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Abstract : We introduce a contractive map involving an altering distance func-
tion. The class of such maps need not be continuous and it is larger than the class
of contractive maps. We prove the existence of fixed points of contractive maps
involving an altering distance fuction in complete metric spaces. Our results gen-
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1 Introduction

The study of the existence of fixed points of contractive maps in complete
metric spaces by using an altering distance function is of present interest. Through
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out this paper (X, d) denotes a metric space, we write it simply by X ; N, the set
of all natural numbers and R+, the set of all non-negative real numbers.

A mapping T : X → X is said to be contractive if d(Tx, T y) < d(x, y) for
all x, y in X with x 6= y. Clearly every contractive map is continuous. Also, if
such a map has a fixed point, then it is unique.

Edelstein [1] proved the following theorem for contractive maps.

Theorem 1.1 (Edelstein [1]). Let X be a metric space and T be a contractive

mapping into itself such that there exists a point x ∈ X whose sequence of iterates

{T nx} contains a convergent subsequence {T ni(x)}, then x∗ = limi→∞ T ni(x) in

X is a unique fixed point of T in X.

Let T : X → X . For x ∈ X , we write OT (x) = {x, Tx, T 2x, ...}, the orbit of x
with respective to T .

In 1980, Park [2] generalized Theorem 1.1 in the following.

Theorem 1.2 (Park [2]). Let T be a selfmap of a metric space X. Assume that

for some integer m, there exists a point x0 ∈ X such that OT m(x0) has a cluster

point z in X and d(Tmx, Tmy) < d(x, y) for all x, y ∈ X, x 6= y. Then z is a

unique fixed point of T in X.

In complete metric spaces, Geraghty [3] established a criteria for the sequence
of Picard iterates defined by xn = Txn−1, x0 ∈ X to be Cauchy for contractive
mappings. If it is Cauchy, it is easy to see that it converges to a unique fixed point
of T in X .

Theorem 1.3 (Geraghty [3]). (Geraghty’s theorem) Let X be a complete metric

space. Let f : X → X with

d(fx, fy) < d(x, y) for all x, y ∈ X,x 6= y. (1.1)

Let x0 ∈ X and set xn = f(xn−1) for n > 0. Then xn → x∞ in X, with x∞
is a unique fixed point of f if and only if for any two subsequences {xh(n)} and

{xk(n)} with xh(n) 6= xk(n), we have that ∆n → 1 only if dn → 0; where ∆n =
(d(fxh(n), fxk(n)))

dn
and dn = (d(xh(n), xk(n))).

We use the following notation as mentioned in [3].

S = {α : (0,∞) → [0, 1)/α(tn) → 1 implies tn → 0}.

Theorem 1.4 (Geraghty [3]). Let X be a complete metric space and let f : X → X
be a contractive map. Let x0 ∈ X and set xn = f(xn−1) for n > 0. Then xn → x∞,

where x∞ is a unique fixed point of f in X if and only if there exists an α in S
such that for all n, m in N

d(f(xn), f(xm)) ≤ α(d(xn, xm))d(xn, xm).
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Definition 1.5 (Turkoglu et al. [4]). A metric space X is said to be T −
orbitally complete if every Cauchy sequence which is contained in OT (x) for all x
in X converges to a point of X .

Here we note that every complete metric space is T -orbitally complete for any
T , but a T -orbitally complete metric space need not be a complete metric space.

Definition 1.6 (Turkoglu et al. [4]). A mapping T : X → X is said to be
orbitally continuous at a point z in X with respective to x in X if for any sequence
{xn} ⊂ OT (x) with xn → z as n→ ∞, implies Txn → Tz as n→ ∞.

Here we note that any continuous selfmap of a metric space is orbitally contin-
uous, but its converse need not be true. For more details on T -orbitally complete
metric spaces and orbitally continuous maps, we refer Turkoglu et al. [4].

