A Class of a System of Multi-Valued Extended General Quasi-Variational Inequality Problems

Saleh A. Al-Mezel and Faizan A. Khan ${ }^{1}$
Department of Mathematics, Faculty of Science
University of Tabuk, Tabuk-71491, Kingdom of Saudia Arabia
e-mail : almezel@ut.edu.sa (S.A. Al-Mezel)
faizan_math@yahoo.com (F.A. Khan)

Abstract

In this paper, we consider a system of multi-valued extended general quasi-variational inequality problems (SMEGQVIP) in real Hilbert spaces. Using the projection operator technique, it is observed that the SMEGQVIP is equivalent to the system of projection equations. This alternative equivalence formulation is used to suggest an iterative algorithm for the SMEGQVIP. Further, we prove the existence of a solution of SMEGQVIP and discuss the convergence analysis of iterative sequences generated by given algorithm. The approach used in this paper may be treated as an extension and unification of approaches for studying existence results for various important classes of system of variational inequality problems given by many authors in this direction.

Keywords : system of multi-valued extended general quasi-variational inequality; relaxed (d, e)-cocoercive mappings; strongly monotone mappings; mixed Lipschitz continuous mappings; μ - \mathcal{H}-Lipschitz continuous mapping; projection operator technique; iterative algorithm; existence and convergence analysis.

2010 Mathematics Subject Classification : 47H04; 47J20; 47J40; 65K10.

[^0]
1 Introduction

Variational inequality theory introduced by Stampacchia [1] and Fichera [2], has become a rich source of inspiration and motivation for the study of a large number of problems arising in mechanics, elasticity and optimization and control problems, boundary value problems etc., see [1-17]. In the last four decades, considerable interest has been shown in developing various classes of variational inequalities and system of variational inequality problems. One of the most important and interesting problem in the theory of variational inequalities is the development of numerical methods which provide an efficient and implementable algorithm for solving variational inequalities and its generalization. This theory provides a simple, natural and unified framework for a general treatment of unrelated problems, which have motivated a large number of mathematicians to generalize and extend the variational inequalities and related optimization problems in several directions using novel techniques, see [1-17].

By using the projection technique, Noor [3], Noor et al. [4], Verma [5] studied the existence of solution for some classes of variational and quasi-variational inequalities involving single and multi-valued mappings in Banach spaces. Recently, by using the projection technique, Noor $[6,7]$ studied the existence of solution for some classes of extended general variational inequalities in the setting of Hilbert and Banach spaces.

Very recently, by using the projection technique, Chang et al. [8, 9], Cho et al. [10], Feng et al. [11], Huang et al. [12], Noor et al. [13], Verma [14] and Zou et al. [15] studied the existence theory for various classes of system of general variational inequalities and system of variational inclusions in the setting of Hilbert and Banach spaces.

Inspired by recent research works in this area, in this paper, we consider a system of multi-valued extended general quasi-variational inequality problems (SMEGQVIP, for short) in real Hilbert spaces. Using the projection operator technique, it is observed that the SMEGQVIP is equivalent to the system of projection equations. This alternative equivalence formulation is used to suggest an iterative algorithm for the SMEGQVIP. Further, we prove the existence of a solution of SMEGQVIP and discuss the convergence analysis of iterative sequences generated by given algorithm. The technique and results presented in this paper generalize and improve the corresponding technique and results given in [3-15].

2 Preliminaries

Let H be a real Hilbert space whose norm and inner product are denoted by $\|\cdot\|$ and $\langle\cdot, \cdot\rangle$, respectively; let 2^{H} be the family of all nonempty subsets of H and let $C B(H)$ be the family of all nonempty, closed and bounded subsets of H. The Hausdorff metric $\mathcal{H}(\cdot, \cdot)$ on $C B(H)$ is defined by

$$
\mathcal{H}(C, D)=\max \left\{\sup _{x \in C} \inf _{y \in D} d(x, y), \sup _{y \in D} \inf _{x \in C} d(x, y)\right\}, \quad C, D \in C B(H)
$$

From now onwards, unless or otherwise stated, let $I=\{1,2\}$ be an index set and for each $i \in I$, let H_{i} be a real Hilbert space whose inner product and norm are denoted by $\langle\cdot, \cdot\rangle_{i}$ and $\|\cdot\|_{i}$, respectively. Let $A, C: H_{1} \rightarrow C B\left(H_{1}\right), B, D: H_{2} \rightarrow C B\left(H_{2}\right)$ be multi-valued mappings and $N_{i}: H_{1} \times H_{2} \rightarrow H_{i}, g_{i}, h_{i}: H_{i} \rightarrow H_{i}$ be nonlinear mappings. Let $K_{1}: H_{1} \rightarrow 2^{H_{1}}$ and $K_{2}: H_{2} \rightarrow 2^{H_{2}}$ be such that for each fixed $x \in H_{1}, y \in H_{2}, \quad K_{1}(x)$ and $K_{2}(y)$ are nonempty closed convex sets in H_{1} and H_{2}, respectively, such that $\left(g_{1}(x), g_{2}(y)\right) \in$ domain $\left(K_{1}(x), K_{2}(y)\right), \forall(x, y) \in$ $H_{1} \times H_{2}$. We consider the following system of multi-valued extended general quasi-variational inequality problems (SMEGQVIP):

Find $(x, y) \in H_{1} \times H_{2}, u \in A(x), v \in B(y), w \in C(x), z \in D(y): h_{1}(x) \in$ $K_{1}(x), h_{2}(y) \in K_{2}(y)$ such that

$$
\begin{align*}
& \left\langle N_{1}(u, v)+h_{1}(x)-g_{1}(x), g_{1}\left(v_{1}\right)-h_{1}(x)\right\rangle_{1} \geq 0, \quad \forall v_{1} \in H_{1}: g_{1}\left(v_{1}\right) \in K_{1}(x), \tag{2.1}\\
& \left\langle N_{2}(w, z)+h_{2}(y)-g_{2}(y), g_{2}\left(v_{2}\right)-h_{2}(y)\right\rangle_{2} \geq 0, \forall v_{2} \in H_{2}: g_{2}\left(v_{2}\right) \in K_{2}(y) . \tag{2.2}
\end{align*}
$$

The corresponding quasi-variational inequality problem has been studied in many practical problems, $K(x)$ has the following form $K(x) \equiv m(x)+K, \forall x \in H$, where $m: H \rightarrow H$ is a single-valued mapping and K is a nonempty, closed and convex set of H.

