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1 Introduction

Variational inequality theory introduced by Stampacchia [1] and Fichera [2],
has become a rich source of inspiration and motivation for the study of a large
number of problems arising in mechanics, elasticity and optimization and con-
trol problems, boundary value problems etc., see [1-17]. In the last four decades,
considerable interest has been shown in developing various classes of variational
inequalities and system of variational inequality problems. One of the most im-
portant and interesting problem in the theory of variational inequalities is the
development of numerical methods which provide an efficient and implementable
algorithm for solving variational inequalities and its generalization. This theory
provides a simple, natural and unified framework for a general treatment of unre-
lated problems, which have motivated a large number of mathematicians to gen-
eralize and extend the variational inequalities and related optimization problems
in several directions using novel techniques, see [1-17].

By using the projection technique, Noor [3], Noor et al. [4], Verma [5] studied
the existence of solution for some classes of variational and quasi-variational in-
equalities involving single and multi-valued mappings in Banach spaces. Recently,
by using the projection technique, Noor [6, 7] studied the existence of solution for
some classes of extended general variational inequalities in the setting of Hilbert
and Banach spaces.

Very recently, by using the projection technique, Chang et al. [8, 9], Cho et
al. [10], Feng et al. [11], Huang et al. [12], Noor et al. [13], Verma [14] and
Zou et al. [15] studied the existence theory for various classes of system of general
variational inequalities and system of variational inclusions in the setting of Hilbert
and Banach spaces.

Inspired by recent research works in this area, in this paper, we consider
a system of multi-valued extended general quasi-variational inequality problems
(SMEGQVIP, for short) in real Hilbert spaces. Using the projection operator tech-
nique, it is observed that the SMEGQVIP is equivalent to the system of projection
equations. This alternative equivalence formulation is used to suggest an iterative
algorithm for the SMEGQVIP. Further, we prove the existence of a solution of
SMEGQVIP and discuss the convergence analysis of iterative sequences generated
by given algorithm. The technique and results presented in this paper generalize
and improve the corresponding technique and results given in [3–15].

2 Preliminaries

Let H be a real Hilbert space whose norm and inner product are denoted by
‖ · ‖ and 〈·, ·〉, respectively; let 2H be the family of all nonempty subsets of H and
let CB(H) be the family of all nonempty, closed and bounded subsets of H . The
Hausdorff metric H(·, ·) on CB(H) is defined by

H(C, D) = max

{

sup
x∈C

inf
y∈D

d(x, y), sup
y∈D

inf
x∈C

d(x, y)

}

, C, D ∈ CB(H).
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From now onwards, unless or otherwise stated, let I = {1, 2} be an index set and for
each i ∈ I, let Hi be a real Hilbert space whose inner product and norm are denoted
by 〈·, ·〉i and ‖.‖i, respectively. Let A, C : H1 → CB(H1), B, D : H2 → CB(H2)
be multi-valued mappings and Ni : H1 × H2 → Hi, gi, hi : Hi → Hi be nonlinear
mappings. Let K1 : H1 → 2H1 and K2 : H2 → 2H2 be such that for each
fixed x ∈ H1, y ∈ H2, K1(x) and K2(y) are nonempty closed convex sets in H1

and H2, respectively, such that (g1(x), g2(y)) ∈ domain(K1(x), K2(y)), ∀(x, y) ∈
H1 × H2. We consider the following system of multi-valued extended general
quasi-variational inequality problems (SMEGQVIP):

Find (x, y) ∈ H1 × H2, u ∈ A(x), v ∈ B(y), w ∈ C(x), z ∈ D(y): h1(x) ∈
K1(x), h2(y) ∈ K2(y) such that

〈N1(u, v)+h1(x)−g1(x), g1(v1)−h1(x)〉1 ≥ 0, ∀v1 ∈ H1 : g1(v1) ∈ K1(x), (2.1)

〈N2(w, z)+h2(y)−g2(y), g2(v2)−h2(y)〉2 ≥ 0, ∀v2 ∈ H2 : g2(v2) ∈ K2(y). (2.2)

The corresponding quasi-variational inequality problem has been studied in
many practical problems, K(x) has the following form K(x) ≡ m(x)+K, ∀x ∈ H ,
where m : H → H is a single-valued mapping and K is a nonempty, closed and
convex set of H .