Definition 1.7 (Khan et al. [5]). A function ϕ : R+ → R+ is said to be an
altering distance function if

(i) ϕ is continuous,

(ii) ϕ(t) = 0 if and only if t = 0.

We denote the class of all altering distance functions ϕ : R+ → R+ by Φ. For
more literature on the existence of fixed points of different contraction conditions
involving altering distance functions, we refer [5–15].

In 1999, Sastry and Babu [13] established the following fixed point theorem in
metric spaces.

Theorem 1.8 (Sastry and Babu [13]). Let T be a self map on a metric space

(X, d). Suppose that there exists a point x0 ∈ X such that the orbit OT (x0) =
{T nx0 : n = 0, 1, 2, ...} has a cluster point z in X. If T is orbitally continuous at

z and Tz and there exists a ϕ in Φ such that ϕ(d(Tx, T y)) < ϕ(d(x, y)) for each

x, y = Tx ∈ OT (x0), x 6= y, then z is a fixed point of T .

In 2009, Sastry et al. [14] introduced strip ϕ-contraction, where ϕ is an al-
tering distance function and established some fixed point theorems for strip ϕ-
contractions.

Definition 1.9 (Sastry et al. [14]). Let (X, d) be a metric space and T be a
selfmap on X , let ϕ in Φ. We say that T is a strip ϕ-contraction if for a given
ǫ > 0, there is a δ > 0, such that

ǫ ≤ ϕ(d(x, y)) < ǫ+ δ implies ϕ(d(Tx, T y)) < ǫ for all x, y ∈ X.

Theorem 1.10 (Sastry et al. [14]). Let (X, d) be a metric space and T be a

selfmap on X. Suppose that for some x0 ∈ X, OT (x0) has a cluster point z in X.

Further, assume that given ǫ > 0, there is a ϕ in Φ and δ > 0, such that

ǫ ≤ ϕ(d(x, y)) < ǫ+ δ implies ϕ(d(Tx, T y)) < ǫ (1.2)

for all x, y in OT (x0), x 6= y, y = Tx. Then z is a fixed point of T in OT (x0).
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We now introduce a contractive map involving an altering distance function.

Definition 1.11. Let (X, d) be a metric space and T be a selfmap on X . If there
exists a ϕ ∈ Φ such that ϕ(d(Tx, T y)) < ϕ(d(x, y)) for all x, y ∈ X , x 6= y, then
we say that T is a contractive map with respect to an altering distance function
ϕ.

Here we note that the class of all contractive maps with respect to an altering
distance function is larger than the class all contractive maps (Example 2.3 of
[13]). Also, every contractive map with respect to an altering distance function
need not be continuous (Example 2.3).

In Section 2 of this paper, we prove the existence of fixed points of contractive
maps in complete metric spaces by using an altering distance function. Our results
generalize and improve some of the known results.

2 Main Results

Theorem 2.1. Let T be a selfmap on a T -orbitally complete metric space X. Let

x0 ∈ X. Assume that there exists a ϕ ∈ Φ such that

ϕ(d(Tx, T y)) < ϕ(d(x, y)) for all x, y = Tx ∈ OT (x0), x 6= y. (2.1)

We define {xn}
∞

n=1 by

xn = T (xn−1) for n = 1, 2, 3, . . . . (2.2)

Then xn → z with z is a unique fixed point of T in OT (x0) if and only if for any

two subsequences {xh(n)} and {xk(n)} with xh(n) 6= xk(n), we have that: ∆n → 1
implies dn → 0, provided T is orbitally continuous at z; where

∆n =
ϕ(d(Txh(n), Txk(n)))

ϕ(dn)
and dn = d(xh(n), xk(n)).