Some Special Cases of SMEGQVIP (2.1)-(2.2):

(1) If $h_{1} \equiv g_{1} ; h_{2} \equiv g_{2}$, then SMEGQVIP (2.1)-(2.2) reduces to the problem of finding $(x, y) \in H_{1} \times H_{2}, u \in A(x), v \in B(y), w \in C(x), z \in D(y)$ such that

$$
\begin{align*}
& \left\langle N_{1}(u, v), g_{1}\left(v_{1}\right)-g_{1}(x)\right\rangle_{1} \geq 0, \quad \forall v_{1} \in H_{1}: g_{1}\left(v_{1}\right) \in K_{1}(x), \tag{2.3}\\
& \left\langle N_{2}(w, z), g_{2}\left(v_{2}\right)-g_{2}(y)\right\rangle_{2} \geq 0, \quad \forall v_{2} \in H_{2}: g_{2}\left(v_{2}\right) \in K_{2}(y), \tag{2.4}
\end{align*}
$$

which is known as system of multi-valued quasi-variational inequality problems, similar type problem has been studied by many authors, see [9-14].
(2) If $H \equiv H_{1} \equiv H_{2} ; T(x, x) \equiv N_{1}(\cdot, \cdot) \equiv N_{2}(\cdot, \cdot) ; h \equiv h_{1} \equiv h_{2} ; \quad g \equiv g_{1} \equiv$ $g_{2} ; \quad K(x) \equiv K$ and $x=y$, then SMEGQVIP (2.1)-(2.2) reduces to the problem of finding $x \in H, \quad h(x) \in K$ such that

$$
\begin{equation*}
\langle T(x, x)+h(x)-g(x), g(v)-h(x)\rangle \geq 0, \quad \forall v \in H: g(v) \in K \tag{2.5}
\end{equation*}
$$

which is known as extended variational inequality, similar type problem has been studied by Noor $[6,7]$.

Further, it is remarked that for a suitable choice of the mappings A, B, $C, D, g_{1}, g_{2}, h_{1}, h_{2}, K_{1}, K_{2}, N_{1}, N_{2}$ and the spaces H_{1}, H_{2}, one can obtain many other known systems of variational inequalities, variational inequalities from SMEGQVIP (2.1)-(2.2), see for example [3-15] and the references therein.

Now, we give the following known concepts and results which are needed in the sequel:

Lemma 2.1. Let K be a closed and convex set in H. Then for a given $z \in H$, $u \in K$ satisfies the inequality

$$
\langle u-z, v-u\rangle \geq 0, \quad \forall v \in K
$$

if and only if $u=P_{K}(z)$, where P_{K} is the projection of H onto the closed convex set K in H.

It is well known that the projection operator P_{K} is nonexpansive operator, i.e.,

$$
\left\|P_{K}(x)-P_{K}(y)\right\| \leq\|x-y\|, \forall x, y \in H
$$

Definition 2.2 ([8]). A multi-valued mapping $T: H \rightarrow C B(H)$ is said to be ξ-H-Lipschitz continuous if there exists a constant $\xi>0$ such that

$$
\mathcal{H}(T(x), T(y)) \leq \xi\|x-y\|, \forall x, y \in H
$$

where $\mathcal{H}(\cdot, \cdot)$ is the Hausdorff metric space on $C B(H)$.
Lemma 2.3 ([16]).
(a) Let $A: H \rightarrow C B(H)$ be a multi-valued mapping. Then for any given $\xi>0$ and for any given $x, y \in H$ and $u \in A(x)$, there exists $v \in A(y)$ such that

$$
d(u, v) \leq(1+\xi) \mathcal{H}(A(x), A(y))
$$

(b) If $T: H \rightarrow C(H)$, then above inequality holds for $\xi=0$.

Definition 2.4. A mapping $g: H \rightarrow H$ is said to be
(i) σ-strongly monotone if there exists a constant $\sigma>0$ such that

$$
\langle g(x)-g(y), x-y\rangle \geq \sigma\|x-y\|^{2} \forall x, y \in H
$$

(ii) δ-Lipschitz continuous if there exists a constant $\delta>0$ such that

$$
\|g(x)-g(y)\| \leq \delta\|x-y\| \forall x, y \in H
$$

Definition 2.5. Let $A, C: H_{1} \rightarrow C B\left(H_{1}\right), B, D: H_{2} \rightarrow C B\left(H_{2}\right)$. A mapping $N_{1}: H_{1} \times H_{2} \rightarrow H_{1}$ is said to be
(i) α_{1}-strongly monotone with respect to A in the first argument if there exists a constant $\alpha_{1}>0$ such that

$$
\begin{array}{r}
\left\langle N_{1}\left(u_{1}, v\right)-N_{1}\left(u_{2}, v\right), x_{1}-x_{2}\right\rangle_{1} \geq \alpha_{1}\left\|x_{1}-x_{2}\right\|_{1}^{2} \\
\forall x_{1}, x_{2} \in H_{1}, y \in H_{2}, u_{1} \in A\left(x_{1}\right), u_{2} \in A\left(x_{2}\right), v \in B(y)
\end{array}
$$

(ii) $\left(\beta_{1}, \gamma_{1}\right)$-mixed Lipschitz continuous if there exist constants $\beta_{1}, \gamma_{1}>0$ such that

$$
\left\|N_{1}\left(u_{1}, v_{1}\right)-N_{1}\left(u_{2}, v_{2}\right)\right\|_{1} \leq \beta_{1}\left\|u_{1}-u_{2}\right\|_{1}+\gamma_{1}\left\|v_{1}-v_{2}\right\|_{2},
$$

$x_{1}, x_{2} \in H_{1}, y_{1}, y_{2} \in H_{2}, u_{1} \in A\left(x_{1}\right), u_{2} \in A\left(x_{2}\right), v_{1} \in B\left(y_{1}\right), v_{2} \in B\left(y_{2}\right)$.
Definition 2.6. A mapping $h: H \rightarrow H$ is said to be relaxed (d, e)-cocoercive if there exist constants $d, e>0$ such that

$$
\left\langle h\left(x_{1}\right)-h\left(x_{2}\right), x_{1}-x_{2}\right\rangle \geq-d\left\|h\left(x_{1}\right)-h\left(x_{2}\right)\right\|^{2}+e\left\|x_{1}-x_{2}\right\|^{2}, \forall x_{1}, x_{2} \in H
$$

Remark 2.7. The class of relaxed (d, e)-cocoercive mappings is more general than the class of strongly monotone mappings, see [5, 9-14].

