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1 Introduction

The notion of ideal convergence was introduced first by P. Kostyrko et al [6]
as an interesting generalization of statistical convergence [1, 11]. Note that the
concept of an I-cluster point and I-limit point of a sequence in a metric space
was introduced and some results for the set of I-cluster points and I-limit points
obtained in [7].

The concept of 2-normed spaces was initially introduced by Gähler [2] in the
1960’s. Since then, this concept has been studied by many authors, see for instance
[3, 10].

In a natural way, one may unite these two concepts, and study the relation
between I-cluster point set and ordinary limit point set of a given sequence in
2-normed spaces. This is actually what we offer in this article.

Throughout this paper N will denote the set of positive integers. Let (X, ‖.‖)
be a normed space. Recall that a sequence (xn)n∈N of elements of X is called to
be statistically convergent to ξ ∈ X if the set A (ε) = {n ∈ N : ‖xn − ξ‖ ≥ ε} has
natural density zero for each ε > 0.

A family I ⊂ 2Y of subsets a nonempty set Y is said to be an ideal in Y if

(i) ∅ ∈ I;

(ii) A,B ∈ I imply A ∪B ∈ I;

(iii) A ∈ I, B ⊂ A imply B ∈ I,

while an admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y [7, 8].
Given I ⊂ 2N be a nontrivial ideal in N. The sequence (xn)n∈N in X is said to

be I-convergent to ξ ∈ X, if for each ε > 0 the set A (ε) = {n ∈ N : ‖xn − ξ‖ ≥ ε}
belongs to I [6, 7].
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An admissible ideal I ⊂ 2N is said to have the property (AP) if for any sequence
{A1, A2, . . .} of mutually disjoint sets of I there is a sequence {B1, B2, . . .} of
subsets of N such that each symmetric difference Ai∆Bi (i = 1, 2, . . .) is finite and

B =
∞⋃

i=1

Bi ∈ I, [7].

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on
X is a function ‖., .‖ : X ×X → R which satisfies

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent;

(ii) ‖x, y‖ = ‖y, x‖ ;

(iii) ‖αx, y‖ = |α| ‖x, y‖ , α ∈ R;

(iv) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖ .

The pair (X, ‖., .‖) is then called a 2-normed space [2]. As an example of a
2-normed space we may take X = R2 being equipped with the 2-norm ‖x, y‖ :=
the area of the parallelogram spanned by the vectors x and y, which may be given
explicitly by the formula

‖x, y‖ = |x1y2 − x2y1| , x = (x1, x2) , y = (y1, y2) .

Recall that (X, ‖., .‖) is a 2-Banach space if every Cauchy sequence in X is con-
vergent to some x in X. Let u = {u1, . . . , ud} be a basis of X. We know the norm
‖.‖∞ on X is defined by

‖x‖∞ := max {‖x, ui‖ : i = 1, . . . , d} .

Associated to the derived norm ‖.‖∞ , we can define the (open) balls Bu (x, ε)
centered at x having radius ε by

Bu (x, ε) :=
{
y : ‖x− y‖∞ < ε

}
,

where ‖x− y‖∞ := max
{ ‖x− y, uj‖ , j = 1, . . . , d

}
.

2 The Relation Between I-cluster Points and Or-
dinary Limit Points of 2-Normed Spaces

It is known that there is a strong connection between statistical cluster points
and ordinary limit points of a given sequence. We will prove that these facts are
satisfied for I-cluster I-limit point sets of a given sequences in 2-normed spaces.

Definition 2.1 Let I ⊂ 2N be a nontrivial ideal in N. The sequence (xn) of X
is said to be I-convergent to ξ, if for each ε > 0 and nonzero z in X the set
A (ε) =

{
n ∈ N : ‖xn − ξ, z‖ ≥ ε

}
belongs to I.

