THAI **J**OURNAL OF **M**ATHEMATICS VOLUME 11 (2013) NUMBER 2 : 439–445

http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209

$\tau_1 \tau_2$ - Q^* Closed Sets

K. Kannan¹ and K. Chandrasekhara Rao

Department of Mathematics, Srinivasa Ramanujan Centre SASTRA University, Kumbakonam 612001, Tamil Nadu, India e-mail : anbukkannan@rediffmail.com (K. Kannan) k.chandrasekhara@rediffmail.com (K. Chandrasekhara Rao)

Abstract: In the present paper, we introduced Q^* -closed sets and studied some of their properties in bitopological spaces. It is proved that the arbitrary intersection of $\tau_1 \tau_2$ - Q^* closed sets is $\tau_1 \tau_2$ - Q^* closed. Also some relations are established with known generalized closed sets.

Keywords : $\tau_1\tau_2$ - Q^* closed sets; $\tau_1\tau_2$ - Q^* open sets; $\tau_1\tau_2$ - δ set; nowhere $\tau_1\tau_2$ -dense. **2010 Mathematics Subject Classification :** 54E55.

1 Introduction

Maheshwari and Prasad [1] introduced semi open sets in bitopological spaces [2] in 1977. Further properties of this notion were studied by Bose [3] in 1981. Fukutake [4] defined one kind of semi open sets in bitopological spaces and studied their properties in 1989. He also extended the generalized closed sets [5] from topological spaces to bitopological spaces and introduced pairwise generalized closure operator [6] in bitopological spaces in 1986. A set A of a bitopological space (X, τ_1, τ_2) is $\tau_i \tau_j$ -generalized closed set (briefly $\tau_i \tau_j$ -g-closed) if τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -open in X, i, j = 1, 2 and $i \neq j$. Also, he defined a new closure operator and strongly pairwise $T_{\frac{1}{2}}$ -space.

Semi generalized closed sets and generalized semi closed sets are extended to bitopological settings by Khedr and Al-saadi [7]. They proved that the union of

Copyright $\textcircled{}_{C}$ 2013 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

two ij-sg closed sets need not be ij-sg closed. This is an unexpected result. Also they defined that the ij-semi generalized closure of a subset A of a space X is the intersection of all ij-sg closed sets containing A and is denoted by ij-sgcl(A). Rao and Mariasingam (2000) [8] defined and studied regular generalized closed sets in bitopological settings.

Rao and Kannan introduced semi star generalized closed sets [9–12], regular generalized star closed sets [13], regular generalized star star closed sets [14], generalized star regular closed sets [15] and generalized star star closed sets [16] in bitopological spaces. Moreover, Kannan, Sheik John and Sundaram introduced semi star star closed sets [17] and g*-closed sets [18] in bitopological spaces. Murugalingam and Lalitha [19] introduced Q^* -closed sets in topological spaces.

In the present paper, we introduced Q^* -closed sets and studied some of their properties in bitopological spaces. Also some relations are established with known generalized closed sets.

2 Preliminaries

A topological space (X, τ) is a hyperconnected space if X cannot be written as the union of two proper closed sets. Moreover, for a topological space X the following conditions are equivalent: (1) No two nonempty open sets are disjoint. (2) X cannot be written as the union of two proper closed sets. i.e) X is hyperconnected. (3) Every nonempty open set is dense in X. (4) The interior of every proper closed set is empty.

Throughout this paper, (X, τ_1, τ_2) or simply X denotes a bitopological space and $A \subseteq B$ means that A is the subset of B. For any subset $A \subseteq X$, τ_i -int(A), τ_i -cl(A) denote the interior, closure of a set A in X with respect to the topology τ_i . A^C or X - A denotes the complement of A in X unless explicitly stated. We shall now require the following known definitions.

A set A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -semi open if there exists an τ_1 -open set U such that $U \subseteq A \subseteq \tau_2$ -cl(U). Equivalently, a set A is $\tau_1\tau_2$ -semi open if $A \subseteq \tau_2$ - $cl[\tau_1$ -int(A)]. Similarly, A is $\tau_1\tau_2$ -semi closed if X - A is $\tau_1\tau_2$ -semi open. Equivalently, a set A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -semi closed if there exists an τ_1 -closed set F such that τ_2 - $int(F) \subseteq A \subseteq F$.