Lemma 2.8. Let H be a Hilbert space. Then for any $x, y \in H$,

$$
\|x+y\|^{2} \leq\|x\|^{2}+\langle y, x+y\rangle
$$

Lemma 2.9 ([15]). Let $\left\{c_{n}\right\}$ and $\left\{k_{n}\right\}$ be two real sequences of nonnegative numbers that satisfy the following conditions:
(i) $0 \leq k_{n}<1$ for $n=0,1,2, \ldots$, and $\limsup \sup _{n} k_{n}<1$,
(ii) $c_{n+1} \leq k_{n} c_{n}$ for $n=0,1,2, \ldots$.

Then $\left\{c_{n}\right\}$ converges to 0 as $n \rightarrow \infty$.
Assumption 2.10. The operator $P_{K_{1}(x)}$ satisfies the condition:
$\left\|P_{K_{1}\left(x_{1}\right)}(z)-P_{K_{1}\left(x_{2}\right)}(z)\right\| \leq \nu_{1}\left\|x_{1}-x_{2}\right\|, \forall x_{1}, x_{2}, z \in H_{1}, \nu_{1}>0$ is a constant.

3 Main Results

First we establish an equivalence between SMEGQVIP (2.1)-(2.2) and system of projection equations and then using this equivalence to prove the existence of a solution of SMEGQVIP (2.1)-(2.2).

Lemma 3.1. For any given $(x, y) \in H_{1} \times H_{2}, u \in A(x), v \in B(y), w \in C(x), z \in$ $D(y): h_{1}(x) \in K_{1}(x), h_{2}(y) \in K_{2}(y),(x, y, u, v, w, z)$ is a solution of SMEGQVIP (2.1)-(2.2) if and only if (x, y, u, v, w, z) satisfies the system of projection equations

$$
\begin{aligned}
h_{1}(x) & =P_{K_{1}(x)}\left[g_{1}(x)-\rho_{1} N_{1}(u, v)\right], \\
h_{2}(y) & =P_{K_{2}(y)}\left[g_{2}(y)-\rho_{2} N_{2}(w, z)\right],
\end{aligned}
$$

where $\rho_{1}, \rho_{2}>0$ are constants.
Using Lemma 2.3 and Lemma 3.1, we suggest and analyze the following iterative algorithm for finding the approximate solution of SMEGQVIP (2.1)-(2.2) in Hilbert spaces.

Iterative Algorithm 3.2. For given $\left(x_{0}, y_{0}\right) \in H_{1} \times H_{2}, u_{0} \in A\left(x_{0}\right), v_{0} \in$ $B\left(y_{0}\right), w_{0} \in C\left(x_{0}\right), z_{0} \in D\left(y_{0}\right)$, compute approximate solution $\left(x_{n}, y_{n}, u_{n}, v_{n}, w_{n}, z_{n}\right)$ given by iterative schemes:

$$
\begin{align*}
h_{1}\left(x_{n+1}\right) & =P_{K_{1}\left(x_{n}\right)}\left[g_{1}\left(x_{n}\right)-\rho_{1} N_{1}\left(u_{n}, v_{n}\right)\right], \tag{3.1}\\
h_{2}\left(y_{n+1}\right) & =P_{K_{2}\left(y_{n}\right)}\left[g_{2}\left(y_{n}\right)-\rho_{2} N_{2}\left(w_{n}, z_{n}\right)\right], \tag{3.2}\\
u_{n} \in A\left(x_{n}\right) & :\left\|u_{n+1}-u_{n}\right\| \leq\left(1+(1+n)^{-1}\right) \quad \mathcal{H}_{1}\left(A\left(x_{n+1}\right), A\left(x_{n}\right)\right), \tag{3.3}\\
v_{n} \in B\left(y_{n}\right) & :\left\|v_{n+1}-v_{n}\right\| \leq\left(1+(1+n)^{-1}\right) \quad \mathcal{H}_{2}\left(B\left(y_{n+1}\right), B\left(y_{n}\right)\right), \tag{3.4}\\
w_{n} \in C\left(x_{n}\right) & :\left\|w_{n+1}-w_{n}\right\| \leq\left(1+(1+n)^{-1}\right) \quad \mathcal{H}_{1}\left(C\left(x_{n+1}\right), C\left(x_{n}\right)\right), \tag{3.5}\\
z_{n} \in D\left(y_{n}\right) & :\left\|z_{n+1}-z_{n}\right\| \leq\left(1+(1+n)^{-1}\right) \tag{3.6}
\end{align*} \mathcal{H}_{2}\left(D\left(y_{n+1}\right), D\left(y_{n}\right)\right),
$$

where $n=0,1,2, \ldots ; \rho_{1}, \rho_{2}>0$ are constants.
Now, we prove the existence of a solution of SMEGQVIP (2.1)-(2.2) for some relaxed (d, e)-cocoercive mappings which are not Lipschitz continuous and discuss the convergence analysis for Iterative Algorithm 3.2.