Proof. First we assume that xn → z and z is a unique fixed point of T. Let {xh(n)}
and {xk(n)} be any subsequences with xh(n) 6= xk(n). Suppose that ∆n → 1 as
n→ ∞. Now,

ϕ(d(xh(n), xk(n))) =
ϕ(d(xh(n), xk(n)))

ϕ(d(Txh(n), Txk(n)))
ϕ(d(Txh(n), Txk(n)))

=
1

∆n

ϕ(d(Txh(n), Txk(n))).

On letting n→ ∞, we have

lim
n→∞

ϕ(d(xh(n), xk(n))) = lim
n→∞

1

∆n

ϕ(d(Txh(n), Txk(n))).
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Since T is orbitally continuous at z and ∆n → 1 as n→ ∞, we have

lim
n→∞

ϕ(d(xh(n), xk(n))) = 0.

Since ϕ is continuous, it follows that ϕ(limn→∞(d(xh(n), xk(n)))) = 0. Now, from
the property (ii) of ϕ, limn→∞(d(xh(n), xk(n))) = 0. Hence lim

n→∞

dn = 0.

Conversely, assume that ∆n → 1 implies dn → 0 as n → ∞. For x0 ∈ X, we
now consider the sequence {xn} defined by (2.2). If xn = xn+1 for some n ∈ N,
then the conclusion of the theorem trivially holds. Suppose that xn 6= xn+1 for all
n. Consider,

ϕ(d(xn, xn+1)) = ϕ(d(Txn−1, Txn))

< ϕ(d(xn−1, xn)) for all n.

So {ϕ(d(xn, xn+1))} is a decreasing sequence of non-negative real numbers. Sup-
pose that limn→∞ ϕ(d(xn, xn+1)) = r, r ≥ 0. Now we prove that r = 0. Assume

that r > 0. By choosing hn = n and kn = n+1, we have ∆n = ϕ(d(xn, xn+1))
ϕ(d(xn−1, xn)) → 1

as n→ ∞. Hence, by our assumption, dn → 0 as n→ ∞ so that

lim
n→∞

d(xn, xn+1) = 0. (2.3)

We now show that {xn} is a Cauchy sequence. If {xn} is not Cauchy, then there
exists some ǫ > 0, we can find subsequences {xm(k)} and {xn(k)} of {xn} with
n(k) > m(k) > k such that

d(xn(k), xm(k)) ≥ ǫ. (2.4)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) and satisfying (2.4), then

d(xn(k), xm(k)) ≥ ǫ and d(xn(k)−1, xm(k)) < ǫ. (2.5)

Now,

ǫ ≤ d(xn(k), xm(k))

≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k))

< d(xn(k), xn(k)−1) + ǫ. (2.6)

On taking limit superior as k → ∞, we get

ǫ ≤ lim sup
k→∞

d(xn(k), xm(k))

≤ lim sup
k→∞

(ǫ+ d(xn(k), xn(k)−1)) = ǫ.

Hence
lim sup

k→∞

d(xn(k), xm(k)) = ǫ. (2.7)
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Again, on taking limit inferior as k → ∞ in (2.6) and from (2.7), we have

ǫ ≤ lim inf
k→∞

d(xn(k), xm(k))

≤ lim sup
k→∞

d(xn(k), xm(k))) = ǫ.

Hence
lim inf
k→∞

d(xn(k), xm(k))) = ǫ. (2.8)

From (2.7) and (2.8), it follows that limk→∞ d(xn(k), xm(k))) exists and

lim
k→∞

d(xn(k), xm(k))) = ǫ. (2.9)

Now, from the triangular inequality,

d(xn(k), xm(k)) ≤ d(xn(k), xn(k)+1) + d(xn(k)+1, xm(k)+1) + d(xm(k)+1, xm(k)).
(2.10)

On taking limit superior both sides, it follows that

ǫ ≤ lim sup
k→∞

d(xn(k)+1, xm(k)+1)). (2.11)

Again,

d(xn(k)+1, xm(k)+1) ≤ d(xn(k)+1, xn(k)) + d(xn(k), xm(k)) + d(xm(k), xm(k)+1).
(2.12)