If (xn) is I-convergent to ξ then we write I- lim
n→∞

‖xn − ξ, z‖ = 0 or I-

lim
n→∞

‖xn, z‖ = ‖ξ, z‖ . The number ξ is I-limit of the sequence (xn) .
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Remark 2.2 If {xn} is any sequence in X and ξ is any element of X, then the
set {

n ∈ N : ‖xn − ξ, z‖ ≥ ε, for every z ∈ X
}

= ∅,

since if z =
−→
0 (0 vector) , ‖xn − ξ, z‖ = 0 � ε so the above set is empty.

Further we will give some examples of ideals and corresponding I-conver-
gences.

(I) Let If be the family of all finite subsets of N. Then If is an admissible
ideal in N and If convergence coincides with usual convergence in [2].

(II) Put Iδ = {A ⊂ N : δ (A) = 0} . Then Iδ is an admissible ideal in N and Iδ

convergence coincides with the statistical convergence in [4].

Now we give an example of I-convergence in 2-normed spaces.

Example 2.3 Let I = Iδ. Define the (xn) in 2-normed space (X, ‖., .‖) by

xn =
{

(0, n) , n = k2, k ∈ N,
(0, 0) , otherwise.

and let ξ = (0, 0) and z = (z1, z2) . Then for every ε > 0 and z ∈ X

{
n ∈ N : ‖xn − ξ, z‖ ≥ ε

} ⊂ {
1, 4, 9, 16, . . . , n2, . . .

}
.

We have that
δ
( {n ∈ N : ‖xn − ξ, z‖ ≥ ε} )

= 0,

for every ε > 0 and nonzero z ∈ X. This implies that st − lim
n→∞

‖xn, z‖ = ‖ξ, z‖ .

But, the sequence (xn) is not convergent to ξ.

Definition 2.4 Let I ⊂ 2N be an admissible ideal and x = (xn)n∈N be a sequence
in linear 2-normed space (X, ‖., .‖) .

(i) A number ξ is called to be an I-limit point of x provided that there is set
M = {m1 < m2 < . . .} ⊂ N such that M /∈ I and lim

k→∞
‖xmk

− ξ, z‖ = 0 for

each nonzero z in X. The set of all I-limit points of x is denoted by I (∧2
x

)
.

(ii) A number ξ is said to be an I-cluster point of x provided that
{n ∈ N : ‖xn − ξ, z‖ < ε} /∈ I for each ε > 0 and nonzero z ∈ X. The
set of all I-cluster points of x is denoted by I (

Γ2
x

)
.

Proposition 2.5 Let I ⊂ 2N be an admissible ideal. Then for each sequence
x = (xn)n∈N of X we have I (∧2

x

) ⊂ I (
Γ2

x

)
and the set I (

Γ2
x

)
is a closed set.
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Proof. Let ξ ∈ I (∧2
x

)
. Then there exists a set M = {m1 < m2 < . . .} /∈ I such

that
lim

k→∞
‖xmk

− ξ, z‖ = 0 (2.1)

for each nonzero z in X. Take δ > 0. According to (2.1) there exists k0 ∈ N such
that for k > k0 and each nonzero z ∈ X we have ‖xmk

− ξ, z‖ < δ. Hence

{n ∈ N : ‖xn − ξ, z‖ < δ} ⊃ M\ {m1, . . . , mk0}

and so
{n ∈ N : ‖xn − ξ, z‖ < δ} /∈ I,

which means that ξ ∈ I (
Γ2

x

)
.

Let y ∈ I (Γ2
x). Take ε > 0. There exists ξ0 ∈ I

(
Γ2

x

)∩Bu (y, ε) . Choose δ > 0
such that Bu (ξ0, δ) ⊂ Bu (y, ε) . We obviously have

{n ∈ N : ‖y − xn, z‖ < ε} ⊃ {n ∈ N : ‖ξ0 − xn, z‖ < δ} .

Hence {n ∈ N : ‖y − xn, z‖ < ε} /∈ I and y ∈ I (
Γ2

x

)
. ¤

Definition 2.6 Let I ⊂ 2N be an admissible ideal and x = (xn)n∈N be a sequence
in linear 2-normed space (X, ‖., .‖) .