A set A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -generalized closed $(\tau_1 \tau_2 - g \operatorname{closed})$ {resp. $\tau_1 \tau_2$ -semi generalized closed $(\tau_1 \tau_2 - sg \operatorname{closed}), \tau_1 \tau_2$ -generalized semi closed $(\tau_1 \tau_2 - gs \operatorname{closed}), \tau_1 \tau_2$ -semi star generalized closed $(\tau_1 \tau_2 - s^*g \operatorname{closed}), \tau_1 \tau_2$ -regular generalized closed $(\tau_1 \tau_2 - rg^*g \operatorname{closed}), \tau_1 \tau_2$ -regular generalized star closed $(\tau_1 \tau_2 - rg^*g \operatorname{closed}), \tau_1 \tau_2$ -regular generalized star closed $(\tau_1 \tau_2 - rg^*r \operatorname{closed}), \tau_1 \tau_2$ -regular generalized star closed $(\tau_1 \tau_2 - rg^*r \operatorname{closed}), \tau_1 \tau_2$ -regular generalized star star closed $(\tau_1 \tau_2 - rg^{**} \operatorname{closed}), \tau_1 \tau_2$ -regular generalized star star closed $(\tau_1 \tau_2 - rg^{**}r \operatorname{closed})$ } if $\tau_2 - cl(A)$ {resp. $\tau_2 - scl(A), \tau_2 - scl(A), \tau_2 - cl(A), \tau_2 - cl(A$

The complement of $\tau_1 \tau_2$ -generalized closed {resp. $\tau_1 \tau_2$ -semi generalized closed,

 $au_1 au_2$ -generalized semi closed, $au_1 au_2$ -semi star generalized closed, $au_1 au_2$ -regular generalized star closed, $au_1 au_2$ -generalized star regular closed, $au_1 au_2$ -regular generalized star star closed, $au_1 au_2$ -generalized star star closed} is called $au_1 au_2$ -generalized open {resp. $au_1 au_2$ -semi generalized open, $au_1 au_2$ -generalized open, $au_1 au_2$ -generalized open, $au_1 au_2$ -regular generalized star open, $au_1 au_2$ -generalized star regular open, $au_1 au_2$ -regular generalized star open, $au_1 au_2$ -generalized star star open} in X. A set A is called $au_1 au_2-\delta$ set {resp. nowhere $au_1 au_2$ -dense} if au_1 -int{ au_2 -cl[au_1 -int(A)]} = ϕ {resp. au_2 -cl[au_1 -int(A)] = ϕ }.

3 $au_1 au_2 ext{-} Q^*$ Closed Sets

In this section, the concept of $\tau_1\tau_2$ - Q^* closed sets is introduced and its basic properties in bitopological spaces are discussed. Recall that a set A of a topological space (X, τ) is called Q^* -closed if $int(A) = \phi$ and A is closed.

Definition 3.1. A set A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2 \cdot Q^*$ closed if τ_1 -*int* $(A) = \phi$ and A is τ_2 -closed.

Example 3.2. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$. Then ϕ , $\{b, c\}$ are $\tau_1 \tau_2$ -Q^{*} closed.

Remark 3.3. It is obvious that every $\tau_1\tau_2$ - Q^* closed set is τ_2 -closed, but the converse is not true in general. The following example supports our claim.

Example 3.4. In Example 3.2, $\{a\}$ is τ_2 -closed, but not $\tau_1\tau_2$ - Q^* closed.

Remark 3.5. Since every $\tau_1\tau_2$ - Q^* closed set is τ_2 -closed and every τ_2 -closed set is $\tau_1\tau_2$ -g closed, $\tau_1\tau_2$ -sg closed, $\tau_1\tau_2$ -gs closed and $\tau_1\tau_2$ -s*g closed, we have every $\tau_1\tau_2$ - Q^* closed set is $\tau_1\tau_2$ -g closed, $\tau_1\tau_2$ -sg closed, $\tau_1\tau_2$ -gs closed and $\tau_1\tau_2$ -s*g closed. But the converse is not true in general. The following example supports our claim.

Example 3.6. In Example 3.2, $\{a\}$ is $\tau_1\tau_2$ -g closed, $\tau_1\tau_2$ -sg closed, $\tau_1\tau_2$ -gs closed and $\tau_1\tau_2$ -s^{*}g closed, but not $\tau_1\tau_2$ -Q^{*} closed in X.

