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1 Introduction

Variational inequalities and variational inclusions are interesting and impor-
tant mathematical problems and have been studied intensively in the recent past,
since they have wide applications in mechanics, physics, optimization and control,
nonlinear programming, economics and transportation equilibrium and engineer-
ing sciences, etc. (see, for example [1–7]). The resolvent operator technique for
solving variational inequalities and variational inclusions is interesting and impor-
tant. For more details of this area, we refer to [8–12].

In 2008, Zou and Huang [13] introduced and studied H(·, ·)-accretive mapping
and its resolvent operator in Banach spaces. Very recently, Ahmad et al. [14]
introduced and studied H(·, ·)-cocoercive mapping and its resolvent operator in
real Hilbert spaces. They also gave some examples to illustrate their results.

Keeping in view the recent interesting developments of this area, we define a
new mapping called H(·, ·)-co-accretive mapping in Banach spaces. We define the
resolvent operator associated with the H(·, ·)-co-accretive mapping and prove that
it is single-valued and Lipschitz continuous. Finally, we apply these new concepts
to solve a system of variational inclusions and an example is given.

2 Preliminaries

Let E be a real Banach space with its norm ‖ · ‖, E∗ be the topological dual
of E, d is the metric induced by the norm ‖ · ‖. Let 〈·, ·〉 be the duality pairing
between E and E∗, CB(E) (respectively, 2E) be the family of all nonempty closed
and bounded subsets (respectively, all nonempty subsets) of E and D(·, ·) be the
Häusdorff metric on CB(E) defined by

D(A, B) = max

{

sup
x∈A

d(x, B), sup
y∈B

d(A, y)

}

,

where A, B ∈ CB(E) and d(x, B) = infy∈B d(x, y) and d(A, y) = infx∈A d(x, y).

Definition 2.1 ([15]). For q > 1, the mapping Jq : E → 2E∗

defined by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖x‖q−1 = ‖f‖}, ∀ x ∈ E,

is called a generalized duality mapping.
In particular, J2 is the usual normalized duality mapping on E. It is well

known that Jq(x) = ‖x‖q−2J2(x), ∀ x(6= 0) ∈ E. Also if E ≡ X , a real Hilbert
space, then J2 becomes the identity mapping on X .

Definition 2.2 ([15]). A Banach space E is called smooth if, for every x ∈ E with
‖x‖ = 1, there exists a unique f ∈ E∗ such that ‖f‖ = f(x) = 1.

The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞), defined
by

ρE(t) = sup

{‖x + y‖ + ‖x − y‖
2

− 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = t

}

.
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Definition 2.3 ([15]). A Banach space E is said to be

(i) uniformly smooth, if

lim
t→0

ρE(t)

t
= 0;

(ii) q-uniformly smooth, for q > 1, if there exists a constant C > 0 such that

ρE(t) ≤ Ctq, t ∈ [0,∞).

It is well known (see e.g., [16]) that

Lq(or lq) is

{

q−uniformly smooth, if 1 < q ≤ 2,

2−uniformly smooth, if q ≥ 2.

Note that if E is uniformly smooth then Jq is single-valued. Xu [15] proved the
following important lemma.

Lemma 2.4. Let q > 1 be a real number and E be a smooth Banach space. Then
E is q-uniformly smooth if and only if there exists a constant Cq > 0 such that for
every x, y ∈ E,

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉 + Cq‖y‖q.

3 H(·, ·)-Co-Accretive Mapping

Throughout the paper, unless otherwise specified, we take E to be a
q-uniformly smooth Banach space. First, we recall the following definitions
and results.
Definition 3.1 ([13, 14]). A mapping g : E → E is said to be

(i) accretive, if

〈g(x) − g(y), Jq(x − y)〉 ≥ 0, ∀ x, y ∈ E;

(ii) strictly accretive, if

〈g(x) − g(y), Jq(x − y)〉 > 0, ∀ x, y ∈ E,

and the equality holds if and only if x = y;

(iii) δg-strongly accretive, if there exists a constant δg > 0 such that

〈g(x) − g(y), Jq(x − y)〉 ≥ δg‖x − y‖q, ∀ x, y ∈ E;

(iv) relaxed-accretive, if there exists a constant β > 0 such that

〈g(x) − g(y), Jq(x − y)〉 ≥ (−β)‖x − y‖q, ∀ x, y ∈ E;
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(v) Lipschitz continuous, if there exists a constant λg > 0 such that

‖g(x) − g(y)‖ ≤ λg‖x − y‖, ∀ x, y ∈ E;

(vi) η−expansive, if there exists a constant η > 0 such that

‖g(x) − g(y)‖ ≥ η‖x − y‖, ∀ x, y ∈ E;

if η = 1, then it is expansive.

