

On Ideal Convergent Sequences in 2–Normed Spaces

M. Gürdal

Abstract : In this paper, we investigate the relation between \mathcal{I} -cluster points and ordinary limit points of sequence in 2-normed space.

Keywords : *I*-convergence, 2-normed space, *I*-cluster point. 2000 Mathematics Subject Classification : 40A05, 46A70.

1 Introduction

The notion of ideal convergence was introduced first by P. Kostyrko et al [6] as an interesting generalization of statistical convergence [1, 11]. Note that the concept of an \mathcal{I} -cluster point and \mathcal{I} -limit point of a sequence in a metric space was introduced and some results for the set of \mathcal{I} -cluster points and \mathcal{I} -limit points obtained in [7].

The concept of 2-normed spaces was initially introduced by Gähler [2] in the 1960's. Since then, this concept has been studied by many authors, see for instance [3, 10].

In a natural way, one may unite these two concepts, and study the relation between \mathcal{I} -cluster point set and ordinary limit point set of a given sequence in 2-normed spaces. This is actually what we offer in this article.

Throughout this paper \mathbb{N} will denote the set of positive integers. Let $(X, \|.\|)$ be a normed space. Recall that a sequence $(x_n)_{n \in \mathbb{N}}$ of elements of X is called to be *statistically convergent* to $\xi \in X$ if the set $A(\varepsilon) = \{n \in \mathbb{N} : ||x_n - \xi|| \ge \varepsilon\}$ has natural density zero for each $\varepsilon > 0$.

A family $\mathcal{I} \subset 2^Y$ of subsets a nonempty set Y is said to be an ideal in Y if

- (i) $\emptyset \in \mathcal{I};$
- (ii) $A, B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$;
- (iii) $A \in \mathcal{I}, B \subset A$ imply $B \in \mathcal{I},$

while an admissible ideal \mathcal{I} of Y further satisfies $\{x\} \in \mathcal{I}$ for each $x \in Y$ [7, 8].

Given $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal in \mathbb{N} . The sequence $(x_n)_{n \in \mathbb{N}}$ in X is said to be \mathcal{I} -convergent to $\xi \in X$, if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{n \in \mathbb{N} : ||x_n - \xi|| \ge \varepsilon\}$ belongs to \mathcal{I} [6, 7].

An admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to have the *property* (AP) if for any sequence $\{A_1, A_2, \ldots\}$ of mutually disjoint sets of \mathcal{I} there is a sequence $\{B_1, B_2, \ldots\}$ of subsets of N such that each symmetric difference $A_i \Delta B_i$ (i = 1, 2, ...) is finite and

 $B = \bigcup_{i=1}^{\infty} B_i \in \mathcal{I}, [7].$ Let X be a real vector space of dimension d, where $2 \le d < \infty$. A 2-norm on X is a function $\|.,.\|: X \times X \to R$ which satisfies

- (i) ||x, y|| = 0 if and only if x and y are linearly dependent;
- (ii) ||x, y|| = ||y, x||;
- (iii) $\|\alpha x, y\| = |\alpha| \|x, y\|, \alpha \in \mathbb{R};$
- (iv) $||x, y + z|| \le ||x, y|| + ||x, z||$.

The pair $(X, \|., .\|)$ is then called a 2-normed space [2]. As an example of a 2-normed space we may take $X = \mathbb{R}^2$ being equipped with the 2-norm ||x, y|| :=the area of the parallelogram spanned by the vectors x and y, which may be given explicitly by the formula

$$||x,y|| = |x_1y_2 - x_2y_1|, x = (x_1, x_2), y = (y_1, y_2)$$

Recall that $(X, \|., \|)$ is a 2-Banach space if every Cauchy sequence in X is convergent to some x in X. Let $u = \{u_1, \ldots, u_d\}$ be a basis of X. We know the norm $\|.\|_{\infty}$ on X is defined by

$$||x||_{\infty} := \max \{ ||x, u_i|| : i = 1, \dots, d \}.$$

Associated to the derived norm $\|.\|_{\infty}$, we can define the (open) balls $B_u(x,\varepsilon)$ centered at x having radius ε by

$$B_u(x,\varepsilon) := \{ y : \|x - y\|_{\infty} < \varepsilon \},\$$

where $||x - y||_{\infty} := \max \{ ||x - y, u_j||, j = 1, \dots, d \}.$

The Relation Between *I*-cluster Points and Or-2 dinary Limit Points of 2-Normed Spaces

