On Ideal Convergent Sequences in $2-$ Normed Spaces

M. Gürdal

Abstract

In this paper, we investigate the relation between \mathcal{I}-cluster points and ordinary limit points of sequence in 2-normed space.

Keywords : \mathcal{I}-convergence, 2-normed space, \mathcal{I}-cluster point. 2000 Mathematics Subject Classification : 40A05, 46A70.

1 Introduction

The notion of ideal convergence was introduced first by P. Kostyrko et al [6] as an interesting generalization of statistical convergence $[1,11]$. Note that the concept of an \mathcal{I}-cluster point and \mathcal{I}-limit point of a sequence in a metric space was introduced and some results for the set of \mathcal{I}-cluster points and \mathcal{I}-limit points obtained in [7].

The concept of 2-normed spaces was initially introduced by Gähler [2] in the 1960's. Since then, this concept has been studied by many authors, see for instance $[3,10]$.

In a natural way, one may unite these two concepts, and study the relation between \mathcal{I}-cluster point set and ordinary limit point set of a given sequence in 2 -normed spaces. This is actually what we offer in this article.

Throughout this paper \mathbb{N} will denote the set of positive integers. Let $(X,\|\cdot\|)$ be a normed space. Recall that a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of X is called to be statistically convergent to $\xi \in X$ if the set $A(\varepsilon)=\left\{n \in \mathbb{N}:\left\|x_{n}-\xi\right\| \geq \varepsilon\right\}$ has natural density zero for each $\varepsilon>0$.

A family $\mathcal{I} \subset 2^{Y}$ of subsets a nonempty set Y is said to be an ideal in Y if
(i) $\emptyset \in \mathcal{I}$;
(ii) $A, B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$;
(iii) $A \in \mathcal{I}, B \subset A$ imply $B \in \mathcal{I}$,
while an admissible ideal \mathcal{I} of Y further satisfies $\{x\} \in \mathcal{I}$ for each $x \in Y[7,8]$.
Given $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal in \mathbb{N}. The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X is said to be \mathcal{I}-convergent to $\xi \in X$, if for each $\varepsilon>0$ the set $A(\varepsilon)=\left\{n \in \mathbb{N}:\left\|x_{n}-\xi\right\| \geq \varepsilon\right\}$ belongs to $\mathcal{I}[6,7]$.

An admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to have the property (AP) if for any sequence $\left\{A_{1}, A_{2}, \ldots\right\}$ of mutually disjoint sets of \mathcal{I} there is a sequence $\left\{B_{1}, B_{2}, \ldots\right\}$ of subsets of \mathbb{N} such that each symmetric difference $A_{i} \Delta B_{i}(i=1,2, \ldots)$ is finite and $B=\bigcup_{i=1}^{\infty} B_{i} \in \mathcal{I},[7]$.

Let X be a real vector space of dimension d, where $2 \leq d<\infty$. A 2-norm on X is a function $\|.,\|:. X \times X \rightarrow R$ which satisfies
(i) $\|x, y\|=0$ if and only if x and y are linearly dependent;
(ii) $\|x, y\|=\|y, x\|$;
(iii) $\|\alpha x, y\|=|\alpha|\|x, y\|, \alpha \in \mathbb{R}$;
(iv) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$.

The pair $(X,\|.,\|$.$) is then called a 2$-normed space [2]. As an example of a 2-normed space we may take $X=\mathbb{R}^{2}$ being equipped with the 2-norm $\|x, y\|:=$ the area of the parallelogram spanned by the vectors x and y, which may be given explicitly by the formula

$$
\|x, y\|=\left|x_{1} y_{2}-x_{2} y_{1}\right|, \quad x=\left(x_{1}, x_{2}\right), \quad y=\left(y_{1}, y_{2}\right) .
$$

Recall that $(X,\|\cdot, \cdot\|)$ is a 2 -Banach space if every Cauchy sequence in X is convergent to some x in X. Let $u=\left\{u_{1}, \ldots, u_{d}\right\}$ be a basis of X. We know the norm $\|\cdot\|_{\infty}$ on X is defined by

$$
\|x\|_{\infty}:=\max \left\{\left\|x, u_{i}\right\|: i=1, \ldots, d\right\}
$$

Associated to the derived norm $\|\cdot\|_{\infty}$, we can define the (open) balls $B_{u}(x, \varepsilon)$ centered at x having radius ε by

$$
B_{u}(x, \varepsilon):=\left\{y:\|x-y\|_{\infty}<\varepsilon\right\},
$$

where $\|x-y\|_{\infty}:=\max \left\{\left\|x-y, u_{j}\right\|, j=1, \ldots, d\right\}$.