(vii) cocoercive, if there exists a constant µ > 0 such that

〈g(x) − g(y), Jq(x − y)〉 ≥ µ‖g(x) − g(y)‖q , ∀ x, y ∈ E;

(viii) relaxed-cocoercive, if there exists a constant γ > 0 such that

〈g(x) − g(y), Jq(x − y)〉 ≥ (−γ)‖g(x) − g(y)‖q , ∀ x, y ∈ E.

Definition 3.2. A multi-valued mapping G : E → CB(E) is said to be
D−Lipschitz continuous, if for any x, y ∈ E, there exists a constant λDG

> 0
such that

D(G(x), G(y)) ≤ λDG
‖x − y‖.

Definition 3.3 ([14]). Let H : E×E → E and A,B : E → E be mappings.
Then

(i) H(A, ·) is said to be cocoercive with respect to A, if there exists a
constant µ1 > 0 such that

〈H(Ax, u) − H(Ay, u), Jq(x − y)〉 ≥ µ1‖Ax − Ay‖q, ∀ x, y, u ∈ E;

(ii) H(·, B) is said to be relaxed-cocoercive with respect to B, if there exists
a constant γ1 > 0 such that

〈H(u,Bx)−H(u,By), Jq(x− y)〉 ≥ (−γ1)‖Bx−By‖q, ∀ x, y, u ∈ E;

(iii) H(A, ·) is said to be r1-Lipschitz continuous with respect to A, if there
exists a constant r1 > 0 such that

〈H(Ax, u) − H(Ay, u), Jq(x − y)〉 ≤ r1‖x − y‖, ∀ x, y, u ∈ E;
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(iv) H(·, B) is said to be r2-Lipschitz continuous with respect to B, if there
exists a constant r2 > 0 such that

〈H(u,Bx) − H(u,By), Jq(x − y)〉 ≤ r2‖x − y‖, ∀ x, y, u ∈ E;

(v) H(A,B) is said to be symmetric cocoercive with respect to A and
B, if H(A, ·) is cocoercive with respect to A and H(·, B) is relaxed-
cocoercive with respect to B.

Example 3.4. Let E = R
2, with an inner product defined by

〈(x1, x2), (y1, y2)〉 = x1y1 − x1y2 − x2y1 + x2y2.

Let A,B : R
2 → R

2 be mappings defined by

A(x1, x2) =

(

2

3
x1 +

1

3
x2,

1

3
x1 +

2

3
x2

)

, ∀ (x1, x2) ∈ R
2,

B(y1, y2) =

(

−1

2
y1 − y2,−y1 −

1

2
y2

)

, ∀ (y1, y2) ∈ R
2.

Let H : R
2 × R

2 → R
2 be a mapping defined by

H(Ax,Bx) = Ax + Bx, ∀ x ∈ R
2.

Then for any u ∈ R
2, it is easy to verify that

〈H(Ax, u) − H(Ay, u), x − y〉 ≥ 3‖Ax − Ay‖2.

and
〈H(u,Bx) − H(u,By), x − y〉 ≥ (−2)‖Bx − By‖2.

Thus H(A,B) is symmetric cocoercive with respect to A and B.

Definition 3.5 ([17]). Let f, g : E → E be the mappings and M : E×E →
2E be a multi-valued mapping. Then

(i) M(f, ·) is said to be strongly accretive with respect to f , if there exists
a constant α > 0 such that
〈u−v, Jq(x−y)〉 ≥ α‖x−y‖q, ∀ x, y,w ∈ E and ∀u ∈ M(f(x), w), v ∈
M(f(y), w);

(ii) M(·, g) is said to be relaxed-accretive with respect to g, if there exists
a constant β > 0 such that
〈u−v, Jq(x−y)〉 ≥ (−β)‖x−y‖q, ∀ x, y,w ∈ E and ∀u ∈ M(w, g(x)),
v ∈ M(w, g(y));
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(iii) M(f, g) is said to be symmetric accretive with respect to f and g, if
M(f, ·) is strongly accretive with respect to f and M(·, g) is relaxed-
accretive with respect to g.