If K = {k1 < k2 < . . .} ∈ I, then the subsequence xk = (xk)n ∈ N is called
I-thin subsequence of the sequence x.

If M = {m1 < m2 < . . .} /∈ I, then the sequence xM = (xm)n∈N is called
I-nonthin subsequence of x.

It is clear that if ξ is a I-limit point of x, then there is a I-nonthin subsequence
xM that converges to ξ.

Let L2
x be the set of all ordinary limit points of sequence x. It is obvious

I (∧2
x

) ⊆ L2
x : Take ξ /∈ L2

x, then there is ε′ > 0 such that the interval (ξ − ε′, ξ + ε′)
contains only a finite number of elements of x. Then {n ∈ N : ‖xn − ξ, z‖ < ε′} ∈ I,
but it contradicts to ξ ∈ I (

Γ2
x

)
. Hence x ∈ I (

Γ2
x

)
. Hence x ∈ L2

x, so I (
Γ2

x

) ⊆ L2
x.

Lemma 2.7 Let I ⊂ 2N be an admissible ideal and x = (xn)n∈N be a sequence
in linear 2-normed space (X, ‖., .‖). If x is I-convergent in 2-normed space, then
I (∧2

x

)
and

(
Γ2

x

)
are both equal to the singleton set

{
I- lim

n→∞
‖xn, z‖

}
for each

nonzero z in X.

Proof. Let I- lim
n→∞

‖xn, z‖ for each nonzero z in X. Show that ξ ∈ I (
Γ2

x

)
.By

definition of I-convergence we have

A (ε) =
{
n ∈ N : ‖xn − ξ, z‖ ≥ ε

} ∈ I

for each ε > 0 and nonzero z in X. Since I is an admissible ideal we can choose
the set M = {n1 < n2 < . . .} ⊂ N such that nk /∈ A

(
1
k

)
and ‖xnk

− ξ, z‖ < 1
k for



On Ideal Convergent Sequences in 2-Normed Spaces 89

all k ∈ N and nonzero z in X. That is lim
n→∞

‖xnk
− ξ, z‖ = 0. Suppose M ∈

I. Since M ⊂ {n ∈ N : ‖xn − ξ, z‖ < 1} for each nonzero z in X, then (N\M) ∩
{n ∈ N : ‖xn − ξ, z‖ < 1} = ∅, but N\M ∈ F (I) and {n ∈ N : ‖xn − ξ, z‖ < 1} ∈
F (I) for each nonzero z in X. This contradiction gives M /∈ I. Hence we get
M = {m1 < m2 < . . .} ⊂ N and M /∈ I such that lim

n→∞
‖xnk

− ξ, z‖ = 0. i.e.

ξ ∈ I (∧2
x

)
. Since I (∧2

x

) ⊂ I (
Γ2

x

)
, then ξ ∈ I (

Γ2
x

)
.

Now suppose there is η ∈ I (
Γ2

x

)
such that η 6= ξ. It is clear that

A =
{

n ∈ N : ‖xn − ξ, z‖ ≥ |η − ξ|
2

}
∈ I and

B =
{

n ∈ N : ‖xn − ξ‖ <
|η − ξ|

2

}
/∈ I

for each nonzero z in X. On the other hand, since

‖xn − ξ, z‖ ≥ ‖|xn − η| − |η − ξ| , z‖ >
|η − ξ|

2

for each n ∈ B nonzero z in X, we have B ⊂ A ∈ I. This contradiction shows
I (

Γ2
x

)
= {ξ} we have I (∧2

x

)
= I (

Γ2
x

)
= {ξ} . The Lemma 1 is proved. ¤

Theorem 2.8 Let I ⊂ 2N be an admissible ideal and x = (xn)n∈N , y = (yn)n∈N are
sequences in linear 2-normed space (X, ‖., .‖) such that

M = {n ∈ N : xn 6= yn } ∈ I.

Then I (∧2
x

)
= I (∧2

y

)
and I (

Γ2
x

)
= I (

Γ2
y

)
.

