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1 Introduction

The notion of ideal convergence was introduced first by P. Kostyrko et al [6]
as an interesting generalization of statistical convergence [1, 11]. Note that the
concept of an Z-cluster point and Z-limit point of a sequence in a metric space
was introduced and some results for the set of Z-cluster points and Z-limit points
obtained in [7].

The concept of 2-normed spaces was initially introduced by Géhler [2] in the
1960’s. Since then, this concept has been studied by many authors, see for instance
[3, 10].

In a natural way, one may unite these two concepts, and study the relation
between Z-cluster point set and ordinary limit point set of a given sequence in
2-normed spaces. This is actually what we offer in this article.

Throughout this paper N will denote the set of positive integers. Let (X, |.||)
be a normed space. Recall that a sequence (), oy of elements of X is called to
be statistically convergent to & € X if the set A(e) = {n € N: ||z, — || > €} has
natural density zero for each € > 0.

A family Z C 2Y of subsets a nonempty set Y is said to be an ideal in Y if

(i) 0ez;
(i) A,B €Z imply AUB € Z;
(ili) AeZ, BC Aimply BeZ,

while an admissible ideal Z of Y further satisfies {z} € 7 for each z € Y [7, 8].

Given Z C 2" be a nontrivial ideal in N. The sequence (,,),,cy in X is said to
be Z-convergent to £ € X, if for each ¢ > 0 theset A(e) ={n e N: ||z, — &|| > &}
belongs to Z [6, 7].
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An admissible ideal Z C 2V is said to have the property (AP) if for any sequence
{A1, As,...} of mutually disjoint sets of Z there is a sequence {B, Ba,...} of
subsets of N such that each symmetric difference A;AB; (i = 1,2,...) is finite and

oo
B=\ B;€Z, 7.
i=1
Let X be a real vector space of dimension d, where 2 < d < co. A 2-norm on

X is a function ||.,.|| : X x X — R which satisfies
(i)
(i) [z, yll = lly, =[l;
(iil) Jlaw, yll = o[z, yl|, o € R;
(iv)
The pair (X, ||.,.]|) is then called a 2-normed space [2]. As an example of a
2-normed space we may take X = R? being equipped with the 2-norm |z, y|| :=

the area of the parallelogram spanned by the vectors x and y, which may be given
explicitly by the formula

|z, y|| = 0 if and only if 2 and y are linearly dependent;

2,y + 2] <z, yll + ||z, 2]l

||5U7y|| = \xlyz - a?zyl\ y T = (3317562)’ Y= (241,y2)~

Recall that (X, ||.,.]|) is a 2-Banach space if every Cauchy sequence in X is con-
vergent to some x in X. Let w = {uq,...,uq} be a basis of X. We know the norm
I|.|l, on X is defined by

llz|| ., = max {|z,u;|| :i=1,...,d}.

Associated to the derived norm ||.|| , we can define the (open) balls B, (z,¢)
centered at = having radius € by

By (z,e) ={y:llz -yl < e},

where ||z — y|| . :=max { ||z —y,ul|, j =1,...,d}.

2 The Relation Between Z-cluster Points and Or-
dinary Limit Points of 2-Normed Spaces
It is known that there is a strong connection between statistical cluster points

and ordinary limit points of a given sequence. We will prove that these facts are
satisfied for Z-cluster Z-limit point sets of a given sequences in 2-normed spaces.

Definition 2.1 Let Z C 2V be a nontrivial ideal in N. The sequence (x,) of X
is said to be Z-convergent to &,if for each € > 0 and nonzero z in X the set
A(e) ={neN:|z, — & z|| > e} belongs to Z.
If (x,) is Z-convergent to & then we write Z- lim ||z, — &, 2|| = 0 or Z-
n— oo

lim ||a,, z|]| = ||¢, z|| . The number ¢ is Z-limit of the sequence ().
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Remark 2.2 If {z,} is any sequence in X and £ is any element of X, then the
set
{neN:|z, —&z| >e, forevery z€ X} =0,

. . - .
since if z = 0 (0 vector), ||z, — &, z|| = 0 # € so the above set is empty.

Further we will give some examples of ideals and corresponding Z-conver-
gences.

I) Let Z¢ be the family of all finite subsets of N. Then Z; is an admissible
f f
ideal in N and Zy convergence coincides with usual convergence in [2].