Now we define the following H(·, ·)-co-accretive mapping.

Definition 3.6. Let A,B, f, g : E → E and H : E × E → E be single-
valued mappings. Let M : E × E → 2E be a multi-valued mapping. The
mapping M is said to be H(·, ·)-co-accretive with respect to A,B, f and
g, if H(A,B) is symmetric cocoercive with respect to A and B, M(f, g) is
symmetric accretive with respect to f and g and (H(A,B)+λM(f, g))(E) =
E, for all λ > 0.

Definition 3.7. Let A,B, f, g : E → E and H : E × E → E be single-
valued mappings. Let M : E ×E → 2E be an H(·, ·)-co-accretive mapping

with respect to A,B, f and g. The resolvent operator R
H(·,·)
λ,M(·,·) : E → E is

defined by

R
H(·,·)
λ,M(·,·)(u) = [H(A,B) + λM(f, g)]−1(u), ∀u ∈ E and λ > 0.

In the rest of the paper, whenever we mention that M is H(·, ·)-co-
accretive mapping, we mean that H(A,B) is symmetric cocoercive with
respect to A and B with constants µ and γ, respectively and M(f, g) is
symmetric accretive with respect to f and g with constants α and β, re-
spectively.

Next, we prove that the resolvent operator is single-valued and Lipschitz
continuous.

Theorem 3.8. Let A,B, f, g : E → E and H : E × E → E be single-
valued mappings. Let M : E × E → 2E be an H(·, ·)-co-accretive mapping
with respect to A,B, f and g. Let A be η-expansive and B be σ-Lipschitz
continuous and let α > β, µ > γ and η > σ. Then the resolvent operator

R
H(·,·)
λ,M(·,·)(u) = [H(A,B) + λM(f, g)]−1(u), ∀u ∈ E, λ > 0,

is single-valued.

Proof. For any given u ∈ E, let x, y ∈ [H(A,B)+λM(f, g)]−1(u). It follows
that

−H(A(x), B(x)) + u ∈ λM(f(x), g(x)),

and
−H(A(y), B(y)) + u ∈ λM(f(y), g(y)).
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Since M is H(·, ·)-co-accretive with respect to A,B, f and g, we have

(α − β)‖x − y‖q ≤ 〈−H(A(x), B(x)) + u − (−H(A(y), B(y)) + u), Jq(x − y)〉
= 〈−H(A(x), B(x)) − (−H(A(y), B(y))), Jq(x − y)〉
= −〈H(A(x), B(x)) − H(A(y), B(x)), Jq(x − y)〉

− 〈H(A(y), B(x)) − H(A(y), B(y)), Jq(x − y)〉
≤ (−µ)‖A(x) − A(y)‖q + γ‖B(x) − B(y)‖q.

(3.1)

Since A is η-expansive and B is σ-Lipschitz continuous, thus (3.1) becomes

0 ≤ (α − β)‖x − y‖q ≤ −µηq‖x − y‖q + γσq‖x − y‖q,

which implies that

0 ≤ [(α − β) + (µηq − γσq)]‖x − y‖q ≤ 0.

Since α > β, µ > γ and η > σ, it follows that x = y and so the resolvent
operator defined by [H(A,B)+λM(f, g)]−1 is single-valued. This completes
the proof.

Theorem 3.9. Let A,B, f, g : E → E and H : E×E → E be single-valued
mappings. Suppose M : E × E → 2E is an H(·, ·)-co-accretive mapping
with respect to A,B, f and g. Let A be η-expansive and B be σ-Lipschitz
continuous such that α > β, µ > γ and η > σ. Then the resolvent operator

R
H(·,·)
λ,M(·,·) : E → E is Lipschitz continuous with constant θ, that is,

‖RH(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v)‖ ≤ θ‖u − v‖, ∀ u, v ∈ E and λ > 0,

where θ = 1
λ(α−β)+(µηq−γσq) .