Some Special Cases of SMEGQVIP (2.1)-(2.2):

(1) If h1 ≡ g1; h2 ≡ g2, then SMEGQVIP (2.1)-(2.2) reduces to the problem of
finding (x, y) ∈ H1×H2, u ∈ A(x), v ∈ B(y), w ∈ C(x), z ∈ D(y) such that

〈N1(u, v), g1(v1) − g1(x)〉1 ≥ 0, ∀v1 ∈ H1 : g1(v1) ∈ K1(x), (2.3)

〈N2(w, z), g2(v2) − g2(y)〉2 ≥ 0, ∀v2 ∈ H2 : g2(v2) ∈ K2(y), (2.4)

which is known as system of multi-valued quasi-variational inequality prob-
lems, similar type problem has been studied by many authors, see [9–14].

(2) If H ≡ H1 ≡ H2; T (x, x) ≡ N1(·, ·) ≡ N2(·, ·); h ≡ h1 ≡ h2; g ≡ g1 ≡
g2; K(x) ≡ K and x = y, then SMEGQVIP (2.1)-(2.2) reduces to the
problem of finding x ∈ H, h(x) ∈ K such that

〈T (x, x) + h(x) − g(x), g(v) − h(x)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.5)

which is known as extended variational inequality, similar type problem has
been studied by Noor [6, 7].

Further, it is remarked that for a suitable choice of the mappings A, B,
C, D, g1, g2, h1, h2, K1, K2, N1, N2 and the spaces H1, H2, one can obtain
many other known systems of variational inequalities, variational inequalities from
SMEGQVIP (2.1)-(2.2), see for example [3–15] and the references therein.

Now, we give the following known concepts and results which are needed in
the sequel:
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Lemma 2.1. Let K be a closed and convex set in H. Then for a given z ∈ H,

u ∈ K satisfies the inequality

〈u − z, v − u〉 ≥ 0, ∀v ∈ K,

if and only if u = PK(z), where PK is the projection of H onto the closed convex
set K in H.

It is well known that the projection operator PK is nonexpansive operator,
i.e.,

‖PK(x) − PK(y)‖ ≤ ‖x − y‖, ∀x, y ∈ H.

Definition 2.2 ([8]). A multi-valued mapping T : H → CB(H) is said to be
ξ-H-Lipschitz continuous if there exists a constant ξ > 0 such that

H(T (x), T (y)) ≤ ξ‖x − y‖, ∀x, y ∈ H,

where H(·, ·) is the Hausdorff metric space on CB(H).

Lemma 2.3 ([16]).

(a) Let A : H → CB(H) be a multi-valued mapping. Then for any given ξ > 0
and for any given x, y ∈ H and u ∈ A(x), there exists v ∈ A(y) such that

d(u, v) ≤ (1 + ξ) H(A(x), A(y));

(b) If T : H → C(H), then above inequality holds for ξ = 0.

Definition 2.4. A mapping g : H → H is said to be

(i) σ-strongly monotone if there exists a constant σ > 0 such that

〈g(x) − g(y), x − y〉 ≥ σ‖x − y‖2 ∀x, y ∈ H ;

(ii) δ-Lipschitz continuous if there exists a constant δ > 0 such that

‖g(x) − g(y)‖ ≤ δ‖x − y‖ ∀x, y ∈ H.

