governs the propagation of Rayleigh type surface waves at the
free surface of a fluid saturated incompressible porous half-space. The vibrational
energy is mainly propagates along the surface of the plate and the finite thickness
plate appears as a semi-infinite media. Again if the pore liquid is absent or gas
is filled in the pores and θ = π

2 , then after some simplifications equation (4.6)
becomes

4

√

(

1 − c2

δ2

)

(1 − c2) =

(

2− c
2

δ2

)2

. (4.7)
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If the dimensionless quantities are converted in to the corresponding physical quan-
tities, then the equation (4.7) yields

4

√

(

1 − c2

c20

) (

1 − c2

β2
0

)

=

(

2− c2

β2
0

)2

. (4.8)

The above equation corresponds to the Rayleigh wave propagating along the free
surface of a half-space of an empty incompressible porous solid and is a well-known
result of classical theory.

Thus we see that if the pore liquid is absent, then both P and Q given by
(2.30) will be zero and we obtain the results, which are in good agreement with
the classical theory. So besides changing the velocity of propagation, the presence
of fluid in the pores of an incompressible porous solid also give arise the imaginary
terms in the equations (2.27) and (2.28), highlighting the fact that the presence
of fluid in the pores of a fluid saturated incompressible porous elastic solid makes
the waves more dissipative.

5 Numerical Results and Discussion

With the view of illustrating the theoretical results obtained in the preceding
sections, this section deals with the numerical results for the dispersion relations.
Equations (3.4) and (3.5) determine the phase velocity c of the symmetric and
skew–symmetric waves as a function of wave number k and various physical pa-
rameters in complex form, showing that the waves are attenuated in space. If we
write

1

c
=

1

v
+ i

q

ω
(5.1)

so that the wave-number k = K1 + iq, where K1 = ω

v , v and q are real numbers.
This shows that v is the propagation speed, K1 is the real wave number and q is
the attenuation coefficient of the waves. Also for a particular model the values
of the various physical parameters are taken as E = 2.01 × 107N/m

2
, ν = 0.20,

ηS = 0.67, ηF = 0.33, ρS = 2.01 × 103Kg/m
3
, ρF = 1.0 × 103Kg/m

3
, kF =

0.01 m/s, γFR = 1.0 × 104 N/m3. The liquid taken for the purpose of numerical
calculations is water, where the velocity of sound is given bycL = 1.5 × 103 m/s.
The thickness of the plate is taken to be 6 whereas the thickness of each of the
bordering layer is taken to be 1. The angles of inclination of the wave normal with
the axis of symmetry have been taken between 0 and π

2 for numerical calculations.
As tan (nπ + α) = tan α, so for the given values of wave number, the equations
(3.4) and (3.5) are solved for three different values of n and for three values of
θ by using the method of successive approximation. The sequence of iteration
is made to converge after sampling it over about 150 sample values in order to
achieve the desired level of accuracy (five decimal places here). The variations
of numerically computed phase velocity v and attenuation coefficient q with real
wave-number K1 are shown graphically in Figs. 2–5 for wave normal inclination
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θ = 30o, 60o and 90o with the axis of symmetry.
From Fig. 2 it is observed that the phase velocity for lowest (fundamental)

symmetric mode is almost constant for θ = 30o, where as it is observed to increase
for θ = 60o and decrease for θ = 90o from some small values at the vanishing
wave-number and ultimately become closer to leaky Rayleigh wave velocity at
higher values of the wave-number. The phase velocity for fundamental skew-
symmetric mode is non-dispersive and remains near to leaky Rayleigh wave velocity
for all directions of wave propagation. But the phase velocity of higher (optical)
modes of wave propagation for both symmetric and skew symmetric cases attains
quite large values at the vanishing wave number, which sharply slashes down to
become steady and asymptotic to the leaky Rayleigh wave velocity with increasing
wave number. The significant fall at the vanishing wave number is caused by the
damping effect of the liquid layers on both sides of the plate and also the viscous
damping caused by internal friction from the interaction mechanism between the
skeleton and pore liquid present in the pores of the fluid saturated incompressible
elastic porous solid. The asymptotic closeness of various mode of propagation is
due to the fact that in the limiting case when the wave number is large the problem
reduces to the leaky Rayleigh type waves in a fluid saturated incompressible porous
half-space. The finite thickness plate and the bordering layers behave like semi-
infinite media. Study is given for three values of n and for three values of inclination
of the wave normal with the axis of symmetry and it is evident that the phase
velocity increases with both these quantities.