It is known that there is a strong connection between statistical cluster points and ordinary limit points of a given sequence. We will prove that these facts are satisfied for \mathcal{I} -cluster \mathcal{I} -limit point sets of a given sequences in 2-normed spaces.

Definition 2.1 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal in \mathbb{N} . The sequence (x_n) of X is said to be \mathcal{I} -convergent to ξ , if for each $\varepsilon > 0$ and nonzero z in X the set $A(\varepsilon) = \{n \in \mathbb{N} : ||x_n - \xi, z|| \ge \varepsilon\}$ belongs to \mathcal{I} .

If (x_n) is \mathcal{I} -convergent to ξ then we write \mathcal{I} - $\lim_{n \to \infty} ||x_n - \xi, z|| = 0$ or \mathcal{I} - $\lim ||x_n, z|| = ||\xi, z||.$ The number ξ is \mathcal{I} -limit of the sequence (x_n) .

On Ideal Convergent Sequences in 2-Normed Spaces

Remark 2.2 If $\{x_n\}$ is any sequence in X and ξ is any element of X, then the set

$$\{n \in \mathbb{N} : ||x_n - \xi, z|| \ge \varepsilon, \text{ for every } z \in X\} = \emptyset,$$

since if $z = \overrightarrow{0}$ (0 vector), $||x_n - \xi, z|| = 0 \not\geq \varepsilon$ so the above set is empty.

Further we will give some examples of ideals and corresponding \mathcal{I} -convergences.

- (I) Let \mathcal{I}_f be the family of all finite subsets of \mathbb{N} . Then \mathcal{I}_f is an admissible ideal in \mathbb{N} and \mathcal{I}_f convergence coincides with usual convergence in [2].
- (II) Put $\mathcal{I}_{\delta} = \{A \subset \mathbb{N} : \delta(A) = 0\}$. Then \mathcal{I}_{δ} is an admissible ideal in \mathbb{N} and \mathcal{I}_{δ} convergence coincides with the statistical convergence in [4].

Now we give an example of \mathcal{I} -convergence in 2-normed spaces.

Example 2.3 Let $\mathcal{I} = \mathcal{I}_{\delta}$. Define the (x_n) in 2-normed space $(X, \|., .\|)$ by

$$x_n = \begin{cases} (0,n), & n = k^2, k \in \mathbb{N}, \\ (0,0), & \text{otherwise.} \end{cases}$$

and let $\xi = (0,0)$ and $z = (z_1, z_2)$. Then for every $\varepsilon > 0$ and $z \in X$

 $\{n \in \mathbb{N} : ||x_n - \xi, z|| \ge \varepsilon\} \subset \{1, 4, 9, 16, \dots, n^2, \dots\}.$

We have that

$$\delta\big(\{n \in \mathbb{N} : \|x_n - \xi, z\| \ge \varepsilon\}\big) = 0,$$

for every $\varepsilon > 0$ and nonzero $z \in X$. This implies that $st - \lim_{n \to \infty} ||x_n, z|| = ||\xi, z||$. But, the sequence (x_n) is not convergent to ξ .

Definition 2.4 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal and $x = (x_n)_{n \in \mathbb{N}}$ be a sequence in linear 2-normed space $(X, \|., .\|)$.