Proof. Let u, v be any given points in E. It follws that

R
H(·,·)
λ,M(·,·)(u) = [H(A,B) + λM(f, g)]−1(u)

and
R

H(·,·)
λ,M(·,·)(v) = [H(A,B) + λM(f, g)]−1(v)

and so

1
λ
(u−H(A(R

H(·,·)
λ,M(·,·)(u)), B(R

H(·,·)
λ,M(·,·)(u)))) ∈ M(f(R

H(·,·)
λ,M(·,·)(u)), g(R

H(·,·)
λ,M(·,·)(u)))

and
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1
λ
(v−H(A(R

H(·,·)
λ,M(·,·)(v)), B(R

H(·,·)
λ,M(·,·)(v)))) ∈ M(f(R

H(·,·)
λ,M(·,·)(v)), g(R

H(·,·)
λ,M(·,·)(v))).

Since M is symmetric accretive with respect to f and g, we have

(α − β)‖RH(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v)‖q

≤ 〈1
λ

(u − H(A(R
H(·,·)
λ,M(·,·)

(u)), B(R
H(·,·)
λ,M(·,·)

(u))))

− 1

λ
(v − H(A(R

H(·,·)
λ,M(·,·)(v)), B(R

H(·,·)
λ,M(·,·)(v)))),

Jq(R
H(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v))〉

≤ 1

λ
〈u − v, Jq(R

H(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v))〉

− 1

λ
〈H(A(R

H(·,·)
λ,M(·,·)(u)), B(R

H(·,·)
λ,M(·,·)(u)))

− H(A(R
H(·,·)
λ,M(·,·)(v)), B(R

H(·,·)
λ,M(·,·)(u))),

Jq(R
H(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v))〉

− 1

λ
〈H(A(R

H(·,·)
λ,M(·,·)(v)), B(R

H(·,·)
λ,M(·,·)(u)))

− H(A(R
H(·,·)
λ,M(·,·)(v)), B(R

H(·,·)
λ,M(·,·)(v))),

Jq(R
H(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v))〉.

Since H is symmetric cocoercive with respect to A and B, A is η-expansive
and B is σ-Lipschitz continuous, we have

(α − β)‖RH(·,·)
λ,M(·,·)

(u)−R
H(·,·)
λ,M(·,·)

(v)‖q

≤ 1

λ
〈u − v, Jq(R

H(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v))〉

− 1

λ
(µηq − γσq)‖RH(·,·)

λ,M(·,·)(u) − R
H(·,·)
λ,M(·,·)(v)‖q ,

or

(α − β) +
1

λ
(µηq − γσq)‖RH(·,·)

λ,M(·,·)(u) − R
H(·,·)
λ,M(·,·)(v)‖q

≤ 1

λ
〈u − v, Jq(R

H(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v))〉.

It follows that

〈u − v, Jq(R
H(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v))〉

≥ [λ(α − β) + (µηq − γσq)]‖RH(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v)‖q,
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‖u − v‖‖RH(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v)‖q−1

≥ [λ(α − β) + (µηq − γσq)]‖RH(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v)‖q.

So

‖RH(·,·)
λ,M(·,·)(u) − R

H(·,·)
λ,M(·,·)(v)‖ ≤ θ‖u − v‖,

where

θ =
1

λ(α − β) + (µηq − γσq)
.

This completes the proof.

Remark 3.10. Definitions 3.6, 3.7 and Theorems 3.8, 3.9 generalize the
corresponding concepts and results in [13, 16, 18–20].

Now we consider our main results.

4 System of Variational Inclusions

In this section, we apply H(·, ·)-co-accretive mapping for solving a sys-
tem of variational inclusions and we assume that for each i = 1, 2, Ei are
qi-uniformly smooth Banach spaces with norm ‖ · ‖i.

Let A1, B1, f1, g1 : E1 → E1;A2, B2, f2, g2 : E2 → E2 be nonlinear
mappings. Let S,H1 : E1 × E2 → E1 and T,H2 : E1 × E2 → E2 be
nonlinear mappings and let M1 : E1 ×E1 → 2E1 be an H1(·, ·)-co-accretive
mapping with respect to A1, B1, f1 and g1 and M2 : E2 × E2 → 2E2 be
an H2(·, ·)-co-accretive mapping with respect to A2, B2, f2 and g2. Let
P : E1 → 2E1 and G : E2 → 2E2 be multi-valued mappings. We consider
the following system of variational inclusions.