The surface waves propagate with complex wave number and hence the phase
velocity. Consequently, the surface waves propagate with attenuation due to the
radiation of energy into the medium. It is observed that the presence of fluid in the
pores makes them even more attenuated. The Figs. 4 and 5, depict the variation of
attenuation coefficients versus wave number for symmetric and skew – symmetric
modes for n = 4. For the symmetric waves, the attenuation coefficient remains
small and constant for θ = 30o. For θ = 60o and 90o it increases monotonically
from zero in the interval 0 ≤ K1 ≤ 0.52 to acquire its maximum values 0.0597
and 0.018 for θ = 60o and θ = 90o respectively at K1 = 0.52 then decreases in
0.52 ≤ K1 ≤ 1.5. Thereafter, the attenuation coefficient remains constant in all
directions of wave propagation. In case of skew-symmetric modes, the behavior
of attenuation coefficient is different from the above case. It is almost zero for
θ = 60o, increases uniformly from zero for other two values of θ and again slashes
down to zero with increasing wave number. For θ = 30o it attains a maximum
value of 0.0264 at K1 = 0.52, whereas the maximum value for θ = 90o is 0.0959
at K1 = 2.02.

The variations of various amplitudes of displacements with distance from the
free surfaces of the plate are presented in Figs. 6 – 13 for symmetric and skew-
symmetric waves. The variations are discussed in the region −3 ≤ z ≤ 3, because
for the present discussion; the value of d is taken to be 6. For symmetric waves,
starting from some value, the horizontal displacement amplitudes vary in such a
way that the variation curves are symmetrical about y-axis Fig. 6. As θ varies
the curves change their shapes from concave upward to convex upward. The
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magnitude of displacement amplitude also varies with θ and for θ = 90o it has
maximum value at the middle surface of the plate. The vertical displacement
amplitudes are zero at the middle surface of the plate and the variation curves
are symmetrical in the opposite quadrants (Fig. 8). Among the three considered
values of θ , the vertical displacement amplitude is maximum for θ = 60o whereas
it has minimum value for θ = 90o. Except for the change in their magnitudes,
the variation curves of the horizontal displacement amplitudes for skew-symmetric
waves follow the pattern of the vertical displacement curves for symmetric waves
Fig. 10. The variation curves of the vertical displacement amplitudes for skew-
symmetric waves (Fig. 12) are also symmetrical about y-axis, but at the middle
surface of the plate, the magnitudes of displacement amplitudes decreases with
θ and the curves are concave downward. As a result of the incompressibility
constraint, the motion of the fluid phase is in opposite direction to that of solid
phase and except for their magnitude, the variation curves for fluid phase, Figs.
7, 9, 11 and 13, follow the reverse pattern as followed by the corresponding curves
for the solid phase.

6 Conclusion

Based on the general incompressible porous media theories, a mathematical
study is presented to discuss the wave propagation in a fluid saturated incom-
pressible porous elastic plate bordered with layers of inviscid liquid on both sides.
The material of plate is modeled as a two-phase system with two incompressible
constituents (porous solid and inviscid fluid), where the general field equations
are directly adopted according to the work of Boer and Ehlers [18, 20]. The as-
sumption of two incompressible constituents does not only meets the properties
appearing in the many porous media models, but it also avoids the introduction
of many complicated material parameters as considered in the Biot theory. At
the short wavelength limit the problem reduces to leaky Rayleigh waves in a fluid
saturated incompressible plate and the finite thickness plate and the bordering
layers behave like infinite media. It has been analyzed that the presence of pore
liquid has a significant effect on the wave propagation. The variations of phase
velocity, attenuation coefficient with wave number and the amplitude of various
displacements with distance from the free surfaces are discussed. It is observed
that the waves for fundamental mode are dispersion less and phase velocity for
other modes become asymptotic to the leaky Rayleigh wave velocity for the larger
value of the wave number. The results obtained are in good agreement with the
classical theories. It is noticed that the inclination of the wave normal with the
axis of symmetry also affects the dispersion behavior of the surface waves.
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Fig. 1: Geometry of the Investigated Problem.

Fig. 2: Variation of Phase Velocity with Wave-Number and θ
(for Symmetric Waves).

Fig. 3: Variation of Phase Velocity with Wave-Number and θ
(for Skew-Symmetric Waves).
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Fig. 4: Variations of Attenuation Coefficient with Wave-Number and θ
(for Symmetric Waves).

Fig. 5: Variations of Attenuation Coefficient with Wave-Number and θ
(for Skew-Symmetric Waves).

Fig. 6: Variation of Horizontal, Solid Displacement Amplitude with z and θ for

Symmetric Waves.
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Fig. 7: Variation of Horizontal, Fluid Displacement Amplitude with z and θ for

Symmetric Waves.

Fig. 8: Variation of Vertical, Solid Displacement Amplitude with z and θ for

Symmetric Waves.

Fig. 9: Variation of Vertical, Fluid Displacement Amplitude with z and θ for

Symmetric Waves.
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Fig. 10: Variation of Horizontal, Solid Displacement Amplitude with z and θ for

Skew-Symmetric Waves.

Fig. 11: Variation of Horizontal, Fluid Displacement Amplitude with z and θ for

Skew-Symmetric Waves.

Fig. 12: Variation of Vertical, Solid Displacement Amplitude with z and θ for

Skew-Symmetric Waves.
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Fig. 13: Variation of Vertical, Fluid Displacement Amplitude with z and θ for

Skew-Symmetric Waves.


