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Abstract : In the present paper, we study the growth properties of entire func-
tions of several complex variables having slow growth. The characterizations of
generalized lower order of entire functions of several complex variables have been
obtained in terms of their Taylor’s series coefficients. Also we have obtained the
characterization of generalized lower order of entire functions of several complex
variables in terms of approximation and interpolation errors.
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1 Introduction

We denote complex N − space by CN . Thus, z ∈ CN means that z =
(z1, z2, ..., zN), where z1, z2, ..., zN are complex numbers. A function g(z) , z ∈ CN

is said to be analytic at a point ξ ∈ CN if it can be expanded in some neighbor-
hood of ξ as an absolutely convergent power series. If we assume ξ = (0, 0, ..., 0),
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then g(z) has representation

g(z) =
∞
∑

|k|=0

ak1,k2,...,kN
zk11 zk22 · · · zkN

N =
∞
∑

n=0

ak z
k, (1.1)

where k = (k1, k2, ..., kN ) ∈ N
N
0 and n = |k| = k1 + k2 + · · · + kN . For r > 0, the

maximum modulus S(r, g) of entire function g(z) is given by (see [1])

S(r, g) = sup{|g(z)| : |z1|
2 + |z2|

2 + · · · + |zN |
2 = r2}.

For r > 0, the maximum term µ(r) of entire function g(z) is defined as (see [2, 3])

µ(r) = µ(r, g) = max
n≥0

{||ak||r
n}.

Also the index k with maximal length n for which maximum term is achieved is
called the central index and is denoted by ν(r) = ν(r, g) = k.

For generalization of the classical characterizations of growth of entire func-
tions, Seremeta [4], Kapoor and Nautiyal [5] introduced the concept of the gener-
alized order with the help of general growth functions as follows:

Let L0 denote the class of functions h(x) satisfying the following conditions:

(i) h(x) is defined on [a,∞) and is positive, strictly increasing, differentiable
and tends to ∞ as x→ ∞,

(ii) limx→∞
h[{1+1/ψ(x)}x]

h(x) = 1, for every function ψ(x) such that ψ(x) → ∞ as
x→ ∞.

Let Λ denote the class of functions h(x) satisfying conditions (i) and

(iii) limx→∞
h(cx)
h(x) = 1, for every c>0, that is h(x) is slowly increasing.

Let Ω be the class of functions h(x) satisfying conditions (i) and

(iv) there exist a function δ(x) ∈ Λ and constants x0, K1 and K2 such that

0 < K1 ≤ d{h(x)}
d{δ(log x)} ≤ K2 <∞, for all x>x0.

Let Ω be the class of functions h(x) satisfying (i) and

(v) limx→∞
d{h(x)}
d(logx) = K, 0 < K <∞.

Kapoor and Nautiyal [5] showed that classes Ω and Ω are contained in Λ and
Ω

⋂

Ω = φ.
For an entire function g(z) and functions α(x) either belongs to Ω or to Ω , we

define the generalized lower order λ(α, g) of g(z) as

λ(α, g) = lim
r→∞

inf
α[log S(r, g)]

α(log r)
. (1.2)
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Also we define the generalized lower order λ(α, g) of g(z) in terms of central index
as

λ(α, g) = lim
r→∞

inf
α {|ν(r)|}

α(log r)
. (1.3)

Let K be a compact set in CN and let ||.||K denote the supremum norm on
K. The function

ΦK(z)= sup
[

|p(z)|1/n: p−polynomial, deg p ≤ n , ||p||K ≤ 1
]

,

where n = 1, 2, ... and z ∈ CN , is called the Siciak extremal function of the compact
set K (see [1, 6]). Given a function f defined and bounded on K, for n = 1, 2, ...,
we put

E1
n(f,K) = ||f − tn||K ;

E2
n(f,K) = ||f − ln||K ;

E3
n+1(f,K) = ||ln+1 − ln||K ;

where tn denotes the nth Chebyshev polynomial of the best approximation to f
on K and ln denotes the nth Lagrange interpolation for f with nodes at extremal
points of K (see [1, 6]).

Kumar and Srivastava [7] have obtained the characterizations of lower order
of entire functions of several complex variables in terms of their Taylor’s series
coefficients. In the present paper we have obtained the characterizations of gen-
eralized lower order of entire functions of several complex variables having slow
growth in terms of their Taylor’s series coefficients. Also we have obtained the
characterization of generalized lower order of entire functions of several complex
variables having slow growth in terms of approximation and interpolation errors.