Find (x, y) ∈ E1 × E2, u ∈ P (x) and v ∈ G(y) such that

θ1 ∈ S(x, v) + M1(f1(x), g1(x));

θ2 ∈ T (u, y) + M2(f2(y), g2(y)),
(4.1)

where θ1 and θ2 are the zero vectors of E1 and E2, respectively.

Note that for suitable choices of mappings A1, B1, A2, B2, f1, g1, f2, g2, S,

H1, T,H2,M1,M2, P,G and the spaces E1, E2, the system of variational in-
clusions (4.1) reduces to various systems of variational inclusions (inequal-
ities) existing in the literature.



420 Thai J. Math. 11 (2013)/ R. Ahmad et al.

Lemma 4.1. For any given (x, y) ∈ E1×E2, u ∈ P (x), v ∈ G(y), (x, y, u, v)
is a solution of the system of variational inclusions (4.1) if and only if
(x, y, u, v) satisfies

x = R
H1(·,·)
λ1,M1(·,·)

[H1(A1, B1)(x) − λ1S(x, v)];

y = R
H2(·,·)
λ2,M2(·,·)

[H2(A2, B2)(y) − λ2T (u, y)],

where λ1, λ2 are two constants, R
H1(·,·)
λ1,M1(·,·)

(x) = [H1(A1, B1)+λ1M1(f1, g1)]
−1(x)

and R
H2(·,·)
λ2,M2(·,·)

(y) = [H2(A2, B2) + λ2M2(f2, g2)]
−1(y), ∀ x ∈ E1, y ∈ E2.

Proof. Proof is an immediate consequence of definitions of R
H1(·,·)
λ1,M1(·,·)

and

R
H2(·,·)
λ2,M2(·,·)

.

Based on Lemma 4.1, we define the following iterative Algorithm for
solving the system of variational inclusions (4.1).

Algorithm 4.2. For any given (x0, y0) ∈ E1 ×E2, u0 ∈ P (x0), v0 ∈ G(y0),
compute (xn, yn) ∈ E1 × E2, un ∈ P (xn) and vn ∈ G(yn) such that

xn+1 = R
H1(·,·)
λ1,M1(·,·)

[H1(A1, B1)(xn) − λ1S(xn, vn)];

yn+1 = R
H2(·,·)
λ2,M2(·,·)

[H2(A2, B2)(yn) − λ2T (un, yn)];

un ∈ P (xn), ‖un − un+1‖ ≤ D(P (xn), P (xn+1));

vn ∈ G(yn), ‖vn − vn+1‖ ≤ D(G(yn), G(yn+1));

where n = 0, 1, 2, . . . and λ1, λ2 > 0 are two constants.

Theorem 4.3. For each i = 1, 2, let Ei be qi-uniformly smooth Banach
spaces, Ai be ηi-expansive mappings and Bi be σi-Lipschitz continuous
mappings. Let S,H1 : E1 × E2 → E1 be mappings such that H1 is r1-
Lipschitz continuous with respect to A1 and r2-Lipschitz continuous with
respect to B1;S is δS-strongly accretive in the first argument and λS1

, λS2
-

Lipschitz continuous in the first and second arguments, respectively. Let
T,H2 : E1 ×E2 → E2 be mappings such that H2 is r3-Lipschitz continuous
with respect to A2 and r4-Lipschitz continuous with respect to B2;T is δT -
strongly accretive in the second argument and λT1

, λT2
-Lipschitz continuous

in the first and second arguments, respectively. Let P : E1 → CB(E1) is
D-Lipschitz continuous with constant λDP

and G : E2 → CB(E2) is D-
Lipschitz continuous with constant λDG

. Suppose that M1 : E1 ×E1 → 2E1
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be H1(·, ·)-co-accretive with respect to A1, B1, f1 and g1 with α1 > β1, µ1 >

γ1 and η1 > σ1;M2 : E2 × E2 → 2E2 be H2(·, ·)-co-accretive with respect to
A2, B2, f2 and g2 with α2 > β2, µ2 > γ2 and η2 > σ2. Assume that there
exist constants λ1, λ2 > 0 satisfying the following condition:

θ1
q1
√

L1 + θ2λ2λT1
λDP

< 1;

θ2
q2
√

L2 + θ1λ1λS2
λDG

< 1,
(4.2)

where

θ1 =
1

λ1(α1 − β1) + (µ1η
q1

1 − γ1σ
q1

1 )
, θ2 =

1

λ2(α2 − β2) + (µ2η
q2

2 − γ2σ
q2

2 )
;

L1 = [(r1 + r2)
q1 − λ1q1δS + λ1q1λS1

(r1 + r2)
q1−1 + λ1q1λS1

+ λ
q1

1 Cq1λ
q1

S1
];

L2 = [(r3 + r4)
q2 − λ2q2δT + λ2q2λT2

(r3 + r4)
q2−1 + λ2q2λT2

+ λ
q2

2 Cq2λ
q2

T2
].

Then (x, y) ∈ E1 × E2, u ∈ P (x), v ∈ G(y) is a solution of the system of
variational inclusions (4.1) and the sequences {xn}, {yn}, {un} and {vn}
generated by the Algorithm 4.2 converge strongly to x, y, u and v, respec-
tively.

Proof. From Algorithm 4.2 and Theorem 3.9, we have

‖xn+1 − xn‖1

= ‖RH1(·,·)
λ1,M1(·,·)

[H1(A1(xn), B1(xn)) − λ1S(xn, vn)]

− R
H1(·,·)
λ1,M1(·,·)

[H1(A1(xn−1), B1(xn−1)) − λ1S(xn−1, vn−1)]‖1

≤ θ1‖H1(A1(xn), B1(xn)) − H1(A1(xn−1), B1(xn−1))

− λ1(S(xn, vn) − S(xn−1, vn) + S(xn−1, vn) − S(xn−1, vn−1))‖1

≤ θ1‖H1(A1(xn), B1(xn)) − H1(A1(xn−1), B1(xn−1)) − λ1(S(xn, vn)

− S(xn−1, vn)‖1 + θ1λ1‖S(xn−1, vn) − S(xn−1, vn−1)‖1,

(4.3)

where

θ1 =
1

λ1(α1 − β1) + (µ1η1
q1 − γ1σ1

q1)
.

Since H1 is r1-Lipschitz continuous with respect to A1 and r2-Lipschitz
continuous with respect to B1, S is δS -strongly accretive in the first argu-
ment and λS1

-Lipschitz continuous in the first argument and using Lemma
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2.4, we have

‖H1(A1(xn), B1(xn)) − H1(A1(xn−1), B1(xn−1)) − λ1(S(xn, vn) − S(xn−1, vn))‖q1

1

≤ ‖H1(A1(xn), B1(xn)) − H1(A1(xn−1), B1(xn−1))‖q1

1

− λ1q1〈S(xn, vn) − S(xn−1, vn), Jq1
[H1(A1(xn), B1(xn))

− H1(A1(xn−1), B1(xn−1))]〉 + λ
q1

1 Cq1
‖S(xn, vn) − S(xn−1, vn)‖q1

1

≤ ‖H1(A1(xn), B1(xn)) − H1(A1(xn−1), B1(xn−1))‖q1

1

− λ1q1〈S(xn, vn) − S(xn−1, vn), Jq1
(xn − xn−1)〉

− λ1q1〈S(xn, vn) − S(xn−1, vn), Jq1
[H1(A1(xn), B1(xn))

− H1(A1(xn−1), B1(xn−1))] − Jq1
(xn − xn−1)〉

+ λ
q1

1 Cq1
‖S(xn, vn) − S(xn−1, vn)‖q1

1

≤ (r1 + r2)
q1‖xn − xn−1‖q1

1 − λ1q1δS‖xn − xn−1‖q1

1

+ λ1q1‖S(xn, vn) − S(xn−1, vn)‖1 × [‖H1(A1(xn), B1(xn))

− H1(A1(xn−1), B1(xn−1))‖q1−1
1 + ‖xn − xn−1‖q1−1]