2 The Relation Between I-cluster Points and Ordinary Limit Points of 2-Normed Spaces

It is known that there is a strong connection between statistical cluster points and ordinary limit points of a given sequence. We will prove that these facts are satisfied for \mathcal{I}-cluster \mathcal{I}-limit point sets of a given sequences in 2 -normed spaces.

Definition 2.1 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal in \mathbb{N}. The sequence $\left(x_{n}\right)$ of X is said to be \mathcal{I}-convergent to ξ, if for each $\varepsilon>0$ and nonzero z in X the set $A(\varepsilon)=\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\| \geq \varepsilon\right\}$ belongs to \mathcal{I}.

If $\left(x_{n}\right)$ is \mathcal{I}-convergent to ξ then we write \mathcal{I} - $\lim _{n \rightarrow \infty}\left\|x_{n}-\xi, z\right\|=0$ or \mathcal{I} $\lim _{n \rightarrow \infty}\left\|x_{n}, z\right\|=\|\xi, z\|$. The number ξ is \mathcal{I}-limit of the sequence $\left(x_{n}\right)$.

Remark 2.2 If $\left\{x_{n}\right\}$ is any sequence in X and ξ is any element of X, then the set

$$
\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\| \geq \varepsilon, \text { for every } z \in X\right\}=\emptyset
$$

since if $z=\overrightarrow{0}$ (0 vector), $\left\|x_{n}-\xi, z\right\|=0 \nsupseteq \varepsilon$ so the above set is empty.

Further we will give some examples of ideals and corresponding \mathcal{I}-convergences.
(I) Let \mathcal{I}_{f} be the family of all finite subsets of \mathbb{N}. Then \mathcal{I}_{f} is an admissible ideal in \mathbb{N} and \mathcal{I}_{f} convergence coincides with usual convergence in [2].
(II) Put $\mathcal{I}_{\delta}=\{A \subset \mathbb{N}: \delta(A)=0\}$. Then \mathcal{I}_{δ} is an admissible ideal in \mathbb{N} and \mathcal{I}_{δ} convergence coincides with the statistical convergence in [4].

Now we give an example of \mathcal{I}-convergence in 2-normed spaces.

Example 2.3 Let $\mathcal{I}=\mathcal{I}_{\delta}$. Define the $\left(x_{n}\right)$ in 2 -normed space $(X,\|.,\|$.$) by$

$$
x_{n}= \begin{cases}(0, n), & n=k^{2}, k \in \mathbb{N} \\ (0,0), & \text { otherwise }\end{cases}
$$

and let $\xi=(0,0)$ and $z=\left(z_{1}, z_{2}\right)$. Then for every $\varepsilon>0$ and $z \in X$

$$
\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\| \geq \varepsilon\right\} \subset\left\{1,4,9,16, \ldots, n^{2}, \ldots\right\}
$$

We have that

$$
\delta\left(\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\| \geq \varepsilon\right\}\right)=0
$$

for every $\varepsilon>0$ and nonzero $z \in X$. This implies that st $-\lim _{n \rightarrow \infty}\left\|x_{n}, z\right\|=\|\xi, z\|$. But, the sequence $\left(x_{n}\right)$ is not convergent to ξ.

Definition 2.4 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal and $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in linear 2-normed space ($X,\|.,$.$\|).$
(i) A number ξ is called to be an \mathcal{I}-limit point of x provided that there is set $M=\left\{m_{1}<m_{2}<\ldots\right\} \subset \mathbb{N}$ such that $M \notin \mathcal{I}$ and $\lim _{k \rightarrow \infty}\left\|x_{m_{k}}-\xi, z\right\|=0$ for each nonzero z in X. The set of all \mathcal{I}-limit points of x is denoted by $\mathcal{I}\left(\wedge_{x}^{2}\right)$.
(ii) A number ξ is said to be an \mathcal{I}-cluster point of x provided that $\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\|<\varepsilon\right\} \notin \mathcal{I}$ for each $\varepsilon>0$ and nonzero $z \in X$. The set of all \mathcal{I}-cluster points of x is denoted by $\mathcal{I}\left(\Gamma_{x}^{2}\right)$.