Theorem 3.3. Let $A, C: H_{1} \rightarrow C B\left(H_{1}\right)$ be $\mu_{1}-\mathcal{H}_{1}$-Lipschitz, $\mu_{2}-\mathcal{H}_{1}$-Lipschitz continuous and $B, D: H_{2} \rightarrow C B\left(H_{2}\right)$ be $\eta_{1}-\mathcal{H}_{2}$-Lipschitz, $\eta_{2}-\mathcal{H}_{2}$-Lipschitz continuous, respectively. Let the mapping N_{1} is α_{1}-strongly monotone in the first argument with respect to A and $\left(\beta_{1}, \gamma_{1}\right)$-mixed Lipschitz continuous; N_{2} be α_{2}-strongly monotone in the second argument with respect to D and $\left(\beta_{2}, \gamma_{2}\right)$-mixed Lipschitz continuous. For each $i=1,2$, let h_{i} be relaxed $\left(d_{i}, e_{i}\right)$-cocoercive mappings; g_{i} be σ_{i}-strongly monotone and δ_{i}-Lipschitz continuous mappings. Let $K_{1}: H_{1} \rightarrow 2^{H_{1}}$ and $K_{2}: H_{2} \rightarrow 2^{H_{2}}$ be such that for each fixed $x \in H_{1}, y \in H_{2}, K_{1}(x)$ and $K_{2}(y)$ are nonempty closed convex sets in H_{1} and H_{2}, respectively. Suppose that there are constants $\nu_{1}, \nu_{2}>0$ such that

$$
\begin{array}{r}
\left\|P_{K_{1}\left(x_{1}\right)}(x)-P_{K_{1}\left(x_{2}\right)}(x)\right\| \leq \nu_{1}\left\|x_{1}-x_{2}\right\|, \quad \forall x, x_{1}, x_{2} \in H_{1}, \\
\left\|P_{K_{2}\left(y_{1}\right)}(y)-P_{K_{1}\left(y_{2}\right)}(y)\right\| \leq \nu_{2}\left\|y_{1}-y_{2}\right\|, \quad \forall y, y_{1}, y_{2} \in H_{2}, \tag{3.8}
\end{array}
$$

and $\rho_{1}, \rho_{2}>0$ satisfy the following condition:

$$
\left\{\begin{array}{l}
\sqrt{\frac{1+2 d_{1}}{2 e_{1}+3}}\left(\sqrt{1-2 \sigma_{1}+\delta_{1}^{2}}+\sqrt{1-2 \rho_{1} \alpha_{1}+\rho_{1}^{2} \beta_{1}^{2} \mu_{1}^{2}}+\nu_{1}+\rho_{2} \beta_{2} \mu_{2}\right)<1 \tag{3.9}\\
\sqrt{\frac{1+2 d_{2}}{2 e_{2}+3}}\left(\sqrt{1-2 \sigma_{2}+\delta_{2}^{2}}+\sqrt{1-2 \rho_{2} \alpha_{2}+\rho_{2}^{2} \gamma_{2}^{2} \eta_{2}^{2}}+\nu_{2}+\rho_{1} \gamma_{1} \eta_{1}\right)<1
\end{array}\right.
$$

Then iterative sequence $\left\{\left(x_{n}, y_{n}, u_{n}, v_{n}, w_{n}, z_{n}\right)\right\}$ generated by Iterative Algorithm 3.2 converges strongly to (x, y, u, v, w, z), a solution of SMEGQVIP (2.1)-(2.2).

Proof. Since for each $i=1,2, h_{i}$ is relaxed $\left(d_{i}, e_{i}\right)$-cocoercive and by using Lemma 2.8, we have the following estimate:

$$
\begin{aligned}
& \left\|x_{n+1}-x_{n}\right\|_{1}^{2} \\
& \quad=\left\|h_{1}\left(x_{n+1}\right)-h_{1}\left(x_{n}\right)+x_{n+1}-x_{n}-\left(h_{1}\left(x_{n+1}\right)-h_{1}\left(x_{n}\right)\right)\right\|_{1}^{2} \\
& \quad \leq\left\|h_{1}\left(x_{n+1}\right)-h_{1}\left(x_{n}\right)\right\|_{1}^{2}-2\left\langle h_{1}\left(x_{n+1}\right)-h_{1}\left(x_{n}\right)-x_{n+1}+x_{n}, x_{n+1}-x_{n}\right\rangle_{1} \\
& \quad \leq\left(1+2 d_{1}\right)\left\|h_{1}\left(x_{n+1}\right)-h_{1}\left(x_{n}\right)\right\|_{1}^{2}-\left(2+2 e_{1}\right)\left\|x_{n+1}-x_{n}\right\|_{1}^{2}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\|_{1} \leq \sqrt{\frac{1+2 d_{1}}{2 e_{1}+3}}\left\|h_{1}\left(x_{n+1}\right)-h_{1}\left(x_{n}\right)\right\|_{1} \tag{3.10}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left\|y_{n+1}-y_{n}\right\|_{2} \leq \sqrt{\frac{1+2 d_{2}}{2 e_{2}+3}}\left\|h_{2}\left(y_{n+1}\right)-h_{2}\left(y_{n}\right)\right\|_{2} \tag{3.11}
\end{equation*}
$$

Now, we have

$$
\begin{align*}
& \left\|h_{1}\left(x_{n+1}\right)-h_{1}\left(x_{n}\right)\right\|_{1} \\
& \qquad=\left\|P_{K_{1}\left(x_{n}\right)}\left(g_{1}\left(x_{n}\right)-\rho_{1} N_{1}\left(u_{n}, v_{n}\right)\right)-P_{K_{1}\left(x_{n-1}\right)}\left(g_{1}\left(x_{n-1}\right)-\rho_{1} N_{1}\left(u_{n-1}, v_{n-1}\right)\right)\right\|_{1} \\
& \leq\left\|P_{K_{1}\left(x_{n}\right)}\left(g_{1}\left(x_{n}\right)-\rho_{1} N_{1}\left(u_{n}, v_{n}\right)\right)-P_{K_{1}\left(x_{n}\right)}\left(g_{1}\left(x_{n-1}\right)-\rho_{1} N_{1}\left(u_{n-1}, v_{n-1}\right)\right)\right\|_{1} \\
& \quad+\| P_{K_{1}\left(x_{n}\right)}\left(g_{1}\left(x_{n-1}\right)-\rho_{1} N_{1}\left(u_{n-1}, v_{n-1}\right)\right) \\
& \quad \quad-P_{K_{1}\left(x_{n-1}\right)}\left(g_{1}\left(x_{n-1}\right)-\rho_{1} N_{1}\left(u_{n-1}, v_{n-1}\right)\right) \|_{1} \\
& \quad \leq\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)-\left(x_{n-1}-x_{n}\right)\right\|_{1} \\
& \quad+\left\|x_{n-1}-x_{n}-\rho_{1}\left(N_{1}\left(u_{n}, v_{n}\right)-N_{1}\left(u_{n-1}, v_{n}\right)\right)\right\|_{1} \\
& \quad \quad+\rho_{1}\left\|N_{1}\left(u_{n-1}, v_{n}\right)-N_{1}\left(u_{n-1}, v_{n-1}\right)\right\|_{1}+\nu_{1}\left\|x_{n}-x_{n-1}\right\|_{1} . \tag{3.12}
\end{align*}
$$