- (i) A number ξ is called to be an \mathcal{I} -limit point of x provided that there is set $M = \{m_1 < m_2 < \ldots\} \subset \mathbb{N}$ such that $M \notin \mathcal{I}$ and $\lim_{k \to \infty} ||x_{m_k} \xi, z|| = 0$ for each nonzero z in X. The set of all \mathcal{I} -limit points of x is denoted by $\mathcal{I}(\wedge_x^2)$.
- (ii) A number ξ is said to be an \mathcal{I} -cluster point of x provided that $\{n \in \mathbb{N} : ||x_n \xi, z|| < \varepsilon\} \notin \mathcal{I}$ for each $\varepsilon > 0$ and nonzero $z \in X$. The set of all \mathcal{I} -cluster points of x is denoted by $\mathcal{I}(\Gamma_x^2)$.

Proposition 2.5 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. Then for each sequence $x = (x_n)_{n \in \mathbb{N}}$ of X we have $\mathcal{I}(\wedge_x^2) \subset \mathcal{I}(\Gamma_x^2)$ and the set $\mathcal{I}(\Gamma_x^2)$ is a closed set.

Proof. Let $\xi \in \mathcal{I}(\wedge_x^2)$. Then there exists a set $M = \{m_1 < m_2 < \ldots\} \notin \mathcal{I}$ such that

$$\lim_{k \to \infty} \|x_{m_k} - \xi, z\| = 0 \tag{2.1}$$

for each nonzero z in X. Take $\delta > 0$. According to (2.1) there exists $k_0 \in \mathbb{N}$ such that for $k > k_0$ and each nonzero $z \in X$ we have $||x_{m_k} - \xi, z|| < \delta$. Hence

$$\{n \in \mathbb{N} : \|x_n - \xi, z\| < \delta\} \supset M \setminus \{m_1, \dots, m_{k_0}\}$$

and so

$$\{n \in \mathbb{N} : \|x_n - \xi, z\| < \delta\} \notin \mathcal{I},$$

which means that $\xi \in \mathcal{I}(\Gamma_x^2)$.

Let $y \in \overline{\mathcal{I}(\Gamma_x^2)}$. Take $\varepsilon > 0$. There exists $\xi_0 \in \mathcal{I}(\Gamma_x^2) \cap B_u(y,\varepsilon)$. Choose $\delta > 0$ such that $B_u(\xi_0, \delta) \subset B_u(y,\varepsilon)$. We obviously have

$$\{n \in \mathbb{N} : \|y - x_n, z\| < \varepsilon\} \supset \{n \in \mathbb{N} : \|\xi_0 - x_n, z\| < \delta\}.$$

Hence $\{n \in \mathbb{N} : \|y - x_n, z\| < \varepsilon\} \notin \mathcal{I}$ and $y \in \mathcal{I}(\Gamma_x^2)$.

Definition 2.6 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal and $x = (x_n)_{n \in \mathbb{N}}$ be a sequence in linear 2-normed space $(X, \|., .\|)$.

If $K = \{k_1 < k_2 < \ldots\} \in \mathcal{I}$, then the subsequence $x_k = (x_k)_n \in \mathbb{N}$ is called *I*-thin subsequence of the sequence x.

If $M = \{m_1 < m_2 < ...\} \notin \mathcal{I}$, then the sequence $x_M = (x_m)_{n \in \mathbb{N}}$ is called \mathcal{I} -nonthin subsequence of x.

It is clear that if ξ is a \mathcal{I} -limit point of x, then there is a \mathcal{I} -nonthin subsequence x_M that converges to ξ .

Let L_x^2 be the set of all ordinary limit points of sequence x. It is obvious $\mathcal{I}(\wedge_x^2) \subseteq L_x^2$: Take $\xi \notin L_x^2$, then there is $\varepsilon' > 0$ such that the interval $(\xi - \varepsilon', \xi + \varepsilon')$ contains only a finite number of elements of x. Then $\{n \in \mathbb{N} : ||x_n - \xi, z|| < \varepsilon'\} \in \mathcal{I}$, but it contradicts to $\xi \in \mathcal{I}(\Gamma_x^2)$. Hence $x \in \mathcal{I}(\Gamma_x^2)$. Hence $x \in L_x^2$, so $\mathcal{I}(\Gamma_x^2) \subseteq L_x^2$.