Proposition 2.5 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. Then for each sequence $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ of X we have $\mathcal{I}\left(\wedge_{x}^{2}\right) \subset \mathcal{I}\left(\Gamma_{x}^{2}\right)$ and the set $\mathcal{I}\left(\Gamma_{x}^{2}\right)$ is a closed set.

Proof. Let $\xi \in \mathcal{I}\left(\wedge_{x}^{2}\right)$. Then there exists a set $M=\left\{m_{1}<m_{2}<\ldots\right\} \notin \mathcal{I}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{m_{k}}-\xi, z\right\|=0 \tag{2.1}
\end{equation*}
$$

for each nonzero z in X. Take $\delta>0$. According to (2.1) there exists $k_{0} \in \mathbb{N}$ such that for $k>k_{0}$ and each nonzero $z \in X$ we have $\left\|x_{m_{k}}-\xi, z\right\|<\delta$. Hence

$$
\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\|<\delta\right\} \supset M \backslash\left\{m_{1}, \ldots, m_{k_{0}}\right\}
$$

and so

$$
\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\|<\delta\right\} \notin \mathcal{I}
$$

which means that $\xi \in \mathcal{I}\left(\Gamma_{x}^{2}\right)$.
Let $y \in \overline{\mathcal{I}\left(\Gamma_{x}^{2}\right)}$. Take $\varepsilon>0$. There exists $\xi_{0} \in \mathcal{I}\left(\Gamma_{x}^{2}\right) \cap B_{u}(y, \varepsilon)$. Choose $\delta>0$ such that $B_{u}\left(\xi_{0}, \delta\right) \subset B_{u}(y, \varepsilon)$. We obviously have

$$
\left\{n \in \mathbb{N}:\left\|y-x_{n}, z\right\|<\varepsilon\right\} \supset\left\{n \in \mathbb{N}:\left\|\xi_{0}-x_{n}, z\right\|<\delta\right\} .
$$

Hence $\left\{n \in \mathbb{N}:\left\|y-x_{n}, z\right\|<\varepsilon\right\} \notin \mathcal{I}$ and $y \in \mathcal{I}\left(\Gamma_{x}^{2}\right)$.
Definition 2.6 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal and $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in linear 2 -normed space $(X,\|.,\|$.$) .$

If $K=\left\{k_{1}<k_{2}<\ldots\right\} \in \mathcal{I}$, then the subsequence $x_{k}=\left(x_{k}\right)_{n} \in \mathbb{N}$ is called \mathcal{I}-thin subsequence of the sequence x.

If $M=\left\{m_{1}<m_{2}<\ldots\right\} \notin \mathcal{I}$, then the sequence $x_{M}=\left(x_{m}\right)_{n \in \mathbb{N}}$ is called \mathcal{I}-nonthin subsequence of x.

It is clear that if ξ is a \mathcal{I}-limit point of x, then there is a \mathcal{I}-nonthin subsequence x_{M} that converges to ξ.

Let L_{x}^{2} be the set of all ordinary limit points of sequence x. It is obvious $\mathcal{I}\left(\wedge_{x}^{2}\right) \subseteq L_{x}^{2}$: Take $\xi \notin L_{x}^{2}$, then there is $\varepsilon^{\prime}>0$ such that the interval $\left(\xi-\varepsilon^{\prime}, \xi+\varepsilon^{\prime}\right)$ contains only a finite number of elements of x. Then $\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\|<\varepsilon^{\prime}\right\} \in \mathcal{I}$, but it contradicts to $\xi \in \mathcal{I}\left(\Gamma_{x}^{2}\right)$. Hence $x \in \mathcal{I}\left(\Gamma_{x}^{2}\right)$. Hence $x \in L_{x}^{2}$, so $\mathcal{I}\left(\Gamma_{x}^{2}\right) \subseteq L_{x}^{2}$.