Theorem 3.7. Every $\tau_1\tau_2$ - Q^* closed set is $\tau_1\tau_2$ - δ set.

Proof. Let A be $\tau_1\tau_2 \cdot Q^*$ closed. Then $\tau_1 \cdot int(A) = \phi$ and A is τ_2 -closed. Consequently, $\tau_1 \cdot int \{\tau_2 \cdot cl [\tau_1 \cdot int(A)]\} = \tau_1 \cdot int \{\tau_2 \cdot cl [\phi]\} = \tau_1 \cdot int(\phi) = \phi$. Therefore, A is $\tau_1\tau_2 \cdot \delta$ set.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.8. Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a, b\}\}, and \tau_2 = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$. Then $\{a\}$ is $\tau_1 \tau_2$ - δ set, but not $\tau_1 \tau_2$ - Q^* closed.

Remark 3.9. τ_2 -regular closed sets and $\tau_1\tau_2$ - Q^* closed sets are independent of each other in general. It is proved in the following example.

Example 3.10. In Example 3.8, $\{a, b, d\}$ is τ_2 -regular closed, but not $\tau_1\tau_2$ - Q^* closed and $\{a, d\}$ is $\tau_1\tau_2$ - Q^* closed but not τ_2 -regular closed.

The following diagram is established now from the above results.

442

Theorem 3.11. If A and B are $\tau_1\tau_2$ -Q^{*} closed sets then so is $A \cup B$.

Proof. Suppose that A and B are $\tau_1\tau_2 - Q^*$ closed sets. Then $\tau_1 - int(A) = \tau_1 - int(B) = \phi$ and A, B are τ_2 -closed. Consequently, $A \cup B$ is τ_2 -closed. Now, $A^C \cap \tau_1 - int(A \cup B) \subseteq \tau_1 - int(A \cup B)$. Let $x \in A^C \cap \tau_1 - int(A \cup B)$. Then $x \in A^C$ and $x \in \tau_1 - int(A \cup B)$. Therefore, $x \in B$. Consequently, $A^C \cap \tau_1 - int(A \cup B) \subseteq B$. But, $\tau_1 - int(B) = \phi$. Hence $A^C \cap \tau_1 - int(A \cup B) = \phi$. But $\tau_1 - int(A) = \phi$. This implies that $\tau_1 - int(A \cup B) = \phi$. It follows that $A \cup B$ is $\tau_1 \tau_2 - Q^*$ closed.

Theorem 3.12. The arbitrary intersection of $\tau_1\tau_2$ - Q^* closed sets is $\tau_1\tau_2$ - Q^* closed.

Proof. Let $\{A_{\alpha}/\alpha \in I\}$ be a family of $\tau_1\tau_2$ - Q^* closed sets. Then for each $\alpha \in I$, τ_1 -*int* $(A_{\alpha}) = \phi$ and A_{α} is τ_2 -closed. Since, τ_1 -*int* $[\bigcap A_{\alpha}] \subseteq \tau_1$ -*int* (A_{α}) , we have τ_1 -*int* $[\bigcap A_{\alpha}] = \phi$. Since the arbitrary intersection of τ_2 -closed sets is τ_2 -closed, we have $\bigcap [A_{\alpha}]$ is τ_2 -closed. This completes the proof.

Theorem 3.13. If A is $\tau_1\tau_2$ -Q^{*} closed then A is nowhere $\tau_1\tau_2$ -dense

 $au_1 au_2$ - Q^* Closed Sets

Proof. Since A is $\tau_1 \tau_2 - Q^*$ closed, we have $\tau_1 - int(A) = \phi$ and A is τ_2 -closed. Therefore, $\tau_2 - cl[\tau_1 - int(A)] = \phi$. Hence A is nowhere $\tau_1 \tau_2$ -dense.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.14. In Example 3.8, $\{b\}$ is nowhere $\tau_1\tau_2$ -dense, but not $\tau_1\tau_2$ - Q^* closed.

4 $\tau_1 \tau_2$ - Q^* Open Sets

Definition 4.1. A set A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2 - Q^*$ open if its complement A^C is $\tau_1 \tau_2 - Q^*$ closed in X

Example 4.2. In Example 3.2, $\{a\}$, X are $\tau_1\tau_2$ -Q^{*} open.