On taking limit superior k → ∞ on both sides, we get

lim sup
k→∞

d(xn(k)+1, xm(k)+1)) ≤ ǫ. (2.13)

From (2.11) and (2.13) it follows that

lim sup
k→∞

d(xn(k)+1, xm(k)+1)) = ǫ. (2.14)

From (2.10) we write, d(xn(k)+1, xm(k)+1) ≥ d(xn(k), xm(k)) − d(xn(k), xn(k)+1) −
d(xm(k)+1, xm(k)). On taking limit inferior as k → ∞ on both sides we get

lim inf
k→∞

d(xn(k)+1, xm(k)+1)

≥ lim inf
k→∞

[d(xn(k), xm(k))] + lim inf
k→∞

[−d(xn(k), xn(k)+1)]

+ lim inf
k→∞

[−d(xm(k)+1, xm(k))]

= ǫ− lim sup
k→∞

[d(xn(k), xn(k)+1)] − lim sup
k→∞

[d(xm(k)+1, xm(k))]

= ǫ.

Now, ǫ ≤ lim infk→∞ d(xn(k)+1, xm(k)+1) ≤ lim supk→∞
d(xn(k)+1, xm(k)+1)) = ǫ,

hence
lim inf
k→∞

d(xn(k)+1, xm(k)+1) = ǫ. (2.15)
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From (2.14) and (2.15) it follows that limk→∞ d(xn(k)+1, xm(k)+1) exists and

lim
k→∞

d(xn(k)+1, xm(k)+1) = ǫ. (2.16)

Now, by using (2.9) and (2.16), we get

lim
k→∞

∆k = lim
k→∞

ϕ(d(xm(k)+1, xn(k)+1))

ϕ(d(xm(k), xn(k)))

=

ϕ

(

lim
k→∞

d(xm(k)+1, xn(k)+1)

)

ϕ

(

lim
k→∞

d(xm(k), xn(k))

) = 1.

Now, by our assumption we have dk → 0 as k → ∞. i.e., limk→∞ d(xm(k), xn(k)) =
0, a contradiction to (2.9). This proves that {xn} is a Cauchy sequence. Since X
is T -orbitally complete, there exists z in X such that xn → z as n→ ∞. Now, we
prove that T (z) = z. We consider

ϕ(d(xn, Txn)) = ϕ(d(xn, xn+1)) < ϕ(d(xn−1, xn)).

Now, on letting n→ ∞, we have ϕ(d(z, T z)) ≤ ϕ(d(z, z)) = 0, since T is orbitally
continuous at z. Hence ϕ(d(z, T z)) = 0. Therefore, it follows that z = Tz.

Remark 2.2. Geraghty’s theorem (Theorem 1.3) follows as a corollary to Theorem

2.1 by choosing ϕ(t) = t, t ≥ 0 in Theorem 2.1.

Example 2.3. Let X = [2, 9) with the usual metric. We define T : X → X by

T (x) =







































































x2 if x ∈ [2, 3)

2x+ 1
2 if x ∈ [3, 4]

8 if x ∈ (4, 8]

23 + 1
3 if x ∈ [23 + 1

2 , 9)

23 + 1
4 if x ∈ [23 + 1

3 , 23 + 1
4 )

23 + 1
n+2 if x ∈ [23 + 1

n+1 , 23 + 1
n+2 ), n = 1, 2, 3, . . . .

Clearly, X is T -orbitally complete and T is orbitally continuous at 23. For x0 = 2,
we define xn+1 = Txn for n = 0, 1, 2, . . .. Then OT (x0) = {2, 22, 23 + 1

2 , 23 +
1
3 , 23 + 1

4 , . . . , 2
3 + 1

n+1 , . . .} and OT (x0) = OT (x0)∪{8}. We define ϕ : [0, ∞) →
[0, ∞) by

ϕ(t) =







t2 if 0 ≤ t ≤ 1

1
t2

if t ≥ 1.
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Clearly ϕ ∈ Φ. Now

ϕ(d(Tx0, Tx1)) =
4

81
<

1

4
= ϕ(d(x0, x1))

ϕ(d(Tx1, Tx2)) =
1

36
<

4

81
= ϕ(d(x1, x2)), . . . .