Lemma 2.7 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal and $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in linear 2 -normed space $(X,\|,,\|$.$) . If x$ is \mathcal{I}-convergent in 2 -normed space, then $\mathcal{I}\left(\wedge_{x}^{2}\right)$ and $\left(\Gamma_{x}^{2}\right)$ are both equal to the singleton set $\left\{\mathcal{I}-\lim _{n \rightarrow \infty}\left\|x_{n}, z\right\|\right\}$ for each nonzero z in X.

Proof. Let \mathcal{I} - $\lim _{n \rightarrow \infty}\left\|x_{n}, z\right\|$ for each nonzero z in X. Show that $\xi \in \mathcal{I}\left(\Gamma_{x}^{2}\right)$.By definition of \mathcal{I}-convergence we have

$$
A(\varepsilon)=\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\| \geq \varepsilon\right\} \in \mathcal{I}
$$

for each $\varepsilon>0$ and nonzero z in X. Since \mathcal{I} is an admissible ideal we can choose the set $M=\left\{n_{1}<n_{2}<\ldots\right\} \subset \mathbb{N}$ such that $n_{k} \notin A\left(\frac{1}{k}\right)$ and $\left\|x_{n_{k}}-\xi, z\right\|<\frac{1}{k}$ for
all $k \in \mathbb{N}$ and nonzero z in X. That is $\lim _{n \rightarrow \infty}\left\|x_{n_{k}}-\xi, z\right\|=0$. Suppose $M \in$ \mathcal{I}. Since $M \subset\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\|<1\right\}$ for each nonzero z in X, then $(\mathbb{N} \backslash M) \cap$ $\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\|<1\right\}=\emptyset$, but $\mathbb{N} \backslash M \in \mathcal{F}(\mathcal{I})$ and $\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\|<1\right\} \in$ $\mathcal{F}(\mathcal{I})$ for each nonzero z in X. This contradiction gives $M \notin \mathcal{I}$. Hence we get $M=\left\{m_{1}<m_{2}<\ldots\right\} \subset \mathbb{N}$ and $M \notin \mathcal{I}$ such that $\lim _{n \rightarrow \infty}\left\|x_{n_{k}}-\xi, z\right\|=0$. i.e. $\xi \in \mathcal{I}\left(\wedge_{x}^{2}\right)$. Since $\mathcal{I}\left(\wedge_{x}^{2}\right) \subset \mathcal{I}\left(\Gamma_{x}^{2}\right)$, then $\xi \in \mathcal{I}\left(\Gamma_{x}^{2}\right)$.

Now suppose there is $\eta \in \mathcal{I}\left(\Gamma_{x}^{2}\right)$ such that $\eta \neq \xi$. It is clear that

$$
\begin{aligned}
& A=\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\| \geq \frac{|\eta-\xi|}{2}\right\} \in \mathcal{I} \text { and } \\
& B=\left\{n \in \mathbb{N}:\left\|x_{n}-\xi\right\|<\frac{|\eta-\xi|}{2}\right\} \notin \mathcal{I}
\end{aligned}
$$

for each nonzero z in X. On the other hand, since

$$
\left\|x_{n}-\xi, z\right\| \geq\left\|\left|x_{n}-\eta\right|-|\eta-\xi|, z\right\|>\frac{|\eta-\xi|}{2}
$$

for each $n \in B$ nonzero z in X, we have $B \subset A \in \mathcal{I}$. This contradiction shows $\mathcal{I}\left(\Gamma_{x}^{2}\right)=\{\xi\}$ we have $\mathcal{I}\left(\wedge_{x}^{2}\right)=\mathcal{I}\left(\Gamma_{x}^{2}\right)=\{\xi\}$. The Lemma 1 is proved.