+ λ
q1

1 Cq1λ
q1

S1
‖xn − xn−1‖q1−1

1

≤ (r1 + r2)
q1‖xn − xn−1‖q1

1 − λ1q1δS‖xn − xn−1‖q1

1

+ λ1q1λS1
‖xn − xn−1‖1 × [(r1 + r2)

q1−1‖xn − xn−1‖q1−1
1

+ ‖xn − xn−1‖q1−1
1 ] + λ

q1

1 Cq1λ
q1

S1
‖xn − xn−1‖q1

1

= L1‖xn − xn−1‖q1

1 ,

(4.4)
where

L1 = [(r1 + r2)
q1 − λ1q1δS + λ1q1λS1

(r1 + r2)
q1−1 + λ1q1λS1

+ λ
q1

1 Cq1λ
q1

S1
].

Since S is λS2
-Lipschitz continuous in the second argument and G is D-

Lipschitz continuous with constant λDG
, by using Algorithm 4.2, we have

‖S(xn−1, vn) − S(xn−1, vn−1)‖1 ≤ λS2
‖vn − vn−1‖2

≤ λS2
D(G(yn), G(yn−1))

≤ λS2
λDG

‖yn − yn−1‖2.

(4.5)

Due to (4.4) and (4.5), (4.3) becomes

‖xn+1 − xn‖1 ≤ θ1
q1

√

L1‖xn − xn−1‖1 + θ1λ1λS2
λDG

‖yn − yn−1‖2. (4.6)
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Again from Algorithm 4.2 and Theorem 3.9, we have

‖yn+1 − yn‖2 = ‖RH2(·,·)
λ2,M2(·,·)[H2(A2(yn), B2(yn)) − λ2T (un, yn)]

− R
H2(·,·)
λ2,M2(·,·)

[H2(A2(yn−1), B2(yn−1)) − λ2T (un−1, yn−1)]‖2

≤ θ2‖H2(A2(yn), B2(yn)) − H2(A2(yn−1), B2(yn−1))

− λ2(T (un, yn) − T (un, yn−1) + T (un, yn−1) − T (un−1, yn−1))‖2

≤ θ2‖H2(A2(yn), B2(yn)) − H2(A2(yn−1), B2(yn−1))

− λ2(T (un, yn) − T (un, yn−1)‖2

+ θ2λ2‖T (un, yn−1) − T (un−1, yn−1)‖2.

(4.7)
Since H2 is r3-Lipschitz continuous with respect to A2 and r4-Lipschitz
continuous with respect to B2, T is δT -strongly accretive in the second
argument and λT2

-Lipschitz continuous in the second argument, by using
Lemma 2.4, we have

‖H2(A2(yn), B2(yn)) − H2(A2(yn−1), B2(yn−1)) − λ2(T (un, yn) − T (un, yn−1)‖q2

2

≤ ‖H2(A2(yn), B2(yn)) − H2(A2(yn−1), B2(yn−1))‖q2

2

− λ2q2〈T (un, yn) − T (un, yn−1), Jq2
[H2(A2(yn), B2(yn))

− H2(A2(yn−1), B2(yn−1))]〉 + λ
q2

2 Cq2
‖T (un, yn) − T (un, yn−1)‖q2

2

≤ ‖H2(A2(yn), B2(yn)) − H2(A2(yn−1), B2(yn−1))‖q2

2

− λ2q2〈T (un, yn) − T (un, yn−1), Jq2
(yn − yn−1)〉

− λ2q2〈T (un, yn) − T (un, yn−1), Jq2
[H2(A2(yn), B2(yn))

− H2(A2(yn−1), B2(yn−1))] − Jq2
(yn − yn−1)〉

+ λ
q2

2 Cq2
‖T (un, yn) − T (un, yn−1)‖q2

2

≤ (r3 + r4)
q2‖yn − yn−1‖q2

2 − λ2q2δT ‖yn − yn−1‖q2

2

+ λ2q2‖T (un, yn) − T (un, yn−1)‖2 × [‖H2(A2(yn), B2(yn))

− H2(A2(yn−1), B2(yn−1))‖q2−1
2 + ‖yn − yn−1‖q2−1

2 ]

