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Abstract : Strong Kronecker multiplication of two matrices is useful for
constructing new s-orthogonal matrices from those known. These results are
particularly important as they allow small matrices to be combined to from larger
matrices, but of smaller order than the straight-forward Kronecker product would
permit.
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1 Introduction and Basic Definitions

The study of secondary symmetric, skew-symmetric and orthogonal matrices
was initiated by Lee [1, 2] and the concept of some orthogonal designs constructed
by Kronecker and Hadamard products was introduced by Seberry [3, 4]. In this
paper we extend the results concerning orthogonal matrices to a secondary orthog-
onal matrices.

Throughout this paper we use the following notation:
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Notation 1.1. Writee = {1,—-1,i,—i}, X = {z1, ..., 24,0}, Y = {y1, ..., 4,0}, Z =
{zy/x € X,y € Y}where x1, ..., Ty, Y1, .-, Yo are Teal commuting variables, in the
otherwords, the compler conjugate of x;(y;) is zi(y;). Let R = {ax/a € g,2 €
XNLT ={0y/Bee,yecY},S={yay/y €e,xe€ X,y e Y} Further we write
o= Z};l pjxf, Y = Z;Zl qjyjz, where p; and q; are positive integers.

Notation 1.2. The secondary transpose (conjugate secondary transpose) of A is
defined by A®> = VATV (A® = VA*V), where “V is the fized disjoint permutation
matriz with units in its secondary diagonal.

Definition 1.3 ([5]). A matrix A € C,x, is called secondary orthogonal (s-
orthogonal), if AA®S = ASA = I, that is A5 = AL,

Definition 1.4. Let C' be a (1, —1,, —i, 0) matrix of order c, satisfying CC® = r1I,
where C®(C® = C°) is the conjugate secondary transpose of C. We call C a
complex weighing matrix order ¢ and weight r, denoted by CW (¢, r). In particular,
if C is a real matrix, we call C' a weighing matrix denoted by W(c,r). CW{(c,c)
is called a complex Hadamard matrix of order c.

From [6] any complex Hadamard matrix has order 1 or order divisible by
2. Let C = X +iY, where X,Y consist of 1,—1,0 and X QY = 0, where O
is the Hadamard product. Clearly if C' is a CW (c,r) then XX* +YY*® = rl,
XY*=YX°*

Definition 1.5. A Complex Secondary Orthogonal Design (CSOD) of order n
and type (p1, ..., pu) denoted by CSOD(m;p1, ..., p,) on the commuting variables
T1,..., Ty 18 a matrix of order n, say A, with elements from R, satisfying

AA® = 41,

In particular, if A has elements from only X, the complex s-orthogonal will be
called an s-orthogonal design by SOD(m;p1, ..., pu)-

Let M be a matrix of order tm. Then M can be expressed as

My My ... My
M — M21 M22 .« M2t ,
My Mo My,

where M;; is of order m(i,j7 = 1,2,...,t). Let N be a matrix of order tn. Then,
write

Ni1 Nio Nyy
N — N2y Nop No; ,
Ny N Ny

where N;; is of order n(i,j = 1,2,...,t). We now define the operation ® as the
following
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Lll L12 .« th
Mo N = Ly Ly ... Loy ,
Ly Ly Ly

where M;;, N;; and L;; are of order m, n, and mn, respectively and
Lij = Mix X Nij + Mig X Noj + - - - + My X Ny,

where x is the Kronecker product, 7,5 = 1,2,....,t. We call this the strong Kro-
necker multiplication of two matrices.

The aim is to construct new s-orthogonal designs from those known previously.
The most popular method has been the Kronecker product, so that if there exist
Hadamard matrices of order 4h and 4n then there exists an Hadamard matrix of
order 16An.

In this paper, we systematically study constructions for various s-orthogonal
matrices with special properties, including CSODs, SODs, CWs and weighing
matrices, by using strong Kronecker multiplication.

2 Strong Kronecker Product

Theorem 2.1 (Strong Kronecker Product Lemma). Let A = (A;;) satisfy AA® =
&I, where A;; have order m and B = (B;;) satisfy BB® = I, where B;; have
order n then

Proof. Since AA® = ¢lyy, BB® = 14,
(A® B)(A® B)* = (A® B)(A* @ B*)
= AA° ® BB®
- ¢Itm ® 1/}Itn
(|

Remark 2.2. If A and B are s-orthogonal designs A ® B is not an s-orthogonal
design but an s-orthogonal matriz.

Theorem 2.3. Let A = (A;;) with elements from R satisfy AA® = ¢li,y,, where
A;; have order m and B = (B;;) with elements from T satisfy BB® = 11, where
B;; have order n. Then if C = A® B,

CC® = (A® B)(A® B)® = ¢l

Remark 2.4. C = A® B is not a complex s-orthogonal design but a complex
s-orthogonal matrix.
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Corollary 2.5. Let A = CW(tm,p), and B = CW (tn,q). Then, writing C =
A® B, CC® = pqlimn.