2 Main Results

Now we prove

Theorem 2.1. Let g(z) be an entire function whose Taylor’s series representation

is given by (1.1). If α(x) either belongs to Ω or to Ω , then the generalized lower

order λ(α, g) of this entire function g(z) satisfies

λ(α, g) − 1 ≥ lim
n→∞

inf
α(n)

α
{

log ||ak||−1/n
} . (2.1)

Also if

ψ(n) = max
|k|=n

{

||ak||

||ak′ ||
, |k

′

| = |k| + 1

}

is a non-decreasing function of n , then equality holds in (2.1).
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Proof. Write λ = λ(α, g) and

Φ = lim
n→∞

inf
α(n)

α
{

log ||ak||−1/n
} .

First we prove that Φ ≤ λ − 1. The coefficients of an entire Taylor’s series satisfy
Cauchy’s inequality, that is

||ak|| ≤ r−n S(r, g), (2.2)

Also from (1.2), for arbitrary ε > 0 and a sequence r = rs → ∞ as s → ∞, we
have

S(r, g) ≤ exp[α−1{λα(log r)}],

where λ = λ+ ε.

Now from (2.2), we get

||ak|| ≤ r−n exp[α−1{λα(log r)}]

or

||ak|| ≤ exp[−n log r + α−1{λα(log r)}]. (2.3)

Since α(x) is an increasing function of x, we define r = r(n) as the unique root of
the equation

α

[

n log r

λ

]

= λα(log r). (2.4)

Then for large values of n, we have

log r ≃ α−1

{

1

λ− 1
α(n)

}

= F

(

n,
1

λ− 1

)

. (2.5)

Using (2.4) and (2.5) in (2.3), we get

||ak|| ≤ exp[−nF + (n/λ ) F ]

or
λ

λ− 1
log {||ak||}

−1/n
≥ α−1

{

1

λ− 1
α(n)

}

or
α(n)

α
[

λ
λ−1

log {||ak||}
−1/n

] ≤ λ− 1

or

α(n)

α
[

log {||ak||}
−1/n

] ≤
(

λ− 1
)

α
[

λ
λ−1

log {||ak||}
−1/n

]

α
[

log {||ak||}
−1/n

] .
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Since α(cx) ≃ α(x) as x→ ∞, proceeding to limits as n→ ∞ we get

Φ ≤ λ− 1.

Now we prove that λ− 1 ≤ Φ. From the assumption on ψ, ψ(n) → ∞ as n → ∞.
By the definition given in section 1, if ||ak|| r

|k| is the maximum term for r, then
for |k1| ≤ |k| < |k2|,

||ak1 || r
|k1| ≤ ||ak|| r

|k| > ||ak2 || r
|k2|

and for |k| = n

ψ(n− 1) ≤ r < ψ(n).

Now suppose that ||ak1 ||r|k
1| and ||ak2 ||r|k

2| are two consecutive maximum terms.
Then

|k1| ≤ |k2| − 1.

Let

|k1| ≤ n ≤ |k2|.

Then

|ν(r)| = |k1|

for

ψ(|k1∗

|) ≤ r < ψ(|k1|) ,

where |k1∗

| = |k1| − 1.

Hence from (1.3), for arbitrary ε > 0 and all r > r0(ε), we have

|k1| = |ν(r)| > α−1
{

λ
′

α(log r)
}

, λ
′

= λ− ε

or

|k1| = |ν(r)| ≥ α−1
{

λ
′

α[log{ψ(|k1|) − q}]
}

,

where q is a constant such that

0 < q < min
{

1, [ψ(|k1|) − ψ(|k1∗

|)]/2
}

or

logψ(|k1|) ≤ O(1) + α−1{α(|k1|)/λ
′

}.

Further we have

ψ(|k1|) = ψ(|k1| + 1) = · · · = ψ(n− 1).

Now we can write

ψ(|k0|) · · ·ψ(|k∗|) =
||ak0 ||

||ak||
≤ [ψ(|k∗|)]n−|k0|,
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where |k∗| = n− 1 and n ≫ |k0| or

log ||ak||
−1 ≤ n logψ(|k1|) +O(1)

≤ nα−1{α(|k1|)/λ
′

} +O(1)

or

−
1

n
log ||ak|| ≤ [α−1{α(|k1|)/λ

′

}][1 + o(1)]

or

−
1

n
log ||ak|| ≤ [α−1{α(n)/λ

′

}][1 + o(1)]

or

λ
′

≤
α(n)

α
{

log ||ak||−1/n
} [1 + o(1)].

Now taking limits as n→ ∞, we get λ ≤ Φ or λ− 1 ≤ Φ. Hence the Theorem 2.1
is proved.