+ λ
q2

2 Cq2λ
q2

T2
‖yn − yn−1‖q2

2

≤ (r3 + r4)
q2‖yn − yn−1‖q2

2 − λ2q2δT ‖yn − yn−1‖q2

2

+ λ2q2λT2
‖yn − yn−1‖2 × [(r3 + r4)

q2−1‖yn − yn−1‖q2−1
2

+ ‖yn − yn−1‖q2−1
2 ] + λ

q2

2 Cq2λ
q2

T2
‖yn − yn−1‖q2

2

= L2‖yn − yn−1‖q2

2 ,

(4.8)
where

L2 = [(r3 + r4)
q2 − λ2q2δT + λ2q2λT2

(r3 + r4)
q2−1 + λ2q2λT2

+ λ
q2

2 Cq2λ
q2

T2
].

Since T is λT1
-Lipschitz continuous in the first argument and P is D-
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Lipschitz continuous with constant λDP
, by using Algorithm 4.2, we have

‖T (un, yn−1) − T (un−1, yn−1)‖2 ≤ λT1
‖un − un−1‖1

≤ λT1
D(P (xn), P (xn−1))

≤ λT1
λDP

‖xn − xn−1‖1.

(4.9)

Due to (4.8) and (4.9), (4.7) becomes

‖yn+1 − yn‖2 ≤ θ2
q2

√

L2‖yn − yn−1‖2 + θ2λ2λT1
λDP

‖xn − xn−1‖1. (4.10)

Combining (4.6) and (4.10), we have

‖xn+1 − xn‖1 + ‖yn+1 − yn‖2 ≤ [θ1
q1

√

L1 + θ2λ2λT1
λDP

]‖xn − xn−1‖1

+ [θ2
q2

√

L2 + θ1λ1λS2
λDG

]‖yn − yn−1‖2

≤ φ(θ)[‖xn − xn−1‖1 + ‖yn − yn−1‖2],

(4.11)

where

φ(θ) = max[θ1
q1
√

L1 + θ2λ2λT1
λDP

, θ2
q2
√

L2 + θ1λ1λS2
λDG

].

From (4.2), it follows that 0 < φ(θ) < 1 and so (4.11) implies that {xn}
and {yn} are both Cauchy sequences. Thus there exist x, y ∈ E such that
xn → x and yn → y as n → ∞.

Now we prove that un → u ∈ P (x) and vn → v ∈ G(y). In fact, it
follows from the D-Lipschitz continuities of P,G and Algorithm 4.2 that

‖un+1 − un‖1 ≤ D(P (xn+1), P (xn)) ≤ λDP
‖xn+1 − xn‖1 (4.12)

and

‖vn+1 − vn‖2 ≤ D(G(yn+1), G(yn)) ≤ λDG
‖yn+1 − yn‖2. (4.13)

From (4.12) and (4.13), we know that {un} and {vn} are also Cauchy
sequences in E. Thus there exist u, v ∈ E such that un → u and vn → v as
n → ∞.

Furthermore,

d(u, P (x)) ≤ ‖u − un‖1 + d(un, P (x))

≤ ‖u − un‖1 + D(P (xn), P (x))

≤ ‖u − un‖1 + λDP
‖xn − x‖1 → 0, as n → ∞,
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which implies that d(u, P (x)) = 0. Since P (x) ∈ CB(E), it follows that u ∈
P (x). Similarly, we can show that v ∈ G(y). By continuity of H1,H2, A1, A2,

B1, B2,M1,M2, S, T, P,G,R
H1(·,·)
λ1 ,M1(·,·)

, R
H2(·,·)
λ2,M2(·,·)

and Algorithm 4.2, we have

x = R
H1(·,·)
λ1,M1(·,·)

[H1(A1, B1)(x) − λ1S(x, v)],

y = R
H2(·,·)
λ2,M2(·,·)

[H2(A2, B2)(y) − λ2T (u, y)].

By Lemma 4.1, (x, y, u, v) is a solution of problem (4.1). This completes
the proof.

Corollary 4.4. Let P,G be the single-valued, identity mappings, M1 : E1×
E1 → 2E1 be generalized H1(·, ·)-accretive mapping, M2 : E2 × E2 → 2E2

be generalized H2(·, ·)-accretive mapping and all other conditions are same
as in Theorem 4.3, then one can obtain Theorem 6.1 of Kazmi et al. [17]
without uniqueness.
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