The strong Kronecker multiplication has the potential to yield still construc-
tion for new orthogonal matrices as has been shown by [7]. We now extend those
to s-orthogonal matrix.

3 Conferred Amicability Theorem

Lemma 3.1 (Structure Lemma). Let A = (Ay;),C = (Cx;) be matrices of order
tm with elements from T, where Ayj,Ck; are of order m and B = (By;),D =
(Dyj) be matrices of order tn with elements from R, where By;, Dy; are of order
n. Write (A® B)(C ® D)® = (Lab), where a,b=1,...,t then

t t
z_: Z:l kz:l Aajcgc X Ber]?T-
In particular, if C = A and D = B

H
i M”

)
bk X Bjr By,

Ii Mw

Now if B is s-orthogonal with BBG W1, where 1 is defined in (1.1), then
t
Loy = <Z AajAb@j> X W Lmp .
Jj=1 ’
Further if A is s-orthogonal with AA® = @I, where ¢ is defined in (1.1), then
Loy, =0, fora £ b and Leg = 1.

Proof. 1t is easy to calculate

Lap =Y (Aa1 X Biy + -+ Aat X By)(C x DY, + -+ C5) x D)

Obviously, if C = Aand D = B

t t t
Lay =Y _> > AuAf, x Bjr B

Further if B is s-orthogonal, Z:Zl BjyBY =0, forj # k. So

t t t
D Auj A, X (Z BjTB,(;)T> = Auj A X U,
1k=1 r=1 r=1

j=
So, Lap =0,a #band Lyg = ¢y O
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Theorem 3.2 (Conferred Amicability Theorem). Suppose A = (Ay;) is a matriz
of order tm with elements from R, where Ay; is of order m and B = (By;) and

C = (Cx;) are matrices of order tn with elements from T, where By; and Cy; are
of order n. Write P = A® B and Q = A® C. Suppose BC® = CB®. Then
PQ® =QP°.

Proof. Let PQ® = (L) and QP® = (Ry), where a,b = 1, ..., t. By the Structure
Lemma,

Ay AS. x B CP.

I
M-
-
M-

Il

. =S
M- ]
i

<

=~ |

i

=

Il

;

<

Il
-
e

Il
=

t
AajAl?k X <Z BJT08> .

r=1

Similarly,

AajAl(:)k X Cj’I"B](?fr

5

I
MH
.M“
MH

—
el
Il

1

t
AajAl(;)k X <Z CjTBI(;)r> .

r=1

ﬂ
I

=
<
|l

I
'M“

B

1 k=1

J

Note BC® = CB® implies Y.'_, B;,C2 =" _ C;, B2 j,k=1,...t. So Ly =
Ray and PQ® = QP°. O

Corollary 3.3. Suppose A = (Ayj) is a matriz of order tm with elements from
R, where Ayj is of order m and B = (By;) and C = (Ckj) are matrices of order
tn with elements from T, where By; and Ci; are of order n. Write P = A® B
and Q = A® C. Suppose BC® =0. Then PQ® = 0.

Proof. Let PQ® = (L) and QP® = (Ry;), where a,b = 1, ..., t. By the Structure
Lemma,

t t t
Loy =Y Y > AajAf, x B Ch,

Note BC® =0=Y'_ | B;;CP. =0, j,k=1,...,t. S0, Lay = 0 and then PQ® = 0,
also QP® = 0. O
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4 Using CSOD(2n;py, ..., pu)

Theorem 4.1. Let A be a CSOD (2a;p1,...,py) with elements from R and B
be a CSOD (2b;qu, ..., qy) with elements from T. If A = (A;;) with blocks of
order a has the additional property that A;; O Ay = 0 or (4;5)° O (Air)® =
0fi.e., Aa—jtr,a—it1 O Aa—kt+1,a—i+1 = 0,J # k,i = 1,2 then there exist four
matrices with elements from S of order 2ab, P,Q,U,V satisfying

1. PQ° = QP°,PP® = QQ° = ¢pplaq.

2. UUPHVVO = ¢, UQV =0,UV® =VU® =0,U+V =P, U-V = Q.
Corollary 4.2. Suppose there exist a CSOD(2n;p1,...,p,) with elements from
R and a W(2h,r) = A = (A;;) with blocks of order h which has the additional
property thatA;; O Aix =0 or (4;5)° O (Ai)® =0, # k,i = 1,2 then there exist

1. Two CSOD(2hn;rpy,...,mpy), P and Q, satisfying PQ® = QP®.

2. Two matrices with elements from R, of order 2hn, U and V, satisfying

UUPH+VV® = rolo,, UV =0,UV® =VU® =0,U+V = P,U-V = Q.