Theorem 4.3. A set A of a bitopological space (X, τ_1, τ_2) is $\tau_1\tau_2$ -Q^{*} open if and only if τ_1 -cl(A) = X and A is τ_2 -open.

Proof. Necessity: Suppose that A is $\tau_1\tau_2$ - Q^* open. Then A^C is $\tau_1\tau_2$ - Q^* closed. Therefore, τ_1 -*int* $(A^C) = [\tau_1$ - $cl(A)]^C = \phi$ and A^C is τ_2 -closed. Consequently, τ_1 -cl(A) = X and A is τ_2 -open.

Sufficiency: Suppose that τ_1 -cl(A) = X and A is τ_2 -open. Then $[\tau_1$ - $cl(A)]^C = \tau_1$ - $int(A^C) = \phi$ and A^C is τ_2 -closed. Consequently, A^C is $\tau_1\tau_2$ - Q^* closed. This completes the proof.

Corollary 4.4. A set A of a bitopological space (X, τ_1, τ_2) is $\tau_1\tau_2$ -Q^{*} open if and only if A is τ_1 -dense and τ_2 -open.

Theorem 4.5.

- (a) X is not $\tau_1 \tau_2$ -Q^{*} closed;
- (b) X is $\tau_1 \tau_2$ -Q^{*} open;
- (c) ϕ is not $\tau_1 \tau_2$ -Q^{*} open;
- (d) ϕ is $\tau_1 \tau_2$ -Q^{*} closed.

Remark 4.6. It is obvious that every $\tau_1\tau_2$ - Q^* open set is τ_2 -open, but the converse is not true in general. The following example supports our claim.

Example 4.7. In Example 3.2, $\{b, c\}$ is τ_2 -open, but not $\tau_1\tau_2$ -Q^{*} open.

Remark 4.8. Since every $\tau_1\tau_2$ - Q^* open set is τ_2 -open and every τ_2 -open set is $\tau_1\tau_2$ -g open, $\tau_1\tau_2$ -sg open, $\tau_1\tau_2$ -gs open and $\tau_1\tau_2$ -s^{*}g open, we have every $\tau_1\tau_2$ - Q^* open set is $\tau_1\tau_2$ -g open, $\tau_1\tau_2$ -sg open, $\tau_1\tau_2$ -gs open and $\tau_1\tau_2$ -s^{*}g open. But the converse is not true in general. The following example supports our claim.

Example 4.9. In Example 3.2, $\{b, c\}$ is $\tau_1\tau_2$ -g open, $\tau_1\tau_2$ -sg open, $\tau_1\tau_2$ -gs open and $\tau_1\tau_2$ -s^{*}g open, but not $\tau_1\tau_2$ -Q^{*} open in X.

Remark 4.10. τ_2 -regular open sets and $\tau_1\tau_2$ - Q^* open sets are independent of each other in general. It is proved in the following example.

Example 4.11. In Example 3.8, $\{c\}$ is τ_2 -regular open, but not $\tau_1\tau_2$ - Q^* open and $\{b, c\}$ is $\tau_1\tau_2$ - Q^* open but not τ_2 -regular open.

Theorem 4.12. Let (X, τ_1) be a hyperconnected topological space and $A \subseteq X$. If A is both τ_1 -open and τ_2 -open then A is $\tau_1\tau_2$ -Q^{*} open in the bitopological space (X, τ_1, τ_2) .

Proof. It is enough to prove that A is τ_1 -dense. Suppose that τ_1 - $cl(A) \neq X$. Then $[\tau_1 - cl(A)]^C \neq \phi$. Moreover, both A and $[\tau_1 - cl(A)]^C$ are disjoint τ_1 -open sets. This is contradiction to the fact that (X, τ_1) is a hyperconnected topological space. Hence A is τ_1 -dense.

Theorem 4.13. If A and B are $\tau_1\tau_2$ -Q^{*} open sets then so is $A \cap B$.

Proof. Suppose that A and B are $\tau_1\tau_2$ - Q^* open sets. Then A^C and B^C are $\tau_1\tau_2$ - Q^* closed sets. Therefore, $A^C \cup B^C$ is $\tau_1\tau_2$ - Q^* closed. But $A^C \cup B^C = (A \cap B)^C$. Hence $A \cap B$ is $\tau_1\tau_2$ - Q^* open.