In general

ϕ(d(Txn, Txn+1)) =
1

(n+ 1)2(n+ 2)2
<

1

n2(n+ 1)2
= ϕ(d(xn, xn+1))

for n = 0, 1, 2, . . . . And, let {xh(n)} and {xk(n)} be any two subsequences of {xn}
with xh(n) 6= xk(n). Now,

∆n =
ϕ(d(Txh(n), Txk(n)))

ϕ(d(xh(n), xk(n)))
=
ϕ(|23 + 1

hn+1 − 23 − 1
kn+1 |)

ϕ(|23 + 1
hn

− 23 − 1
kn

|)

=

(

(kn − hn)2

(kn + 1)2(hn + 1)2

) (

knhn

kn − hn

)

→ 1 as n→ ∞.

And dn = (d(xh(n), xk(n))) = (| 1
h(n) −

1
k(n) |) → 0 as n→ ∞. Hence T satisfies all

the hypotheses of Theorem 2.1 and 23 is the unique fixed point of T. But, for x0 = 2
and x1 = 22, |Tx0 − Tx1| = 9

2 ≮ 2 = |x0 − x1| so that the inequality (2.1) fails

to hold when ϕ is the identity mapping on R+. Hence T is not a contractive map

and Geraghty’s Theorem is not applicable. Thus Theorem 2.1 is a generalization

of Theorem 1.3.

Remark 2.4. If we relax the condition T is orbitally continuous at z from the

hypotheses of Theorem 2.1, the conclusion of Theorem 2.1 fails to hold.

Example 2.5. Let X = {0, 2} ∪ { 1
n
/n = 1, 2, 3, . . .} with the usual metric.

For x0 = 1, we define T on X by T (1) = 2, T (2) = 1
2 , T (1

2 ) = 1
3 , T (1

3 ) =
1
4 , . . . , T ( 1

n
) = 1

n+1 for n = 2, 3, 4, . . . and T (0) = 0. Here OT (1) = {1, 2, 1
2 ,

1
3 , . . .}

and OT (1) = OT (1) ∪ {0}. Clearly T is orbitally continuous at 0. We define ϕ in

Φ as in Example 2.3. Now

ϕ(d(Tx0, Tx1)) = ϕ(|
1

2
− 2|) =

4

9
< 1 = ϕ(|2 − 1|) = ϕ(d(x0, x1)).

ϕ(d(Tx1, Tx2)) =
1

36
<

4

9
= ϕ(d(x1, x2)), . . . .

In general

ϕ(d(Txn, Txn+1)) =
1

(n+ 1)2(n+ 2)2
<

1

n2(n+ 1)2
= ϕ(d(xn, xn+1))
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for n = 0, 1, 2, . . . . And, let {xh(n)} and {xk(n)} be any two sequences of {xn} with

xh(n) 6= xk(n). Now

∆n =
ϕ(| 1

hn+2 − 1
kn+2 |)

ϕ(| 1
hn+1 − 1

kn+1 |)
=

(1 + 1
hn

)(1 + 1
kn

)

(1 + 2
hn

)(1 + 2
kn

)
→ 1 as n→ ∞

and dn = | 1
hn

− 1
kn

| → 0 as n → ∞. Hence T satisfies all the hypotheses of

Theorem 2.1 and T has a unique fixed point ‘0’ in OT (1).
On the other hand, if we define T on X by T (0) = 1, T (1) = 2, T (2) = 1

2 ,
T ( 1

n
) = 1

n+1 for all n = 2, 3, 4, . . . . Then T is not orbitally continuous at any point

of OT (0) even if T satisfies all the other hypotheses of Theorem 2.1 and T has no

fixed points in OT (1).