Next, using α_{1}-strongly monotonicity with respect to A in the first argument and $\left(\beta_{1}, \gamma_{1}\right)$-mixed Lipschitz continuity of $N_{1}(\cdot, \cdot) ; \mu_{1}-\mathcal{H}_{1}$-Lipschitz continuity of A; $\eta_{1}-\mathcal{H}_{2}$-Lipschitz continuity of B, it follows that

$$
\begin{align*}
& \| x_{n}-x_{n-1}-\rho_{1}\left(N_{1}\left(u_{n}, v_{n}\right)-N_{1}\left(u_{n-1}, v_{n}\right) \|_{1}^{2}\right. \\
& \quad \leq\left\|x_{n}-x_{n-1}\right\|_{1}^{2}-2 \rho_{1}\left\langle N_{1}\left(u_{n}, v_{n}\right)-N_{1}\left(u_{n-1}, v_{n}\right), x_{n}-x_{n-1}\right\rangle_{1} \\
& \quad \quad+\rho_{1}^{2}\left\|N_{1}\left(u_{n}, v_{n}\right)-N_{1}\left(u_{n-1}, v_{n}\right)\right\|_{1}^{2} \\
& \quad \leq\left\|x_{n}-x_{n-1}\right\|_{1}^{2}-2 \rho_{1} \alpha_{1}\left\|x_{n}-x_{n-1}\right\|_{1}^{2}+\rho_{1}^{2} \beta_{1}^{2} \mu_{1}^{2}\left(1+(1+n)^{-1}\right)^{2}\left\|x_{n}-x_{n-1}\right\|_{1}^{2} \\
& \quad \leq\left(1-2 \rho_{1} \alpha_{1}+\rho_{1}^{2} \beta_{1}^{2} \mu_{1}^{2}\left(1+(1+n)^{-1}\right)^{2}\right)\left\|x_{n}-x_{n-1}\right\|_{1}^{2}, \tag{3.13}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|N_{1}\left(u_{n-1}, v_{n}\right)-N_{1}\left(u_{n-1}, v_{n-1}\right)\right\|_{1} \leq \gamma_{1} \eta_{1}\left(1+(1+n)^{-1}\right)\left\|y_{n}-y_{n-1}\right\|_{2} \tag{3.14}
\end{equation*}
$$

Similarly, we estimate

$$
\begin{equation*}
\left\|x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right\|_{1}^{2} \leq\left(1-2 \sigma_{1}+\delta_{1}^{2}\right)\left\|x_{n}-x_{n-1}\right\|_{1}^{2} \tag{3.15}
\end{equation*}
$$

where g_{1} is σ_{1}-strongly monotone and δ_{1}-mixed Lipschitz continuous.
From (3.10) and (3.12)-(3.15), we have

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}\right\|_{1} \\
& \leq \sqrt{\frac{1+2 d_{1}}{2 e_{1}+3}}\left[\left(\sqrt{1-2 \sigma_{1}+\delta_{1}^{2}}+\sqrt{1-2 \rho_{1} \alpha_{1}+\rho_{1}^{2} \beta_{1}^{2} \mu_{1}^{2}\left(1+(1+n)^{-1}\right)^{2}}+\nu_{1}\right)\right. \\
& \left.\quad \times\left\|x_{n}-x_{n-1}\right\|_{1}+\rho_{1} \gamma_{1} \eta_{1}\left(1+\frac{1}{1+n}\right)\left\|y_{n}-y_{n-1}\right\|_{2}^{2}\right] . \tag{3.16}
\end{align*}
$$

Also, we have

$$
\begin{align*}
& \left\|h_{2}\left(y_{n+1}\right)-h_{2}\left(y_{n}\right)\right\|_{2} \\
& =\left\|P_{K_{2}\left(y_{n}\right)}\left(g_{2}\left(y_{n}\right)-\rho_{2} N_{2}\left(w_{n}, z_{n}\right)\right)-P_{K_{2}\left(y_{n-1}\right)}\left(g_{2}\left(y_{n-1}\right)-\rho_{2} N_{2}\left(w_{n-1}, z_{n-1}\right)\right)\right\|_{2} \\
& \leq\left\|P_{K_{2}\left(y_{n}\right)}\left(g_{2}\left(y_{n}\right)-\rho_{2} N_{2}\left(w_{n}, z_{n}\right)\right)-P_{K_{2}\left(y_{n}\right)}\left(g_{2}\left(y_{n-1}\right)-\rho_{2} N_{2}\left(w_{n-1}, z_{n-1}\right)\right)\right\|_{2} \\
& \quad \quad \quad \| P_{K_{2}\left(y_{n}\right)}\left(g_{2}\left(y_{n-1}\right)-\rho_{2} N_{2}\left(w_{n-1}, z_{n-1}\right)\right)-P_{K_{2}\left(y_{n-1}\right)}\left(g_{2}\left(y_{n-1}\right)\right. \\
& \left.\quad \quad-\rho_{2} N_{2}\left(w_{n-1}, z_{n-1}\right)\right) \|_{2} \\
& \leq\left\|g_{2}\left(y_{n}\right)-g_{2}\left(y_{n-1}\right)-\left(y_{n-1}-y_{n}\right)\right\|_{2} \\
& \quad \quad \quad\left\|y_{n-1}-y_{n}-\rho_{2}\left(N_{2}\left(w_{n}, z_{n}\right)-N_{2}\left(w_{n}, z_{n-1}\right)\right)\right\|_{2} \\
& \quad \quad+\rho_{2}\left\|N_{2}\left(w_{n}, z_{n-1}\right)-N_{2}\left(w_{n-1}, z_{n-1}\right)\right\|_{2}+\nu_{2}\left\|y_{n}-y_{n-1}\right\|_{2} . \tag{3.17}
\end{align*}
$$