Proof. Let M = {n ∈ N : xn 6= yn} ∈ I. If ξ ∈ I (∧2
x

)
, then there is a set

K = {k1 < k2 < . . .} /∈ I such that I- lim
n→∞

‖xkn − ξ, z‖ = 0. Since

K1 = {n ∈ N : n ∈ K ∧ xn 6= yn} ⊂ M ∈ I,

then K2 = {n ∈ N : n ∈ K ∧ xn = yn} /∈ I (indeed, if K2 ∈ I, then K = K1∪K2 ∈
I, but K /∈ I. Hence the sequence yK2 = (yn)n∈K2

is a I-nonthin subsequence of
y = (yn)n∈N and yK2 converges to ξ in 2-normed space, i.e. ξ ∈ I (∧2

y

)
.

Now let ξ ∈ I (
Γ2

x

)
. Then K3 = {n ∈ N : ‖xn − ξ, z‖ < ε} /∈ I for each ε >

0 and nonzero z in X and K4 = {n ∈ N : n ∈ K3 ∧ xn = yn} /∈ I. Therefore,
K4 ⊂ {n ∈ N : ‖yn − ξ, z‖ < ε} for each nonzero z in X. It shows that, for each
ε > 0 and nonzero z in X, {n ∈ N : ‖yn − ξ, z‖ < ε} /∈ I i.e. ξ ∈ I (

Γ2
y

)
. Theorem

1 is proved. ¤

The next theorem proves a strong connection between I-cluster and ordinary
limit points of a given sequence.
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Theorem 2.9 Let I ⊂ 2N be an admissible ideal with property (AP ) and x =
(xn)n∈N be a sequence in linear 2-normed space (X, ‖., .‖) . Then there is a sequence
y = (yn)n∈N such that L2

y = I (
Γ2

x

)
, and {n ∈ N : xn 6= yn} ∈ I, where L2

y is
ordinary limit points set of the sequence y = (yn)n∈N . Moreover {yn : n ∈ N} ⊂
{xn : n ∈ N} .

Proof. If I (
Γ2

x

)
= L2

x, then y = x and this case is trivial. Let I (
Γ2

x

)
is a proper

subset of L2
x : I (

Γ2
x

) ⊂ L2
x. Then L2

x\I
(
Γ2

x

) 6= ∅ and for each ξ ∈ L2
x\I

(
Γ2

x

)
there

is an open interval Eξ = (ξ − δ, ξ + δ) such that I- lim
n→∞

‖xjk
− ξ, z‖ = 0. Hence,

there is an open interval Eξ = (ξ − δ, ξ + δ) such that
{
k ∈ N : xk ∈ Eξ

} ∈ I.

It is obvious that the collection of all intervals Eξ is an open cover of L2
x\I

(
Γ2

x

)
,so

by Covering Theorem there is a countable and mutually disjoint subcover {Eξ}∞j=1

such that each Ej contains an I-thin subsequence of (xn)n∈N .
Now let Aj = {n ∈ N : xn ∈ Ej , jεN} . It is clear that Aj ∈ I (j = 1, 2, ..)

and Ai ∩ Aj = ∅. Then by (AP ) property of I there is a countable collection
{Bj}∞j=1 of subsets of N such that B = ∪∞j=1Bj and Aj\B is a finite set for each
jεN.

Let M = N\B = {m1 < m2 < . . .} ⊂ N. Now the sequence y = (yk) is defined
by y = yk if k ∈ B and yk = xk if k ∈ M. Obviously, {k ∈ N : xk 6= yk} ⊂ B ∈ I,
so by Theorem 1 I (Γy) = I (Γx) Since Aj\B is a finite set then the subsequence
yB = (yk)kεB has no limit point that is not also an I-limit point of y i.e. L2

y =
I (

Γ2
y

)
. Therefore, we have proved L2

y = I (
Γ2

x

)
. Moreover, the construction of

the sequence y = (yn)n∈N shows

{yn : n ∈ N} ⊂ {xn : n ∈ N}

Theorem 2.9 is proved. ¤
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