Theorem 2.6. Let T be a selfmap on a T -orbitally complete metric space. Let x0

in X, assume that there exists a ϕ in Φ such that

ϕ(d(Tmx, Tmy)) < ϕ(d(x, y)) (2.17)

for all x, y = Tx ∈ OT (x0), x 6= y and some positive integer m > 1. We define

{xn}
∞

n=1 by xn = T (xn−1) for n = 1, 2, 3, . . .. Then xn → z with z is a unique

fixed point of T in X if and only if for any two subsequences {xh(n)} and {xk(n)}
with xh(n) 6= xk(n), we have ∆n → 1 only if dn → 0, provided Tm is orbitally

continuous at z; where

∆n =
ϕ(d(Tmxh(n), T

mxk(n)))

ϕ(dn)
and dn = d(xh(n), xk(n)).

Proof. By replacing T by Tm in Theorem 2.1, we get Tm has a unique fixed point
z in X. i.e., Tmz = z. Now T (z) = T (Tm(z)) = Tm+1(z) = Tm(Tz). Hence Tz is
also a fixed point of Tm. We now show that Tz = z. Suppose that Tz 6= z. Hence

ϕ(d(z, T z)) = ϕ(d(Tmz, TTmz) = ϕ(d(Tmz, TmTz) < ϕ(d(z, T z)),

a contradiction. Thus Tz = z.

Remark 2.7. Theorem 1.2 follows as a corollary to Theorem 2.6 by choosing

ϕ(t) = t, t ≥ 0 in Theorem 2.6. In the following, we provide an example for the

applicability of Theorem 2.6, where the condition (2.17) holds for m = 4, but fails

to hold for m = 1, 2 and 3 and hence Theorem 2.6 is a generalization of theorem

2.1.

Example 2.8. Let X = {1, 2, 3, 4, 9
2} ∪ {1 − 1

n
/n = 1, 2, 3, . . .} with the usual

metric. We define T on X by T (0) = 2, T (2) = 4, T (4) = 3, T (3) = 9
2 , T (9

2 ) =
1− 1

2 , T (1− 1
2 ) = 1− 1

3 , . . . , T (1− 1
n
) = 1− 1

n+1 for n = 2, 3, 4, . . . and T (1) = 1.

Thus, for x0 = 0, we have OT (0) = {0, 2, 4, 3, 9
2 , 1 − 1

2 , 1 − 1
3 , . . . , 1 − 1

n
, . . .}

and OT (0) = OT (0) ∪ {1}. We define ϕ in Φ as in Example 2.3. Now, for the

sequence xn = Txn−1, n = 1, 2, 3, . . . , we consider the following.
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For m = 1, ϕ(d(Tx0, Tx1)) = 1
4 ≮ 1

4 = ϕ(d(x0, x1)).

For m = 2, ϕ(d(T 2x0, T
2x1)) = 1 ≮ 1

4 = ϕ(d(x0, x1)).

For m = 3, ϕ(d(T 3x0, T
3x1)) = 4

9 ≮ 1
4 = ϕ(d(x0, x1)).

For m = 4, ϕ(d(T 4x0, T
4x1)) = 1

64 <
1
4 = ϕ(d(x0, x1)),

ϕ(d(T 4x1, T
4x2)) = 1

36 <
1
4 = ϕ(d(x1, x2)),

ϕ(d(T 4x2, T
4x3)) = 1

44 < 1 = ϕ(d(x2, x3)),

ϕ(d(T 4x3, T
4x4)) = 1

400 <
4
9 = ϕ(d(x3, x4))

and in general

ϕ(d(T 4xn+3, T
4xn+4)) = ϕ(|1 −

1

n+ 3
− 1 +

1

n+ 2
|) =

1

(n+ 3)2(n+ 2)2

<
n2

(n+ 1)2
= ϕ(d(xn+3, xn+4))

for n = 0, 1, 2, . . .. Hence inequality (2.17) holds. Moreover ∆n → 1 implies

dn → 0. Hence T satisfies all the hypotheses of Theorem 2.6 with m = 4 and ‘1’ is

the unique fixed point of T.