Next, using α_{2}-strongly monotonicity with respect to D in the second argument and (β_{2}, γ_{2})-mixed Lipschitz continuity of $N_{2}(\cdot, \cdot) ; \mu_{2}-\mathcal{H}_{1}$-Lipschitz continuity of $C ; \eta_{2}-\mathcal{H}_{2}$-Lipschitz continuity of D, it follows that

$$
\begin{align*}
& \| y_{n}-y_{n-1}-\rho_{2}\left(N_{2}\left(w_{n}, z_{n}\right)-N_{2}\left(w_{n}, z_{n-1}\right) \|_{2}^{2}\right. \\
& \quad \leq\left\|y_{n}-y_{n-1}\right\|_{2}^{2}-2 \rho_{2}\left\langle N_{2}\left(w_{n}, z_{n}\right)-N_{2}\left(w_{n}, z_{n-1}\right), y_{n}-y_{n-1}\right\rangle_{2} \\
& \quad \quad+\rho_{2}^{2}\left\|N_{2}\left(w_{n}, z_{n}\right)-N_{2}\left(w_{n}, z_{n-1}\right)\right\|_{2}^{2} \\
& \leq\left\|y_{n}-y_{n-1}\right\|_{2}^{2}-2 \rho_{2} \alpha_{2}\left\|y_{n}-y_{n-1}\right\|_{2}^{2}+\rho_{2}^{2} \gamma_{2}^{2} \eta_{2}^{2}\left(1+(1+n)^{-1}\right)^{2}\left\|y_{n}-y_{n-1}\right\|_{2}^{2} \\
& \leq\left(1-2 \rho_{2} \alpha_{2}+\rho_{2}^{2} \gamma_{2}^{2} \eta_{2}^{2}\left(1+(1+n)^{-1}\right)^{2}\right)\left\|y_{n}-y_{n-1}\right\|_{2}^{2}, \tag{3.18}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|N_{2}\left(w_{n}, z_{n-1}\right)-N_{2}\left(w_{n-1}, z_{n-1}\right)\right\|_{2} \leq \beta_{2} \mu_{2}\left(1+(1+n)^{-1}\right)\left\|x_{n}-x_{n-1}\right\|_{1} . \tag{3.19}
\end{equation*}
$$

Similarly, we estimate

$$
\begin{equation*}
\left\|y_{n}-y_{n-1}-\left(g_{2}\left(y_{n}\right)-g_{2}\left(y_{n-1}\right)\right)\right\|_{2}^{2} \leq\left(1-2 \sigma_{2}+\delta_{2}^{2}\right)\left\|y_{n}-y_{n-1}\right\|_{2}^{2}, \tag{3.20}
\end{equation*}
$$

where g_{2} is σ_{2}-strongly monotone and δ_{2}-mixed Lipschitz continuous.
From (3.11) and (3.17)-(3.20), we have

$$
\begin{align*}
& \left\|y_{n+1}-y_{n}\right\|_{2} \\
& \leq \sqrt{\frac{1+2 d_{2}}{2 e_{2}+3}}\left[\left(\sqrt{1-2 \sigma_{2}+\delta_{2}^{2}}+\sqrt{1-2 \rho_{2} \alpha_{2}+\rho_{2}^{2} \gamma_{2}^{2} \eta_{2}^{2}\left(1+(1+n)^{-1}\right)^{2}}+\nu_{2}\right)\right. \\
& \left.\quad \times\left\|y_{n}-y_{n-1}\right\|_{2}+\rho_{2} \beta_{2} \mu_{2}\left(1+\frac{1}{1+n}\right)\left\|x_{n}-x_{n-1}\right\|_{1}^{2}\right] . \tag{3.21}
\end{align*}
$$

From (3.16) and (3.21), we have

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\|_{1}+\left\|y_{n+1}-y_{n}\right\|_{2} & =k_{1}^{n}\left\|x_{n}-x_{n-1}\right\|_{1}+k_{2}^{n}\left\|y_{n}-y_{n-1}\right\|_{2} \\
& \leq \theta^{n}\left(\left\|x_{n}-x_{n-1}\right\|_{1}+\left\|y_{n}-y_{n-1}\right\|_{2}\right) \tag{3.22}
\end{align*}
$$

where $\theta^{n}=\max \left\{k_{1}^{n}, k_{2}^{n}\right\}$,

$$
\left\{\begin{align*}
k_{1}^{n} & :=\sqrt{\frac{1+2 d_{1}}{2 e_{1}+3}}\left(\sqrt{1-2 \sigma_{1}+\delta_{1}^{2}}+\sqrt{1-2 \rho_{1} \alpha_{1}+\rho_{1}^{2} \beta_{1}^{2} \mu_{1}^{2}\left(L^{n}\right)^{2}}+\nu_{1}+\rho_{2} \beta_{2} \mu_{2} L^{n}\right) \tag{3.23}\\
k_{2}^{n} & :=\sqrt{\frac{1+2 d_{2}}{2 e_{2}+3}}\left(\sqrt{1-2 \sigma_{2}+\delta_{2}^{2}}+\sqrt{1-2 \rho_{2} \alpha_{2}+\rho_{2}^{2} \gamma_{2}^{2} \eta_{2}^{2}\left(L^{n}\right)^{2}}+\nu_{2}+\rho_{1} \gamma_{1} \eta_{1} L^{n}\right) \\
L^{n} & :=\left(1+(1+n)^{-1}\right)
\end{align*}\right.
$$