(II) Put Zs = {A CN:6(A) =0} . Then Zs is an admissible ideal in N and Z;
convergence coincides with the statistical convergence in [4].

Now we give an example of Z-convergence in 2-normed spaces.

Example 2.3 Let Z = Zs. Define the (x,,) in 2-normed space (X, ||.,.||) by

[ (0,n), n=k*keN,
=0 (0,0), otherwise.

and let £ = (0,0) and z = (21, 22) . Then for every € > 0 and z € X
{neN: ||z, —& 2| > e} € {1,4,9,16,...,n%, ... }.
We have that
§({neN: |z, —&z2]|>e}) =0,

for every € > 0 and nonzero z € X. This implies that st — lim ||z, 2| = [|&, 2|| .
n—oo

But, the sequence (z,,) is not convergent to .

Definition 2.4 Let Z C 2" be an admissible ideal and z = (Tn),cn beasequence
in linear 2-normed space (X, ||.,.||) -

(i) A number ¢ is called to be an Z-limit point of x provided that there is set
M = {m; <mg < ...} CNsuch that M ¢ 7 and klim |€m, — &, 2|l =0 for

each nonzero z in X. The set of all Z-limit points of = is denoted by 7 (/\i) .
(i) A number ¢is said to be an Z-cluster point of x provided that

{neN: |z, —&z2|| <e} ¢ T for each ¢ > 0 and nonzero z € X. The
set of all Z-cluster points of x is denoted by Z (1"3) .

Proposition 2.5 Let T C 2V be an admissible ideal. Then for each sequence
T = (Tn),en of X we have T (A2) C I (T2) and the set T (I'2) is a closed set.
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Proof. Let £ € Z (A2Z). Then there exists a set M = {m; <my < ...} ¢ T such
that
Jim [, — &2 = 0 (2.1)

for each nonzero z in X. Take § > 0. According to (2.1) there exists kg € N such
that for k > ko and each nonzero z € X we have ||z, — &, z|| < 0. Hence

{neN: |z, —&z|| <6} DM\ {my,...,mp,}
and so
{neN: |z, &2 <6} ¢ 7T,

which means that £ € 7 (T2) .

Let y € Z (I'2). Take £ > 0. There exists & € Z (I'2) N B, (y,¢) . Choose § > 0
such that B, (£o,0) C By (y,¢). We obviously have

neN:|y—zp, 2| <eyD{neN:|& —z,, 2| <6}.
Hence {n € N: |ly — ap,2|| <e} ¢ T and y € 7 (I'2). O

Definition 2.6 Let Z C 2" be an admissible ideal and = = (z,,)
in linear 2-normed space (X, |.,.||) -

If K ={ki <ks<...} €Z, then the subsequence z; = (z1), € Nis called
I-thin subsequence of the sequence x.

If M = {m; <mg<...} ¢ 7, then the sequence xp; = (), oy is called
T-nonthin subsequence of x.

neN De asequence

It is clear that if ¢ is a Z-limit point of x, then there is a Z-nonthin subsequence
x)s that converges to &.

Let L2 be the set of all ordinary limit points of sequence z. It is obvious
T (A2) C L2 : Take¢ ¢ L2, then there is ¢’ > 0 such that the interval ({ — &, € + &)
contains only a finite number of elements of z. Then {n € N: ||z, — &, z|| < &'} € Z,
but it contradicts to £ € Z (I'2) . Hence z € Z (T'2) . Hence € L2,s0Z (I'2) C L2.

Lemma 2.7 Let T C 2V be an admissible ideal and x = (), be a sequence
in linear 2-normed space (X, ||.,.|]). If x is T-convergent in 2-normed space, then

Z (A2) and (T'2) are both equal to the singleton set {I- lim ||xn,z|\} for each

nonzero z in X.