Next we prove

Theorem 2.2. Let K ⊆ CN be a compact set such that ΦK is locally bounded in

CN . If α(x) either belongs to Ω or to Ω then the function f, defined and bounded on

K, is a restriction to K of an entire function g of generalized lower order λ(α, g)
if and only if

λ(α, g) − 1 ≥ lim
n→∞

sup
α(n)

α
[

log {Esn(f,K)}
−1/n

] ; s = 1, 2, 3. (2.6)

Also if Es|k|(f,K)/Es|k′|(f,K), where |k′| = n+ 1, is a non-decreasing function of

n, then equality holds in (2.6).

Proof. First we assume that f has an entire function extension g which is of
generalized lower order λ = λ(α, g). We write

θs = lim
n→∞

sup
α(n)

α
[

log {Esn}
−1/n

] ; s = 1, 2, 3.

Here Esn stands for Esn (g|K ,K) , s = 1, 2, 3. Following Winiarski [8], we have

E1
n ≤ E2

n ≤ (n∗ + 2)E1
n, n ≥ 0 (2.7)

and
E3
n ≤ 2(n∗ + 2)E1

n−1, n ≥ 1, (2.8)

where n∗ =

(

n+N
n

)

. Using Stirling formula for the approximate value of n!

we get n∗ ≈ nN

N ! for all large values of n. Hence for all large values of n, we have

E1
n ≤ E2

n ≤
nN

N !
{1 + o(1)}E1

n
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and

E3
n ≤ 2

nN

N !
{1 + o(1)}E1

n.

Thus θ3 ≤ θ2 = θ1. First we prove that θs ≤ λ− 1. Without any loss of generality,
we may suppose that

K ⊂ B =
{

z ∈ CN : |z1|
2 + |z2|

2 + · · · + |zN |2 ≤ 1
}

.

Then
E1
n ≤ E1

n(g,B).

Now following Janik ([1, p. 324]), we have

E1
n(g,B) ≤ r−n S(r, g), r ≥ 2, n ≥ 0

or
E1
n ≤ r−n exp

{

α−1
[

λα (log r)
]}

.

or
E1
n ≤ exp[−n log r + α−1{λα(log r)}. (2.9)

Using (2.4) and (2.5) in (2.9), we get

E1
n ≤ exp[−nF + (n/λ )F ]

or
λ

λ− 1
log

{

E1
n

}−1/n
≥ α−1

{

1

λ− 1
α(n)

}

or
α(n)

α
[

λ
λ−1

log {E1
n}

−1/n
] ≤ λ− 1

or

α(n)

α
[

log {E1
n}

−1/n
] ≤

(

λ− 1
)

α
[

λ
λ−1

log
{

E1
n

}−1/n
]

α
[

log {E1
n}

−1/n
] .

Since α(cx) ≃ α(x)as x→ ∞, proceeding to limits as n→ ∞ we get

θ1 ≤ λ− 1

or
θs ≤ λ− 1.

Now we will prove that λ− 1 ≤ θs. Let

ψ(n) = Es|k|/E
s
|k′|.

Then
ψ(n) → ∞ as n→ ∞.
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Now as in the proof of Theorem 2.1, here we have

log [Esn]
−1 ≤ n logψ(|k1|) +O(1)

≤ nα−1{α(|k1|)/λ
′

} +O(1)

or

−
1

n
logEsn ≤ [α−1{α(|k1|)/λ

′

}][1 + o(1)]

or

−
1

n
logEsn ≤ [α−1{α(n)/λ

′

}][1 + o(1)]

or

λ
′

≤
α(n)

α
{

log [Esn]−1/n
} [1 + o(1)].

Now taking limits as n→ ∞, we get

λ ≤ θs

or

λ− 1 ≤ θs.

Now let f be a bounded function defined on K and such that for s = 1, 2, 3

θs = lim
n→∞

sup
α(n)

α
[

log {Esn}
−1/n

] .

Then for every d1>θs and for sufficiently large value of n, we have

α(n)

α
[

log {Esn}
−1/n

] ≤ d1

or

0 ≤ Esn ≤ exp

[

−nα−1

{

1

d1
α(n)

}]

.

Proceeding to limits as n→ ∞, we get

lim
n→∞

[Esn]1/n = 0.

So by Janik ([6, Prop. 3.1]), we claim that the function f can be continuously
extended to an entire function. Let us put

g = l0 +

∞
∑

n=1

(ln − ln−1),
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where {ln} is the sequence of Lagrange interpolation polynomials of f as defined
earlier. Now we claim that g is the required continuation of f and λ(α, g)−1 = θs.
As in the proof of this theorem given above, we have

λ− 1 ≤ θs.

Now using the inequalities (2.7), (2.8) and the proof of first part given above,
we have λ(α, g) − 1 = θs, as claimed. This completes the proof of the Theorem
2.2.
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