Letting $\theta^{n} \rightarrow \theta$ as $n \rightarrow \infty\left(k_{1}^{n} \rightarrow k_{1}, k_{2}^{n} \rightarrow k_{2}\right.$ as $\left.n \rightarrow \infty\right)$, where $\theta=\max \left\{k_{1}, k_{2}\right\}$;

$$
\left\{\begin{array}{l}
k_{1}:=\sqrt{\frac{1+2 d_{1}}{2 e_{1}+3}}\left(\sqrt{1-2 \sigma_{1}+\delta_{1}^{2}}+\sqrt{1-2 \rho_{1} \alpha_{1}+\rho_{1}^{2} \beta_{1}^{2} \mu_{1}^{2}}+\nu_{1}+\rho_{2} \beta_{2} \mu_{2}\right) \tag{3.24}\\
k_{2}:=\sqrt{\frac{1+2 d_{2}}{2 e_{2}+3}}\left(\sqrt{1-2 \sigma_{2}+\delta_{2}^{2}}+\sqrt{1-2 \rho_{2} \alpha_{2}+\rho_{2}^{2} \gamma_{2}^{2} \eta_{2}^{2}}+\nu_{2}+\rho_{1} \gamma_{1} \eta_{1}\right)
\end{array}\right.
$$

Now, define the norm $\|\cdot\|_{*}$ on $H_{1} \times H_{2}$ by

$$
\begin{equation*}
\|(x, y)\|_{*}=\|x\|_{1}+\|y\|_{2}, \quad \forall(x, y) \in H_{1} \times H_{2} \tag{3.25}
\end{equation*}
$$

It is observe that $\left(H_{1} \times H_{2},\|\cdot\|_{*}\right)$ is a Banach space. Hence (3.22) implies that

$$
\begin{equation*}
\left\|\left(x_{n+1}, y_{n+1}\right)-\left(x_{n}, y_{n}\right)\right\|_{*} \leq \theta\left\|\left(x_{n}, y_{n}\right)-\left(x_{n-1}, y_{n-1}\right)\right\|_{*} \tag{3.26}
\end{equation*}
$$

By condition (3.24), it follows that $\theta<1$. Hence $\theta_{n}<1$ for sufficiently large n . Therefore, (3.26) implies that $\left\{\left(x_{n}, y_{n}\right)\right\}$ is a Cauchy sequence in $H_{1} \times H_{2}$. Let $\left(x_{n}, y_{n}\right) \rightarrow(x, y) \in H_{1} \times H_{2}$ as $n \rightarrow \infty$. By $\mu_{1}-\mathcal{H}$-Lipschitz continuity of A and Iterative Algorithm 3.2, we have

$$
\begin{align*}
\left\|u_{n}-u_{n-1}\right\|_{1} & \leq\left(1+(1+n)^{-1}\right) \mathcal{H}_{1}\left(A\left(x_{n}\right), A\left(x_{n-1}\right)\right) \\
& \leq\left(1+(1+n)^{-1}\right) \mu_{1}\left\|x_{n}-x_{n-1}\right\|_{1} \tag{3.27}
\end{align*}
$$

Since $\left\{x_{n}\right\}$ is a Cauchy sequence in H_{1}. Hence there exists $u \in H_{1}$ such that $\left\{u_{n}\right\} \rightarrow u$ as $n \rightarrow \infty$. Similarly, we can show that $\left\{v_{n}\right\} \in H_{2},\left\{w_{n}\right\} \in H_{1}$ and $\left\{z_{n}\right\} \in H_{2}$ are Cauchy sequences and hence there exist $v \in H_{2}, w \in H_{1}$ and $z \in H_{2}$ such that $\left\{v_{n}\right\} \rightarrow v,\left\{w_{n}\right\} \rightarrow w$ and $\left\{z_{n}\right\} \rightarrow z$ as $n \rightarrow \infty$.

Next, we claim that $u \in A(x)$. Since $u_{n-1} \in A\left(x_{n-1}\right)$, we have

$$
\begin{align*}
d(u, A(x)) & \leq\left\|u-u_{n-1}\right\|_{1}+d\left(u_{n-1}, A(x)\right) \\
& \leq\left\|u_{-} u_{n-1}\right\|_{1}+\mathcal{H}_{1}\left(A\left(x_{n-1}\right), A(x)\right) \\
& \leq\left\|u-u_{n-1}\right\|_{1}+\mu_{1}\left\|x_{n-1}-x\right\|_{1} \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.28}
\end{align*}
$$

Since $A(x)$ is closed, we have $u \in A(x)$. Similarly, we can show that $v \in B(y), w \in$ $C(x)$ and $z \in D(y)$. Furthermore, continuity of the mappings $A, B, C, D, g_{1}, g_{2}, h_{1}, h_{2}$, $K_{1}, K_{2}, N_{1}, N_{2}, P_{K_{1}(x)}, P_{K_{2}(y)}$ and Iterative Algorithm 3.2 gives that

$$
\begin{align*}
h_{1}(x) & =P_{K_{1}(x)}\left[g_{1}(x)-\rho_{1} N_{1}(u, v)\right], \tag{3.29}\\
h_{2}(x) & =P_{K_{2}(x)}\left[g_{2}(y)-\rho_{2} N_{2}(w, z)\right] . \tag{3.30}
\end{align*}
$$

Finally, we define

$$
\begin{align*}
w_{1} & =P_{K_{1}(x)}\left[g_{1}(x)-\rho_{1} N_{1}(u, v)\right] \tag{3.31}\\
w_{2} & =P_{K_{2}(x)}\left[g_{2}(y)-\rho_{2} N_{2}(w, z)\right] . \tag{3.32}
\end{align*}
$$

Now, we estimate:

$$
\begin{align*}
\left\|h_{1}\left(x_{n+1}\right)-w_{1}\right\|_{1} \leq(& \left.\sqrt{1-2 \sigma_{1}+\delta_{1}^{2}}+\sqrt{1-2 \rho_{1} \alpha_{1}+\rho_{1}^{2} \beta_{1}^{2} \mu_{1}^{2}\left(L^{n}\right)^{2}}+\nu_{1}\right)\left\|x_{n}-x\right\|_{1} \\
& +\rho_{1} \gamma_{1} \eta_{1} L^{n}\left\|y_{n}-y\right\|_{2}^{2} \tag{3.33}
\end{align*}
$$

and

$$
\begin{align*}
\left\|h_{2}\left(x_{n+1}\right)-w_{2}\right\|_{2} \leq(& \left.\sqrt{1-2 \sigma_{2}+\delta_{2}^{2}}+\sqrt{1-2 \rho_{2} \alpha_{2}+\rho_{2}^{2} \gamma_{2}^{2} \eta_{2}^{2}\left(L^{n}\right)^{2}}+\nu_{2}\right)\left\|y_{n}-y\right\|_{2} \\
& +\rho_{2} \beta_{2} \mu_{2} L^{n}\left\|x_{n}-x\right\|_{1}^{2} \tag{3.34}
\end{align*}
$$