Lemma 2.7 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal and $x = (x_n)_{n \in \mathbb{N}}$ be a sequence in linear 2-normed space $(X, \|., .\|)$. If x is \mathcal{I} -convergent in 2-normed space, then $\mathcal{I}(\wedge_x^2)$ and (Γ_x^2) are both equal to the singleton set $\{\mathcal{I}\text{-}\lim_{n\to\infty} \|x_n, z\|\}$ for each nonzero z in X.

Proof. Let \mathcal{I} - $\lim_{n\to\infty} ||x_n, z||$ for each nonzero z in X. Show that $\xi \in \mathcal{I}(\Gamma_x^2)$.By definition of \mathcal{I} -convergence we have

$$A(\varepsilon) = \left\{ n \in \mathbb{N} : \|x_n - \xi, z\| \ge \varepsilon \right\} \in \mathcal{I}$$

for each $\varepsilon > 0$ and nonzero z in X. Since \mathcal{I} is an admissible ideal we can choose the set $M = \{n_1 < n_2 < \ldots\} \subset \mathbb{N}$ such that $n_k \notin A\left(\frac{1}{k}\right)$ and $||x_{n_k} - \xi, z|| < \frac{1}{k}$ for

88

all $k \in \mathbb{N}$ and nonzero z in X. That is $\lim_{n \to \infty} ||x_{n_k} - \xi, z|| = 0$. Suppose $M \in \mathcal{I}$. Since $M \subset \{n \in \mathbb{N} : ||x_n - \xi, z|| < 1\}$ for each nonzero z in X, then $(\mathbb{N} \setminus M) \cap \{n \in \mathbb{N} : ||x_n - \xi, z|| < 1\} = \emptyset$, but $\mathbb{N} \setminus M \in \mathcal{F}(\mathcal{I})$ and $\{n \in \mathbb{N} : ||x_n - \xi, z|| < 1\} \in \mathcal{F}(\mathcal{I})$ for each nonzero z in X. This contradiction gives $M \notin \mathcal{I}$. Hence we get $M = \{m_1 < m_2 < \ldots\} \subset \mathbb{N}$ and $M \notin \mathcal{I}$ such that $\lim_{n \to \infty} ||x_{n_k} - \xi, z|| = 0$. i.e. $\xi \in \mathcal{I}(\wedge_x^2)$. Since $\mathcal{I}(\wedge_x^2) \subset \mathcal{I}(\Gamma_x^2)$, then $\xi \in \mathcal{I}(\Gamma_x^2)$.

Now suppose there is $\eta \in \mathcal{I}(\Gamma_x^2)$ such that $\eta \neq \xi$. It is clear that

$$A = \left\{ n \in \mathbb{N} : \|x_n - \xi, z\| \ge \frac{|\eta - \xi|}{2} \right\} \in \mathcal{I} \text{ and}$$
$$B = \left\{ n \in \mathbb{N} : \|x_n - \xi\| < \frac{|\eta - \xi|}{2} \right\} \notin \mathcal{I}$$

for each nonzero z in X. On the other hand, since

$$||x_n - \xi, z|| \ge ||x_n - \eta| - |\eta - \xi|, z|| > \frac{|\eta - \xi|}{2}$$

for each $n \in B$ nonzero z in X, we have $B \subset A \in \mathcal{I}$. This contradiction shows $\mathcal{I}(\Gamma_x^2) = \{\xi\}$ we have $\mathcal{I}(\wedge_x^2) = \mathcal{I}(\Gamma_x^2) = \{\xi\}$. The Lemma 1 is proved. \Box

Theorem 2.8 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal and $x = (x_n)_{n \in \mathbb{N}}$, $y = (y_n)_{n \in \mathbb{N}}$ are sequences in linear 2-normed space $(X, \|., .\|)$ such that

$$M = \{ n \in \mathbb{N} : x_n \neq y_n \} \in \mathcal{I}.$$

Then $\mathcal{I}\left(\wedge_{x}^{2}\right) = \mathcal{I}\left(\wedge_{y}^{2}\right)$ and $\mathcal{I}\left(\Gamma_{x}^{2}\right) = \mathcal{I}\left(\Gamma_{y}^{2}\right)$.