Corollary 2.9. Let T be a selfmap on a complete metric space (X, d). Assume

that there exists a ϕ ∈ Φ with

ϕ(d(Tx, T y)) < ϕ(d(x, y)) for all x, y = Tx ∈ X with x 6= y. (2.18)

Let x0 ∈ X, and set xn = T (xn−1) for n = 1, 2, 3, . . .. Then xn → z in X, with

z is a unique fixed point of T if and only if for any two subsequences {xh(n)} and

{xk(n)} with xh(n) 6= xk(n), we have that ∆n → 1 implies dn → 0, where

∆n =
ϕ(d(Txh(n), Txk(n)))

ϕ(dn)
and dn = ϕ(d(xh(n), xk(n))).

Theorem 2.10. Let (X, d) be a complete metric space and T be a selfmap of X.

Assume that there exists a ϕ in Φ and k in [0, 1) such that

ϕ(d(Tx, T y)) ≤ kϕ(d(x, y)) for all x, y ∈ X. (2.19)

Let x0 ∈ X and set xn = Txn−1 for n = 1, 2, 3, . . .. Then xn → z, z is a unique

fixed point of T in X if and only if there exists an α in S such that for all n, m
in N

ϕ(d(Txn, Txm)) ≤ α((d(xn , xm)))ϕ(d(xn, xm)). (2.20)

Proof. Since the inequality (2.19) implies (2.18), by Corollary 2.9, it is sufficient
to show that there exists an α in S such that (2.20) holds if and only if ∆n → 1
implies dn → 0. Suppose that such an α exists in S. Let {xh(n)} and {xk(n)} be
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two sequences with xh(n) 6= xk(n). Now, we assume that ∆n → 1. From (2.20), we
have

ϕ(d(Txh(n), Txk(n)))

ϕ(d(xh(n), xk(n)))
≤ α(d(xh(n), xk(n))) < 1.

On letting n→ ∞

1 = lim
n→∞

∆n ≤ lim
n→∞

α(d(xh(n), xk(n))) ≤ 1.

Hence lim
n→∞

α(d(xh(n), xk(n))) = 1. Since α in S, it follows that d(xh(n), xk(n)) → 0

as n→ ∞. i.e., dn → 0 as n→ ∞.
Conversely, assume that ∆n → 1 implies dn → 0. We define α : R+ → R

by α(t) = sup{
ϕ(d(Txh(n), Txk(n)))

ϕ(d(xh(n), xk(n)))
/d(xn, xm) ≥ t}. From the inequality (2.19),

we have ϕ(d(Txn, Txm))
ϕ(d(xn, xm)) ≤ k for all n,m with xn 6= xm. Hence α(t) ≤ k, but

k < 1 implies that α(t) < 1 for all t > 0. Also, α(d(xn, xm)) ≥ ϕ(d(Txn, Txm))
ϕ(d(xn, xm)) .

Hence, ϕ(d(Txn, Txm)) ≤ α(d(xn, xm))ϕ(d(xn, xm)). Suppose that α(tn) → 1
as n → ∞ for a sequence {tn} in (0, ∞). With out loss of generality, we assume
that there exists a sequence {sn} in (0, ∞) such that limn→∞ sn = 0 and 1− sn <
α(tn) < 1. Thus for each n > 0, there exist two subsequences {xh(n)} and {xk(n)}

with d(xh(n), xk(n)) ≥ tn and 1 − sn <
ϕ(d(Txh(n), Txk(n)))

ϕ(d(xh(n), xk(n)))
≤ α(tn) < 1. Thus it

follows that ∆n → 1 as n→ ∞. Hence by our assumption, dn → 0 so that tn → 0.
This completes the proof of the theorem.