Now, it follows from (3.25), (3.33) and (3.34) that

$$
\begin{align*}
\left\|\left(h_{1}\left(x_{n+1}\right), h_{2}\left(y_{n+1}\right)\right)-\left(w_{1}, w_{2}\right)\right\|_{*} & =\left\|h_{1}\left(x_{n+1}\right)-w_{1}\right\|_{1}+\left\|h_{2}\left(y_{n+1}\right)-w_{2}\right\|_{2} \\
& \leq \theta^{n}\left(\left\|x_{n}-x\right\|_{1}+\left\|y_{n}-y\right\|_{2}\right) \\
& \rightarrow 0, \text { as } n \rightarrow \infty \tag{3.35}
\end{align*}
$$

Thus,

$$
\begin{align*}
& h_{1}(x)=w_{1}=P_{K_{1}(x)}\left[g_{1}(x)-\rho_{1} N_{1}(u, v)\right], \tag{3.36}\\
& h_{2}(y)=w_{2}=P_{K_{2}(y)}\left[g_{2}(y)-\rho_{2} N_{2}(w, z)\right] . \tag{3.37}
\end{align*}
$$

By Lemma 3.1, it follows that (x, y, u, v, w, z) is a solution of SMEGQVIP (2.1)(2.2). This completes the proof.

Remark 3.4.

(i) For $i=1,2$, it is clear that $\sigma_{i} \leq \delta_{i}$. Further, $\theta<1$ and condition (3.9) holds for some suitable set values of constants, for example,

- $\alpha_{1}=0.4, \beta_{1}=0.4, \gamma_{1}=0.1, \sigma_{1}=0.1, \delta_{1}=0.2, \mu_{1}=1, \eta_{1}=1, \nu_{1}=$ $0.1, \rho_{1}=0.1$.
- $\alpha_{2}=0.2, \beta_{2}=0.3, \gamma_{2}=0.2, \sigma_{2}=0.2, \delta_{2}=0.3, \mu_{2}=1, \eta_{2}=1, \nu_{2}=$ $0.2, \rho_{2}=0.2$.
(ii) The proof of theorem presented in this paper for SMEGQVIP (2.1)-(2.2) under the assumption of relaxed (d, e)-cocoercivity on mappings h_{1} and h_{2}, need further research effort.
(iii) Using the method presented in this paper, one can extend the existence result for the system of n-generalized quasi-variational inequality problems.

Acknowledgements : The authors express their sincere thanks to the refree for his/her valuable comments and suggestions in time. This work is supported by the Deanship of Research Project Unit of Tabuk University, Tabuk, Kingdom of Saudia Arabia.

References

[1] G. Stampacchia, Formes bilinearies coercitives sur les ensembles convexes, C.R. Acad. Sci. Paris 258 (1964) 4413-4416.
[2] G. Fichera, Problemi elastostatici con vincoli unilaterali;II Problem di Signorini ambigue condiziune al contorno, Attem. Acad. Naz. Lincei. Mem. Cl. Sci. Nat. Sez. Ia. 7 (8) (1963/64) 91-140.
[3] M.A. Noor, Generalized multi-valued quasivariational inequalities (II), Comp. Math. Appl. 35 (1998) 63-78.
[4] M.A. Noor, A. Moudafi and B. Xu, Multi-valued quasivariational inequalities in Banach spaces, J. Inequal. Pure Appl. Math. 3 (3) (2002) 1-6.
[5] R.U. Verma, General convergence analysis for two-step projection methods and applications to variational problems, Appl. Math. Lett. 18 (2005) 12861292.
[6] M.A. Noor, Projection iterative methods for extended general variational inequalities, J. Appl. Math. Comput. 32 (2010) 83-95.
[7] M.A. Noor, Extended general variational inequalities, Appl. Math. Comput. 22 (2009) 182-186.
[8] S.-S. Chang, J.-K. Kim, K.-H. Kim, On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 268 (2002) 89-108.
[9] S.-S. Chang, H.W. Joseph Lee, C.K. Chen, Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces, Appl. Math. Lett. 20 (2007) 329-334.
[10] Y.J. Cho, S.M. Kang, X. Qin, On systems of generalized non variational inequalities in Banach spaces, Appl. Math. Comput. 206 (2008) 214-220.
[11] H.R. Feng, X.P. Ding, A new system of generalized nonlinear quasi-variational-like inclusions with A-monotone operator in Banach spaces, J. Comput. Appl. Math. 225 (2009) 365-373.
[12] Z. Huang, M.A. Noor, An explicit projection method for a system of nonlinear variational inequalities, Appl. Math. Comput. 190 (2007) 356-361.
[13] M.A. Noor, K.I. Noor, Projection algorithm for solving a system of general variational inequalities, Nonlinear Anal. 70 (2009) 2700-2706.
[14] R.U. Verma, Generalized system for relaxed cocoercive variational inequalities and projection methods, J. Optim. Theory Appl. 121 (2004) 203-210.
[15] Y.-Z. Zou, N.-J. Huang, A new system of variational inclusions involving $H(\cdot, \cdot)$-accretive operator in Banach spaces, Appl. Math. Comput. 212 (1) (2009) 135-144.
[16] S.B. Nadler (Jr.), Multi-valued contractive mappings, Pacific J. Math. 30 (1969) 475-488.
[17] D.L. Zhu, P. Marcolte, Cocoercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6 (1996) 614-726.
(Accepted 13 December 2011)

Thai J. Math. Online @ nttp://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2013 by the Mathematical Association of Thailand. All rights reserved.