Definition 2.5. Let A, C : H1 → CB(H1), B, D : H2 → CB(H2). A mapping
N1 : H1 × H2 → H1 is said to be

(i) α1-strongly monotone with respect to A in the first argument if there exists
a constant α1 > 0 such that

〈N1(u1, v) − N1(u2, v), x1 − x2〉1 ≥ α1‖x1 − x2‖1
2,

∀x1, x2 ∈ H1, y ∈ H2, u1 ∈ A(x1), u2 ∈ A(x2), v ∈ B(y);
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(ii) (β1, γ1)-mixed Lipschitz continuous if there exist constants β1, γ1 > 0 such
that

‖N1(u1, v1) − N1(u2, v2)‖1 ≤ β1‖u1 − u2‖1 + γ1‖v1 − v2‖2,

x1, x2 ∈ H1, y1, y2 ∈ H2, u1 ∈ A(x1), u2 ∈ A(x2), v1 ∈ B(y1), v2 ∈ B(y2).

Definition 2.6. A mapping h : H → H is said to be relaxed (d, e)-cocoercive if
there exist constants d, e > 0 such that

〈h(x1) − h(x2), x1 − x2〉 ≥ −d‖h(x1) − h(x2)‖
2 + e‖x1 − x2‖

2, ∀x1, x2 ∈ H.

Remark 2.7. The class of relaxed (d, e)-cocoercive mappings is more general than
the class of strongly monotone mappings, see [5, 9–14].

Lemma 2.8. Let H be a Hilbert space. Then for any x, y ∈ H,

‖x + y‖2 ≤ ‖x‖2 + 〈y, x + y〉.

Lemma 2.9 ([15]). Let {cn} and {kn} be two real sequences of nonnegative num-
bers that satisfy the following conditions:

(i) 0 ≤ kn < 1 for n = 0, 1, 2, ..., and lim supnkn < 1,

(ii) cn+1 ≤ kn cn for n = 0, 1, 2, ....

Then {cn} converges to 0 as n → ∞.

Assumption 2.10. The operator PK1(x) satisfies the condition:

‖PK1(x1)(z) − PK1(x2)(z)‖ ≤ ν1‖x1 − x2‖, ∀x1, x2, z ∈ H1, ν1 > 0 is a constant.

3 Main Results

First we establish an equivalence between SMEGQVIP (2.1)-(2.2) and system
of projection equations and then using this equivalence to prove the existence of
a solution of SMEGQVIP (2.1)-(2.2).

Lemma 3.1. For any given (x, y) ∈ H1 × H2, u ∈ A(x), v ∈ B(y), w ∈ C(x), z ∈
D(y) : h1(x) ∈ K1(x), h2(y) ∈ K2(y), (x, y, u, v, w, z) is a solution of SMEGQVIP
(2.1)-(2.2) if and only if (x, y, u, v, w, z) satisfies the system of projection equations

h1(x) = PK1(x)[g1(x) − ρ1N1(u, v)],

h2(y) = PK2(y)[g2(y) − ρ2N2(w, z)],

where ρ1, ρ2 > 0 are constants.

Using Lemma 2.3 and Lemma 3.1, we suggest and analyze the following iter-
ative algorithm for finding the approximate solution of SMEGQVIP (2.1)-(2.2) in
Hilbert spaces.
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Iterative Algorithm 3.2. For given (x0, y0) ∈ H1 × H2, u0 ∈ A(x0), v0 ∈
B(y0), w0 ∈ C(x0), z0 ∈ D(y0), compute approximate solution (xn, yn, un, vn, wn, zn)
given by iterative schemes:

h1(xn+1) = PK1(xn)[g1(xn) − ρ1N1(un, vn)], (3.1)

h2(yn+1) = PK2(yn)[g2(yn) − ρ2N2(wn, zn)], (3.2)

un ∈ A(xn) : ||un+1 − un|| ≤
(

1 + (1 + n)−1
)

H1(A(xn+1), A(xn)), (3.3)

vn ∈ B(yn) : ||vn+1 − vn|| ≤
(

1 + (1 + n)−1
)

H2(B(yn+1), B(yn)), (3.4)

wn ∈ C(xn) : ||wn+1 − wn|| ≤
(

1 + (1 + n)−1
)

H1(C(xn+1), C(xn)), (3.5)

zn ∈ D(yn) : ||zn+1 − zn|| ≤
(

1 + (1 + n)−1
)

H2(D(yn+1), D(yn)), (3.6)

where n = 0, 1, 2, ...; ρ1, ρ2 > 0 are constants.