Theorem 2.8 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal and $x=\left(x_{n}\right)_{n \in \mathbb{N}}, y=\left(y_{n}\right)_{n \in \mathbb{N}}$ are sequences in linear 2 -normed space $(X,\|.,\|$.$) such that$

$$
M=\left\{n \in \mathbb{N}: x_{n} \neq y_{n}\right\} \in \mathcal{I}
$$

Then $\mathcal{I}\left(\wedge_{x}^{2}\right)=\mathcal{I}\left(\wedge_{y}^{2}\right)$ and $\mathcal{I}\left(\Gamma_{x}^{2}\right)=\mathcal{I}\left(\Gamma_{y}^{2}\right)$.
Proof. Let $M=\left\{n \in \mathbb{N}: x_{n} \neq y_{n}\right\} \in \mathcal{I}$. If $\xi \in \mathcal{I}\left(\wedge_{x}^{2}\right)$, then there is a set $K=\left\{k_{1}<k_{2}<\ldots\right\} \notin \mathcal{I}$ such that \mathcal{I} - $\lim _{n \rightarrow \infty}\left\|x_{k_{n}}-\xi, z\right\|=0$. Since

$$
K_{1}=\left\{n \in \mathbb{N}: n \in K \wedge x_{n} \neq y_{n}\right\} \subset M \in \mathcal{I}
$$

then $K_{2}=\left\{n \in \mathbb{N}: n \in K \wedge x_{n}=y_{n}\right\} \notin \mathcal{I}$ (indeed, if $K_{2} \in \mathcal{I}$, then $K=K_{1} \cup K_{2} \in$ \mathcal{I}, but $K \notin \mathcal{I}$. Hence the sequence $y_{K_{2}}=\left(y_{n}\right)_{n \in K_{2}}$ is a \mathcal{I}-nonthin subsequence of $y=\left(y_{n}\right)_{n \in \mathbb{N}}$ and $y_{K_{2}}$ converges to ξ in 2-normed space, i.e. $\xi \in \mathcal{I}\left(\wedge_{y}^{2}\right)$.

Now let $\xi \in \mathcal{I}\left(\Gamma_{x}^{2}\right)$. Then $K_{3}=\left\{n \in \mathbb{N}:\left\|x_{n}-\xi, z\right\|<\varepsilon\right\} \notin \mathcal{I}$ for each $\varepsilon>$ 0 and nonzero z in X and $K_{4}=\left\{n \in \mathbb{N}: n \in K_{3} \wedge x_{n}=y_{n}\right\} \notin \mathcal{I}$. Therefore, $K_{4} \subset\left\{n \in \mathbb{N}:\left\|y_{n}-\xi, z\right\|<\varepsilon\right\}$ for each nonzero z in X. It shows that, for each $\varepsilon>0$ and nonzero z in $X,\left\{n \in \mathbb{N}:\left\|y_{n}-\xi, z\right\|<\varepsilon\right\} \notin \mathcal{I}$ i.e. $\xi \in \mathcal{I}\left(\Gamma_{y}^{2}\right)$. Theorem 1 is proved.

The next theorem proves a strong connection between \mathcal{I}-cluster and ordinary limit points of a given sequence.

Theorem 2.9 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal with property $(A P)$ and $x=$ $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in linear 2 -normed space $(X,\|.,\|$.$) . Then there is a sequence$ $y=\left(y_{n}\right)_{n \in \mathbb{N}}$ such that $L_{y}^{2}=\mathcal{I}\left(\Gamma_{x}^{2}\right)$, and $\left\{n \in \mathbb{N}: x_{n} \neq y_{n}\right\} \in \mathcal{I}$, where L_{y}^{2} is ordinary limit points set of the sequence $y=\left(y_{n}\right)_{n \in \mathbb{N}}$. Moreover $\left\{y_{n}: n \in \mathbb{N}\right\} \subset$ $\left\{x_{n}: n \in \mathbb{N}\right\}$.

Proof. If $\mathcal{I}\left(\Gamma_{x}^{2}\right)=L_{x}^{2}$, then $y=x$ and this case is trivial. Let $\mathcal{I}\left(\Gamma_{x}^{2}\right)$ is a proper subset of $L_{x}^{2}: \mathcal{I}\left(\Gamma_{x}^{2}\right) \subset L_{x}^{2}$. Then $L_{x}^{2} \backslash \mathcal{I}\left(\Gamma_{x}^{2}\right) \neq \emptyset$ and for each $\xi \in L_{x}^{2} \backslash \mathcal{I}\left(\Gamma_{x}^{2}\right)$ there is an open interval $E_{\xi}=(\xi-\delta, \xi+\delta)$ such that \mathcal{I} - $\lim _{n \rightarrow \infty}\left\|x_{j_{k}}-\xi, z\right\|=0$. Hence, there is an open interval $E_{\xi}=(\xi-\delta, \xi+\delta)$ such that