Proof. Let Z- lim ||z, z|| for each nonzero z in X. Show that £ € Z (I'2) By

definition of Z-convergence we have
A(e)={neN:|z, - &zl 2e} eI

for each € > 0 and nonzero z in X. Since 7 is an admissible ideal we can choose
the set M = {n; < ny <...} C Nsuch that ny ¢ A(3) and [|z,, — &, 2| < 1 for
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all k € Nand nonzero z in X. That is lim ||z, — & z|| = 0. Suppose M €
n—oo
Z. Since M C {n € N: ||z, — &, z|| <1} for each nonzero z in X, then (N\M) N
{neN:|z,—&z2| <1} =0,but N\\M € F(Z) and {n e N: ||z, — &, 2| < 1} €
F (Z) for each nonzero z in X. This contradiction gives M ¢ Z. Hence we get
M ={m <mz2<...} C Nand M ¢ T such that lim ||z, —&, z|| = 0. ie.
€€ T (N2). Since I (A2) CZ(I2), then ¢ e (I2).
Now suppose there is n € 7 (Fi) such that n # £. It is clear that

A

{neN:||xn—§,z|>|n;£}€Iand

B

{neN:||xns||< "f'}m

for each nonzero z in X. On the other hand, since

In —¢&|
lzn =& 21l 2 lllen =l =0 =&l 2ll > ===

for each n € B nonzero z in X, we have B C A € 7. This contradiction shows
Z(I'2) ={¢} we have Z (A2) =Z (I'2) = {¢}. The Lemma 1 is proved. O

Theorem 2.8 LetZ C 2V be an admissible ideal and x = () ,cr > Y = (Un)pen 7€
sequences in linear 2-normed space (X, ||.,.||) such that

M={neN:z,#y, } €T

Then I (A3) =Z (A}) and I (I'2) =Z (I2).

Proof. Let M = {ne€N:xz, #y,} € Z. If £ € T(AZ), then there is a set
K ={ki <ko <...} ¢Tsuch that Z- lim ||zx, — &, z|| = 0. Since

Ki={neN:ne KAz, #y,} CMeT,

then Ko ={neN:ne€ KAz, =y,} ¢ Z (indeed, if K € Z, then K = K;UK> €
Z, but K ¢ Z. Hence the sequence yx, = (yn),cx, is @ Z-nonthin subsequence of
Y = (Yn)ney and yr, converges to § in 2-normed space, i.e. £ €Z (/\5) .

Now let £ € Z(I'2). Then K3 = {n € N: ||z, — &,2|| <&} ¢ T for each £ >
0 and nonzero z in X and Ky = {neN:nec KsAx, =yn} ¢ Z. Therefore,
Ky C {neN: |y, —& z|| <e} for each nonzero z in X. It shows that, for each
e >0 and nonzero z in X, {n e N: |y, — &, 2| <e} ¢ Tie. £ € Z(I}). Theorem
1 is proved. O

The next theorem proves a strong connection between Z-cluster and ordinary
limit points of a given sequence.
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Theorem 2.9 Let T C 2V be an admissible ideal with property (AP) and xz =
(%n),cn be a sequence in linear 2-normed space (X, ||.,.||) . Then there is a sequence
Y = Wn)pen such that L2 = T (T2), and {n € N:z, #y,} € I, where L is
ordinary limit points set of the sequence y = (yp) Moreover {y, : n € N} C
{z, :n € N}.

neN -

Proof. IfZ (Fi) = L2, then y = x and this case is trivial. Let Z (I‘i) is a proper

subset of L2 : 7 (I'2) C L2. Then L2\Z (T2) # 0 and for each & € L2\Z (I'2) there

is an open interval Ee = (£ — 0,£ + 9) such that Z- lim ||z;, — &, 2| = 0. Hence,
n—oo

there is an open interval E¢ = (§ — 6,£ + 6) such that
{k‘EN:l‘kGEZ}EZ.

It is obvious that the collection of all intervals F is an open cover of L2\T (F%) ,S0
by Covering Theorem there is a countable and mutually disjoint subcover {Eg}jo.il
such that each E; contains an Z-thin subsequence of (), -

Now let A; = {neN:x, € E;, jeN}. It is clear that A; € T (j =1,2,..)
and A; N A; = (. Then by (AP) property of Z there is a countable collection
{B, };’il of subsets of N such that B = U2, B; and A;\B is a finite set for each
jeN.

Let M =N\B = {m1 <mg < ...} C N. Now the sequence y = (yi) is defined
by y =y if K € B and y,, =z, if k € M. Obviously, {k e N: z}, £y} C B €I,
so by Theorem 1 Z (I'y) = Z (I';) Since A;\B is a finite set then the subsequence
yB = (Yr)zep has no limit point that is not also an Z-limit point of y i.e. L2 =
z (I‘Z) . Therefore, we have proved Lz =7 (I‘i) . Moreover, the construction of
the sequence y = (yn),,cy shows

{yn :n e N} C {z, : n € N}

Theorem 2.9 is proved. O
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