Proof. Let $M = \{n \in \mathbb{N} : x_n \neq y_n\} \in \mathcal{I}$. If $\xi \in \mathcal{I}(\wedge_x^2)$, then there is a set $K = \{k_1 < k_2 < \ldots\} \notin \mathcal{I}$ such that \mathcal{I} - $\lim_{n \to \infty} ||x_{k_n} - \xi, z|| = 0$. Since

$$K_1 = \{ n \in \mathbb{N} : n \in K \land x_n \neq y_n \} \subset M \in \mathcal{I},$$

then $K_2 = \{n \in \mathbb{N} : n \in K \land x_n = y_n\} \notin \mathcal{I}$ (indeed, if $K_2 \in \mathcal{I}$, then $K = K_1 \cup K_2 \in \mathcal{I}$, but $K \notin \mathcal{I}$. Hence the sequence $y_{K_2} = (y_n)_{n \in K_2}$ is a \mathcal{I} -nonthin subsequence of $y = (y_n)_{n \in \mathbb{N}}$ and y_{K_2} converges to ξ in 2-normed space, i.e. $\xi \in \mathcal{I} \left(\wedge_y^2 \right)$.

Now let $\xi \in \mathcal{I}(\Gamma_x^2)$. Then $K_3 = \{n \in \mathbb{N} : ||x_n - \xi, z|| < \varepsilon\} \notin \mathcal{I}$ for each $\varepsilon > 0$ and nonzero z in X and $K_4 = \{n \in \mathbb{N} : n \in K_3 \land x_n = y_n\} \notin \mathcal{I}$. Therefore, $K_4 \subset \{n \in \mathbb{N} : ||y_n - \xi, z|| < \varepsilon\}$ for each nonzero z in X. It shows that, for each $\varepsilon > 0$ and nonzero z in X, $\{n \in \mathbb{N} : ||y_n - \xi, z|| < \varepsilon\} \notin \mathcal{I}$ i.e. $\xi \in \mathcal{I}(\Gamma_y^2)$. Theorem 1 is proved.

The next theorem proves a strong connection between \mathcal{I} -cluster and ordinary limit points of a given sequence.

Theorem 2.9 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal with property (AP) and $x = (x_n)_{n \in \mathbb{N}}$ be a sequence in linear 2-normed space $(X, \|., .\|)$. Then there is a sequence $y = (y_n)_{n \in \mathbb{N}}$ such that $L_y^2 = \mathcal{I}(\Gamma_x^2)$, and $\{n \in \mathbb{N} : x_n \neq y_n\} \in \mathcal{I}$, where L_y^2 is ordinary limit points set of the sequence $y = (y_n)_{n \in \mathbb{N}}$. Moreover $\{y_n : n \in \mathbb{N}\} \subset \{x_n : n \in \mathbb{N}\}$.

Proof. If $\mathcal{I}(\Gamma_x^2) = L_x^2$, then y = x and this case is trivial. Let $\mathcal{I}(\Gamma_x^2)$ is a proper subset of $L_x^2 : \mathcal{I}(\Gamma_x^2) \subset L_x^2$. Then $L_x^2 \setminus \mathcal{I}(\Gamma_x^2) \neq \emptyset$ and for each $\xi \in L_x^2 \setminus \mathcal{I}(\Gamma_x^2)$ there is an open interval $E_{\xi} = (\xi - \delta, \xi + \delta)$ such that \mathcal{I} - $\lim_{n \to \infty} ||x_{j_k} - \xi, z|| = 0$. Hence, there is an open interval $E_{\xi} = (\xi - \delta, \xi + \delta)$ such that

$$\left\{k \in \mathbb{N} : x_k \in E_{\xi}\right\} \in \mathcal{I}.$$

It is obvious that the collection of all intervals E_{ξ} is an open cover of $L_x^2 \setminus \mathcal{I}(\Gamma_x^2)$, so by Covering Theorem there is a countable and mutually disjoint subcover $\{E_{\xi}\}_{j=1}^{\infty}$ such that each E_j contains an \mathcal{I} -thin subsequence of $(x_n)_{n \in \mathbb{N}}$.