$$
\left\{k \in \mathbb{N}: x_{k} \in E_{\xi}\right\} \in \mathcal{I}
$$

It is obvious that the collection of all intervals E_{ξ} is an open cover of $L_{x}^{2} \backslash \mathcal{I}\left(\Gamma_{x}^{2}\right)$,so by Covering Theorem there is a countable and mutually disjoint subcover $\left\{E_{\xi}\right\}_{j=1}^{\infty}$ such that each E_{j} contains an \mathcal{I}-thin subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$.

Now let $A_{j}=\left\{n \in \mathbb{N}: x_{n} \in E_{j}, j \varepsilon \mathbb{N}\right\}$. It is clear that $A_{j} \in \mathcal{I} \quad(j=1,2, .$. and $A_{i} \cap A_{j}=\emptyset$. Then by $(A P)$ property of \mathcal{I} there is a countable collection $\left\{B_{j}\right\}_{j=1}^{\infty}$ of subsets of \mathbb{N} such that $B=\cup_{j=1}^{\infty} B_{j}$ and $A_{j} \backslash B$ is a finite set for each $j \varepsilon \mathbb{N}$.

Let $M=\mathbb{N} \backslash B=\left\{m_{1}<m_{2}<\ldots\right\} \subset \mathbb{N}$. Now the sequence $y=\left(y_{k}\right)$ is defined by $y=y_{k}$ if $k \in B$ and $y_{k}=x_{k}$ if $k \in M$. Obviously, $\left\{k \in \mathbb{N}: x_{k} \neq y_{k}\right\} \subset B \in \mathcal{I}$, so by Theorem $1 \mathcal{I}\left(\Gamma_{y}\right)=\mathcal{I}\left(\Gamma_{x}\right)$ Since $A_{j} \backslash B$ is a finite set then the subsequence $y_{B}=\left(y_{k}\right)_{k \varepsilon B}$ has no limit point that is not also an \mathcal{I}-limit point of y i.e. $L_{y}^{2}=$ $\mathcal{I}\left(\Gamma_{y}^{2}\right)$. Therefore, we have proved $L_{y}^{2}=\mathcal{I}\left(\Gamma_{x}^{2}\right)$. Moreover, the construction of the sequence $y=\left(y_{n}\right)_{n \in \mathbb{N}}$ shows

$$
\left\{y_{n}: n \in \mathbb{N}\right\} \subset\left\{x_{n}: n \in \mathbb{N}\right\}
$$

Theorem 2.9 is proved.

References

[1] H. Fast, Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.
[2] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc., 118(1993), 11871192.
[3] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr., 26(1963), 115-148.
[4] H. Gunawan and Mashadi, On Finite Dimensional 2-normed spaces, Soochow J. Math., 27(3)(2001), 321-329.
[5] M. Gürdal and S. Pehlivan, The Statistical Convergence in 2-Banach Spaces, Thai J. Math., 2(1)(2004), 107-113.
[6] J. L. Kelley, General Topology, Springer-Verlag, New York, 1955.
[7] P. Kostyrko, M. Macaj and T. Salat, I-Convergence, Real Anal. Exchange, 26(2)(2000), 669-686.
[8] P. Kostyrko, M. Macaj, T. Salat and M. Sleziak, I-Convergence and Extremal I-Limit Points, Math. Slovaca, 55(2005), 443-464.
[9] C. Kuratowski, Topology I, PWN, Warszawa, 1958.
[10] S. Pehlivan, A. Güncan and M.A. Mamedov, Statistical cluster points of sequences in finite-dimensional spaces, Czech. Math. J., 54(1)(2004), 95-102.
[11] W. Raymond, Y. Freese and J. Cho, Geometry of linear 2-normed spaces, N.Y. Nova Science Publishers, Huntington, 2001.
[12] H. Steinhaus, Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 2(1951), 73-74.
(Received 1 November 2005)
M. Gürdal

Department of Mathematics
University of Suleyman Demirel 32260, Isparta, Turkey.
e-mail : gurdal@fef.sdu.edu.tr