Now, we prove the existence of a solution of SMEGQVIP (2.1)-(2.2) for some
relaxed (d, e)-cocoercive mappings which are not Lipschitz continuous and discuss
the convergence analysis for Iterative Algorithm 3.2.

Theorem 3.3. Let A, C : H1 → CB(H1) be µ1-H1-Lipschitz, µ2-H1-Lipschitz
continuous and B, D : H2 → CB(H2) be η1-H2-Lipschitz, η2-H2-Lipschitz contin-
uous, respectively. Let the mapping N1 is α1-strongly monotone in the first argu-
ment with respect to A and (β1, γ1)-mixed Lipschitz continuous; N2 be α2-strongly
monotone in the second argument with respect to D and (β2, γ2)-mixed Lipschitz
continuous. For each i = 1, 2, let hi be relaxed (di, ei)-cocoercive mappings; gi be
σi-strongly monotone and δi-Lipschitz continuous mappings. Let K1 : H1 → 2H1

and K2 : H2 → 2H2 be such that for each fixed x ∈ H1, y ∈ H2, K1(x) and K2(y)
are nonempty closed convex sets in H1 and H2, respectively. Suppose that there
are constants ν1, ν2 > 0 such that

‖PK1(x1)(x) − PK1(x2)(x)‖ ≤ ν1‖x1 − x2‖, ∀x, x1, x2 ∈ H1, (3.7)

‖PK2(y1)(y) − PK1(y2)(y)‖ ≤ ν2‖y1 − y2‖, ∀y, y1, y2 ∈ H2, (3.8)

and ρ1, ρ2 > 0 satisfy the following condition:















√

1+2d1

2e1+3

(

√

1 − 2σ1 + δ2
1 +

√

1 − 2ρ1α1 + ρ2
1β

2
1µ2

1 + ν1 + ρ2β2µ2

)

< 1;

√

1+2d2

2e2+3

(

√

1 − 2σ2 + δ2
2 +

√

1 − 2ρ2α2 + ρ2
2γ

2
2η2

2 + ν2 + ρ1γ1η1

)

< 1.

(3.9)
Then iterative sequence {(xn, yn, un, vn, wn, zn)} generated by Iterative Algorithm
3.2 converges strongly to (x, y, u, v, w, z), a solution of SMEGQVIP (2.1)-(2.2).

Proof. Since for each i = 1, 2, hi is relaxed (di, ei)-cocoercive and by using Lemma
2.8, we have the following estimate:
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‖xn+1 − xn‖
2
1

= ‖h1(xn+1) − h1(xn) + xn+1 − xn − (h1(xn+1) − h1(xn))‖2
1

≤ ‖h1(xn+1) − h1(xn)‖2
1 − 2〈h1(xn+1) − h1(xn) − xn+1 + xn, xn+1 − xn〉1

≤ (1 + 2d1)‖h1(xn+1) − h1(xn)‖2
1 − (2 + 2e1)‖xn+1 − xn‖

2
1

which implies that

‖xn+1 − xn‖1 ≤

√

1 + 2d1

2e1 + 3
‖h1(xn+1) − h1(xn)‖1. (3.10)

Similarly, we have

‖yn+1 − yn‖2 ≤

√

1 + 2d2

2e2 + 3
‖h2(yn+1) − h2(yn)‖2. (3.11)

Now, we have

‖h1(xn+1) − h1(xn)‖1

= ‖PK1(xn)(g1(xn) − ρ1N1(un, vn)) − PK1(xn−1)(g1(xn−1) − ρ1N1(un−1, vn−1))‖1

≤ ‖PK1(xn)(g1(xn) − ρ1N1(un, vn)) − PK1(xn)(g1(xn−1) − ρ1N1(un−1, vn−1))‖1

+ ‖PK1(xn)(g1(xn−1) − ρ1N1(un−1, vn−1))