Theorem 4.14. The arbitrary union of $\tau_1\tau_2$ - Q^* open sets is $\tau_1\tau_2$ - Q^* open.

Proof. Let $\{A_{\alpha}/\alpha \in I\}$ be a family of $\tau_1\tau_2$ - Q^* open sets. Then for each $\alpha \in I$, τ_1 - $cl(A_{\alpha}) = X$ and A_{α} is τ_2 -open. Since, τ_1 - $cl(A_{\alpha}) \subseteq \tau_1$ - $cl[\bigcup A_{\alpha}]$, we have τ_1 - $cl[\bigcup A_{\alpha}] = X$. Since the arbitrary union of τ_2 -open sets is τ_2 -open, we have $\bigcup [A_{\alpha}]$ is τ_2 -open. This completes the proof.

Acknowledgement : The authors would like to thank anonymous referees, for their thoughtful comments and helpful suggestions for the improvement of the manuscript.

References

- S.N. Maheshwari, R. Prasad, Semiopen sets and semi continuous functions in bitopological spaces, Math. Note 26 (1977/78) 29–37.
- J.C. Kelly, Bitopological spaces, Proc. London Math. Society, 13 (1963) 71– 89.
- [3] S. Bose, Semi open sets, semi continuity and semi open mappings in bitopological spaces, Bull. Cal. Math. Soc. 73 (1981) 237–246.
- [4] T. Fukutake, Semi open sets on bitopological spaces, Bull. Fukuoka Uni. Education 38 (3) (1989) 1–7.

 $au_1 au_2 ext{-}Q^*$ Closed Sets

- [5] K. Kannan, On Levine's generalized closed sets: a survey, Research Journal of Applied Sciences, Engineering and Technology 4 (11) (2012) 1612–1615.
- T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III 35 (1986) 19–28.
- [7] F.H. Khedr, H.S. Al-saadi, On pairwise semi-generalized closed sets, JKAU: Sci. 21 (2) (2009) 269–295.
- [8] K. Chandrasekhara Rao, M. Mariasingam, On bitopological spaces, Acta Ciencia Indica XXVI M (4) (2000) 283–288.
- [9] K. Chandrasekhara Rao, K. Kannan, Semi star generalized closed sets and semi star generalized open sets in bitopological spaces, Varāhmihir Journal of Mathematical Sciences 5 (2) (2005) 473–485.
- [10] K. Chandrasekhara Rao, K. Kannan, D. Narasimhan, Characterizations of $\tau_1 \tau_2$ - s^*g closed sets, Acta Ciencia Indica XXXIII (3) (2007) 807–810.
- [11] K. Kannan, D. Narasimhan, K. Chandrasekhara Rao, Pairwise semi star generalized homeomorphisms, Journal of Engineering and Applied Sciences 7 (1) (2012) 86–89.
- [12] K. Kannan, D. Narasimhan, K. Chandrasekhara Rao, On semi star generalized closed sets in bitopological spaces, Bol. Soc. Paranaense de Mat. (3s.) 28 (1) (2010) 29–40.
- [13] K. Chandrasekhara Rao, K. Kannan, Regular generalized star closed sets, Thai J. Math. 4 (2) (2006) 341–349.
- [14] K. Kannan, D. Narasimhan, K. Chandrasekhara Rao, R. Ravikumar, Regular generalized star star closed sets, World Academy of Science, Engineering and Technology I: Mathematical and Computational Sciences 5 (2) (2011) 67–69.
- [15] K. Chandrasekhara Rao, K. Kannan, Generalized star regular closed sets, Antarctica J. Math. 4 (2) (2007) 139–146.
- [16] K. Chandrasekhara Rao, K. Kannan, D. Narasimhan, Generalized star star regular closed sets, Natl. Acad. Sci. Lett. 31 (1 & 2) (2008) 31–33.
- [17] K. Kannan, $\tau_1 \tau_2$ -semi star star generalized closed sets, International Journal of Pure and Applied Mathematics 76 (2) (2012) 277–294.
- [18] M. Sheik John, P. Sundaram, g*-closed sets in bitopological spaces, Indian J. Pure Appl. Math. 35 (1) (2004) 71–80.
- [19] M. Murugalingam, N. Lalitha, Q^{*}-sets, Bulletin of Pure and Applied Sciences 29E (2) (2010) 369–376.

(Received 27 August 2011) (Accepted 14 May 2012)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th