We write S1 for the class of all functions α : (0, ∞) → [0, 1] satisfying
α(tn) → 1 implies tn → 0.

Theorem 2.11. Let (X, d) be a complete metric space and T be a selfmap on X.
Assume that there exists a ϕ in Φ such that

ϕ(d(Tx, T y)) < ϕ(d(x, y)) for all x, y ∈ X, x 6= y. (2.21)

Let x0 ∈ X and set xn = Txn−1 for n = 1, 2, 3, . . .. Then xn → z, z is a unique

fixed point of T in X if and only if there exists an α in S1 such that for all n, m
in N

ϕ(d(Txn, Txm)) ≤ α((d(xn, xm)))ϕ(d(xn , xm)). (2.22)

Proof. By Corollary 2.9, it is enough to show that there exists an α in S1 such
that (2.22) holds if and only if ∆n → 1 implies dn → 0. Necessary part of the
proof follows as that of the proof of Theorem 2.10. For sufficiency, we proceed as
follows. We define α : R+ → R by

α(t) = sup{
ϕ(d(Txh(n), Txk(n)))

ϕ(d(xh(n), xk(n)))
/d(xn, xm) ≥ t}.

From the inequality (2.21), it follows that ϕ(d(Txn, Txm))
ϕ(d(xn, xm)) < 1 for all n, m in N

with xn 6= xm. Hence α(t) ≤ 1 for all t > 0. The remaining part of the proof runs
as on the same lines of the proof of Theorem 2.10.
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Remark 2.12. Theorem 1.4 follows as a corollary to Theorem 2.11 by choosing

ϕ(t) = t, t ≥ 0 in Theorem 2.11.

The following example suggests that Theorem 2.11 is a generalization of The-
orem 1.4.

Example 2.13. Let X = {0, 1, 2} with the usual metric. We define T : X → X
by T (1) = 0, T (0) = 2 and T (2) = 2. We define ϕ : [0, ∞) → [0, ∞) by

ϕ(t) =







t if 0 ≤ t ≤ 1

1
t

if t ≥ 1.

Clearly ϕ ∈ Φ. And α : (0, ∞) → [0, 1] defined by α(t) = 1
1+t

, t > 0. If either

(x = 0, y = 2) or (x = 2, y = 0) then d(Tx, T y) = 0 and the inequalities (2.21)
and (2.22) hold trivially. In the remaining cases, i.e., when x = 0, y = 1; x =
1, y = 0; x = 1, y = 2; and x = 2, y = 1; we have d(Tx, T y) = 2, d(x, y) = 1 and

α(d(x, y)) = 1
2 . Hence ϕ(d(Tx, T y)) = 1

2 < 1 = ϕ(d(x, y)) so that (2.21) holds

and ϕ(d(Tx, T y)) = 1
2 ≤ 1

21 = 1
1+d(x, y)ϕ(d(x, y)) = α(d(x, y))ϕ(d(x, y)) so that

(2.22) holds. Hence, all the hypotheses of Theorem 2.11 hold and T has a unique

fixed point 2. Moreover, this shows that when ϕ(t) = t the inequalities (2.21) and

(2.22) fail to hold at the points x = 0, y = 1; x = 1, y = 0; x = 1, y = 2 and

x = 2, y = 1 so that Theorem 1.4 is not applicable.

Remark 2.14. Theorem 1.10 follows as a corollary to Theorem 2.1, since the

inequality (1.2) implies the inequality (2.1).

An open question : Find a selfmap T of X that satisfies the condition (2.1) but
fails to be a strip ϕ-contraction. If this problem is solved in orbitally complete
metric spaces, then Theorem 2.1 generalizes Theorem 1.10.
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