− PK1(xn−1)(g1(xn−1) − ρ1N1(un−1, vn−1))‖1

≤ ‖g1(xn) − g1(xn−1) − (xn−1 − xn)‖1

+ ‖xn−1 − xn − ρ1(N1(un, vn) − N1(un−1, vn))‖1

+ ρ1‖N1(un−1, vn) − N1(un−1, vn−1)‖1 + ν1‖xn − xn−1‖1. (3.12)

Next, using α1-strongly monotonicity with respect to A in the first argument and
(β1, γ1)-mixed Lipschitz continuity of N1(·, ·); µ1-H1-Lipschitz continuity of A;
η1-H2-Lipschitz continuity of B, it follows that

‖xn − xn−1 − ρ1(N1(un, vn) − N1(un−1, vn)‖2
1

≤ ‖xn − xn−1‖
2
1 − 2ρ1〈N1(un, vn) − N1(un−1, vn), xn − xn−1〉1

+ ρ2
1‖N1(un, vn) − N1(un−1, vn)‖2

1

≤ ‖xn − xn−1‖
2
1 − 2ρ1α1‖xn − xn−1‖

2
1 + ρ2

1β
2
1µ2

1(1 + (1 + n)−1)2‖xn − xn−1‖
2
1

≤ (1 − 2ρ1α1 + ρ2
1β

2
1µ2

1(1 + (1 + n)−1)2)‖xn − xn−1‖
2
1, (3.13)

and

‖N1(un−1, vn) − N1(un−1, vn−1)‖1 ≤ γ1η1(1 + (1 + n)−1)‖yn − yn−1‖2. (3.14)

Similarly, we estimate

‖xn − xn−1 − (g1(xn) − g1(xn−1))‖
2
1 ≤ (1 − 2σ1 + δ2

1)‖xn − xn−1‖
2
1, (3.15)
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where g1 is σ1-strongly monotone and δ1-mixed Lipschitz continuous.
From (3.10) and (3.12)-(3.15), we have

‖xn+1 − xn‖1

≤

√

1 + 2d1

2e1 + 3

[(

√

1 − 2σ1 + δ2
1 +

√

1 − 2ρ1α1 + ρ2
1β

2
1µ2

1(1 + (1 + n)−1)2 + ν1

)

× ‖xn − xn−1‖1 +ρ1γ1η1

(

1 +
1

1 + n

)

‖yn − yn−1‖
2
2

]

. (3.16)

Also, we have

‖h2(yn+1) − h2(yn)‖2

= ‖PK2(yn)(g2(yn) − ρ2N2(wn, zn)) − PK2(yn−1)(g2(yn−1) − ρ2N2(wn−1, zn−1))‖2

≤ ‖PK2(yn)(g2(yn) − ρ2N2(wn, zn)) − PK2(yn)(g2(yn−1) − ρ2N2(wn−1, zn−1))‖2

+ ‖PK2(yn)(g2(yn−1) − ρ2N2(wn−1, zn−1)) − PK2(yn−1)(g2(yn−1)

− ρ2N2(wn−1, zn−1))‖2

≤ ‖g2(yn) − g2(yn−1) − (yn−1 − yn)‖2

+ ‖yn−1 − yn − ρ2(N2(wn, zn) − N2(wn, zn−1))‖2

+ ρ2‖N2(wn, zn−1) − N2(wn−1, zn−1)‖2 + ν2‖yn − yn−1‖2. (3.17)

Next, using α2-strongly monotonicity with respect to D in the second argument
and (β2, γ2)-mixed Lipschitz continuity of N2(·, ·); µ2-H1-Lipschitz continuity of
C; η2-H2-Lipschitz continuity of D, it follows that