Now let $A_j = \{n \in \mathbb{N} : x_n \in E_j, j \in \mathbb{N}\}$. It is clear that $A_j \in \mathcal{I}$ (j = 1, 2, ..)and $A_i \cap A_j = \emptyset$. Then by (AP) property of \mathcal{I} there is a countable collection $\{B_j\}_{j=1}^{\infty}$ of subsets of \mathbb{N} such that $B = \bigcup_{j=1}^{\infty} B_j$ and $A_j \setminus B$ is a finite set for each $j \in \mathbb{N}$.

Let $M = \mathbb{N} \setminus B = \{m_1 < m_2 < \ldots\} \subset \mathbb{N}$. Now the sequence $y = (y_k)$ is defined by $y = y_k$ if $k \in B$ and $y_k = x_k$ if $k \in M$. Obviously, $\{k \in \mathbb{N} : x_k \neq y_k\} \subset B \in \mathcal{I}$, so by Theorem 1 $\mathcal{I}(\Gamma_y) = \mathcal{I}(\Gamma_x)$ Since $A_j \setminus B$ is a finite set then the subsequence $y_B = (y_k)_{k \in B}$ has no limit point that is not also an \mathcal{I} -limit point of y i.e. $L_y^2 = \mathcal{I}(\Gamma_y^2)$. Therefore, we have proved $L_y^2 = \mathcal{I}(\Gamma_x^2)$. Moreover, the construction of the sequence $y = (y_n)_{n \in \mathbb{N}}$ shows

$$\{y_n : n \in \mathbb{N}\} \subset \{x_n : n \in \mathbb{N}\}$$

Theorem 2.9 is proved.

References

- [1] H. Fast, Sur la convergence statistique, Colloq. Math., 2(1951), 241–244.
- [2] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc., 118(1993), 1187– 1192.
- [3] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr., 26(1963), 115–148.
- [4] H. Gunawan and Mashadi, On Finite Dimensional 2-normed spaces, Soochow J. Math., 27(3)(2001), 321–329.
- [5] M. Gürdal and S. Pehlivan, The Statistical Convergence in 2-Banach Spaces, *Thai J. Math.*, 2(1)(2004), 107–113.

On Ideal Convergent Sequences in 2-Normed Spaces

- [6] J. L. Kelley, General Topology, Springer-Verlag, New York, 1955.
- [7] P. Kostyrko, M. Macaj and T. Salat, *I*-Convergence, *Real Anal. Exchange*, 26(2)(2000), 669–686.
- [8] P. Kostyrko, M. Macaj, T. Salat and M. Sleziak, *I*-Convergence and Extremal *I*-Limit Points, *Math. Slovaca*, 55(2005), 443-464.
- [9] C. Kuratowski, Topology I, PWN, Warszawa, 1958.
- [10] S. Pehlivan, A. Güncan and M.A. Mamedov, Statistical cluster points of sequences in finite-dimensional spaces, *Czech. Math. J.*, 54(1)(2004), 95–102.
- [11] W. Raymond, Y. Freese and J. Cho, Geometry of linear 2-normed spaces, N.Y. Nova Science Publishers, Huntington, 2001.
- [12] H. Steinhaus, Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 2(1951), 73–74.

(Received 1 November 2005)

M. Gürdal Department of Mathematics University of Suleyman Demirel 32260, Isparta, Turkey. e-mail : gurdal@fef.sdu.edu.tr