‖yn − yn−1 − ρ2(N2(wn, zn) − N2(wn, zn−1)‖
2
2

≤ ‖yn − yn−1‖
2
2 − 2ρ2〈N2(wn, zn) − N2(wn, zn−1), yn − yn−1〉2

+ ρ2
2‖N2(wn, zn) − N2(wn, zn−1)‖

2
2

≤ ‖yn − yn−1‖
2
2 − 2ρ2α2‖yn − yn−1‖

2
2 + ρ2

2γ
2
2η2

2(1 + (1 + n)−1)2‖yn − yn−1‖
2
2

≤ (1 − 2ρ2α2 + ρ2
2γ

2
2η2

2(1 + (1 + n)−1)2)‖yn − yn−1‖
2
2, (3.18)

and

‖N2(wn, zn−1) − N2(wn−1, zn−1)‖2 ≤ β2µ2(1 + (1 + n)−1)‖xn − xn−1‖1. (3.19)

Similarly, we estimate

‖yn − yn−1 − (g2(yn) − g2(yn−1))‖
2
2 ≤ (1 − 2σ2 + δ2

2)‖yn − yn−1‖
2
2, (3.20)

where g2 is σ2-strongly monotone and δ2-mixed Lipschitz continuous.
From (3.11) and (3.17)-(3.20), we have

‖yn+1 − yn‖2

≤

√

1 + 2d2

2e2 + 3

[(

√

1 − 2σ2 + δ2
2 +

√

1 − 2ρ2α2 + ρ2
2γ

2
2η2

2(1 + (1 + n)−1)2 + ν2

)

× ‖yn − yn−1‖2 +ρ2β2µ2

(

1 +
1

1 + n

)

‖xn − xn−1‖
2
1

]

. (3.21)
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From (3.16) and (3.21), we have

‖xn+1 − xn‖1 + ‖yn+1 − yn‖2 = kn
1 ‖xn − xn−1‖1 + kn

2 ‖yn − yn−1‖2

≤ θn(‖xn − xn−1‖1 + ‖yn − yn−1‖2), (3.22)

where θn = max{kn
1 , kn

2 },































kn
1 :=

√

1+2d1

2e1+3

(

√

1 − 2σ1 + δ2
1 +

√

1 − 2ρ1α1 + ρ2
1β

2
1µ2

1(L
n)2 + ν1 + ρ2β2µ2L

n
)

,

kn
2 :=

√

1+2d2

2e2+3

(

√

1 − 2σ2 + δ2
2 +

√

1 − 2ρ2α2 + ρ2
2γ

2
2η2

2(Ln)2 + ν2 + ρ1γ1η1L
n
)

,

Ln := (1 + (1 + n)−1).
(3.23)

Letting θn → θ as n → ∞ (kn
1 → k1, k

n
2 → k2 as n → ∞), where θ = max{k1, k2};















k1 :=
√

1+2d1

2e1+3

(

√

1 − 2σ1 + δ2
1 +

√

1 − 2ρ1α1 + ρ2
1β

2
1µ2

1 + ν1 + ρ2β2µ2

)

,

k2 :=
√

1+2d2

2e2+3

(

√

1 − 2σ2 + δ2
2 +

√

1 − 2ρ2α2 + ρ2
2γ

2
2η2

2 + ν2 + ρ1γ1η1

)

.

(3.24)
Now, define the norm ‖ · ‖∗ on H1 × H2 by

‖(x, y)‖∗ = ‖x‖1 + ‖y‖2, ∀(x, y) ∈ H1 × H2. (3.25)

It is observe that (H1 × H2, ‖ · ‖∗) is a Banach space. Hence (3.22) implies that

‖(xn+1, yn+1) − (xn, yn)‖∗ ≤ θ‖(xn, yn) − (xn−1, yn−1)‖∗. (3.26)

By condition (3.24), it follows that θ < 1. Hence θn < 1 for sufficiently large n.
Therefore, (3.26) implies that {(xn, yn)} is a Cauchy sequence in H1 × H2. Let
(xn, yn) → (x, y) ∈ H1 × H2 as n → ∞. By µ1-H-Lipschitz continuity of A and
Iterative Algorithm 3.2, we have

||un − un−1||1 ≤ (1 + (1 + n)−1) H1(A(xn), A(xn−1))

≤ (1 + (1 + n)−1) µ1||xn − xn−1||1. (3.27)

Since {xn} is a Cauchy sequence in H1. Hence there exists u ∈ H1 such that
{un} → u as n → ∞. Similarly, we can show that {vn} ∈ H2, {wn} ∈ H1 and
{zn} ∈ H2 are Cauchy sequences and hence there exist v ∈ H2, w ∈ H1 and z ∈ H2

such that {vn} → v, {wn} → w and {zn} → z as n → ∞.

Next, we claim that u ∈ A(x). Since un−1 ∈ A(xn−1), we have

d(u, A(x)) ≤ ||u − un−1||1 + d(un−1, A(x))

≤ ||u−un−1||1 + H1(A(xn−1), A(x))

≤ ||u − un−1||1 + µ1 ||xn−1 − x||1 → 0 as n → ∞. (3.28)
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Since A(x) is closed, we have u ∈ A(x). Similarly, we can show that v ∈ B(y), w ∈
C(x) and z ∈ D(y). Furthermore, continuity of the mappings A, B, C, D, g1, g2, h1, h2,
K1, K2, N1, N2, PK1(x), PK2(y) and Iterative Algorithm 3.2 gives that

h1(x) = PK1(x)[g1(x) − ρ1N1(u, v)], (3.29)

h2(x) = PK2(x)[g2(y) − ρ2N2(w, z)]. (3.30)

Finally, we define

w1 = PK1(x)[g1(x) − ρ1N1(u, v)], (3.31)

w2 = PK2(x)[g2(y) − ρ2N2(w, z)]. (3.32)

Now, we estimate:

‖h1(xn+1) − w1‖1 ≤

(

√

1 − 2σ1 + δ2
1 +

√

1 − 2ρ1α1 + ρ2
1β

2
1µ2

1(L
n)2 + ν1

)

‖xn − x‖1

+ ρ1γ1η1L
n‖yn − y‖2

2, (3.33)

and

‖h2(xn+1) − w2‖2 ≤

(

√

1 − 2σ2 + δ2
2 +

√

1 − 2ρ2α2 + ρ2
2γ

2
2η2

2(L
n)2 + ν2

)

‖yn − y‖2

+ ρ2β2µ2L
n‖xn − x‖2

1. (3.34)

Now, it follows from (3.25), (3.33) and (3.34) that

‖(h1(xn+1), h2(yn+1)) − (w1, w2)‖∗ = ‖h1(xn+1) − w1‖1 + ‖h2(yn+1) − w2‖2

≤ θn(‖xn − x‖1 + ‖yn − y‖2)

→ 0, as n → ∞. (3.35)

Thus,

h1(x) = w1 = PK1(x)[g1(x) − ρ1N1(u, v)], (3.36)

h2(y) = w2 = PK2(y)[g2(y) − ρ2N2(w, z)]. (3.37)

By Lemma 3.1, it follows that (x, y, u, v, w, z) is a solution of SMEGQVIP (2.1)-
(2.2). This completes the proof.

Remark 3.4.

(i) For i = 1, 2, it is clear that σi ≤ δi. Further, θ < 1 and condition (3.9)
holds for some suitable set values of constants, for example,

• α1 = 0.4, β1 = 0.4, γ1 = 0.1, σ1 = 0.1, δ1 = 0.2, µ1 = 1, η1 = 1, ν1 =
0.1, ρ1 = 0.1.

• α2 = 0.2, β2 = 0.3, γ2 = 0.2, σ2 = 0.2, δ2 = 0.3, µ2 = 1, η2 = 1, ν2 =
0.2, ρ2 = 0.2.
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(ii) The proof of theorem presented in this paper for SMEGQVIP (2.1)-(2.2)
under the assumption of relaxed (d, e)-cocoercivity on mappings h1 and h2,
need further research effort.

(iii) Using the method presented in this paper, one can extend the existence result
for the system of n-generalized quasi-variational inequality problems.
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