Corollary 4.3. Suppose there exist a Hadamard matriz of order 2¢ and a CW (2h, e)
= A = (A;;) with blocks of order h which satisfy A;jOAir =0 or (A;;)°*O(Air)® =
0,7 # k,i=1,2 then there exist
1. Two CW(2ch,2ce), P and Q, satisfying PQ® = QP®.
2. Two (1,—1,0) matrices U and V of order 2ch, satisfying UU® + VV® =
2celyen, UQV =0,UV® =VU® =0,U+V =P,U -V =Q.

Corollary 4.4. If there exist a W(2n,e)and a W (2h,t) = A = (Ai;) with blocks
of order h which satisfy Aij O Air, =0 or (Ai5)* O (Aix)* =0,5 # k,i=1,2 then
there exist
1. Two W(2hn,et), P and Q, satisfying PQ® = QP*.
2. Two (1,—1,0) matrices U and V' of order 2hn, satisfying UU®* + VV* =
tIopm, UOQV =0,UVS =VU*=0.U+V = P,U -V = Q.

Corollary 4.5. Let there exist a CSOD (2n;p1, ..., pu) with elements from R and
an Hadamard matriz of order 4h then there exist

1. Two CSOD(4hn;2hpy, ...,2hp,), P and Q, satisfying PQ® = QP®.

2. Two matrices with elements from R, of order 4hn, U and V, satisfying
UU®P +VV® = 2h¢pIyn,, UOV =0, Uve = VU@_O U+V=PU-V =
Q.

Corollary 4.6. If there exist a CW(2n,k) and an Hadamard matriz of order 4h
then there exist

1. Two CW(4hn,2hk), P and Q, satisfying PQ® = QP®.
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2. Two matrices with elements from {£1,+4,0}, U and V of order 4hn, sat-
isfying UU® + VV® = 2khln,,U OV =0,UV® =VU® =0,U +V =
PU -V =Q.
Corollary 4.7. If there exist a complex Hadamard matriz of order 2c and an
Hadamard matriz of order 4h then there exist

1. Two complex Hadamard matrices of order 4hc, P and Q, satisfying PQ® =
QP°.

2. Two matrices with elements from {+1,4i,0}, U and V of order 4he, sat-
isfying UU® 4+ VV® = 4hcplyn., U QV =0,UV® =VU® =0,U +V =
PU -V =0Q.

Corollary 4.8. If there exist a W(2n,k) and an Hadamard matriz of order 4h
then there exist
1. Two W(4dhn,2hk), P and Q, satisfying PQ° = QP*.
2. Two {1,—1,0} matrices U and V of order 4hn, satisfying UU® + VV?*® =
2hkpLapn, U QV =0,UV =VU*=0,U+V =P, U -V =Q.

Corollary 4.9. If there exist a CSOD (m;p1, ..., py) with elements from R and
a CSOD (2n;q, ...,qy) with elements from T then there exist four matrices with
elements from S, of order 2mn, P,Q, U,V satisfying

1. PQ® = QP®,PP® = QQ° = ¢YLayn.
2. UUP+VV® = ¢y, UQOV =0,UV® =VU® =0,U4+V =P U-V =
Q.
Corollary 4.10. If there exist a CSOD (m;p1, ..., py) with elements from R and
a W(2n, k) then there exist
1. Two SOD(2n; kp, ..., kpy) with elements from X, P and Q, satisfying PQ* =
QPs.
2. Two matrices U and V with elements from X, of order 2mn, satisfying
UU+VV?® = k¢lopmn, UQV =0,UV =VU*=0,U+V =P U-V =Q.
Corollary 4.11. If there exist a SOD(2n;py, ..., py) with elements from X and a
CW(c,r) then there exist
1. Two SOD(2¢en;rpy, ..., mpy) with elements from X, P and Q, satisfying PQ* =
QP°.
2. Two matrices U and V with elements from X, of order 2cn, satisfying UU®+
VVS =r¢loem,, UQV =0,UV =VU*=0,U+V =P U -V =Q.
Corollary 4.12. If there exist a CW(c,r) and a W(2n, k) then there exist
1. Two W(2¢n,2rk), P and Q, satisfying PQ*® = QP*.
2. Two (1,—1,0) matrices U and V of order 2cn, satisfying UU® + VV?® =
rk¢loen, UQV =0,UVS=VU*=0,U+V =PU-V =Q.
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5 Using CSOD(4n;py, ..., pu)

Theorem 5.1. Let A be a CSOD (4a;p1, ..., pu) with elements from R and B be a
CSOD (4b; qu, ..., qv) with elements from T. If A = (Aj;) with blocks of order a has
the additional property that (i) Aij O Air = 0 or (4i) (Aij)° O (Aix)®* =0,(j,k) =
(1,2),(4,k) = (3,4),i = 1,2,3,4 then there exist four matrices Uy, Us, Us, Uy with
elements from S of order 4hb, satisfying

1. DWUP + UUS + UsUP + UsUPL = ¢tplaap.

2. UiU]e =0 fori#j.

3. U,QUs=0,Us OU, =0.
Corollary 5.2. Let A be a CSOD (4a;p1, ..., pu) with elements from R and B be a
CSOD (4b; qu, ..., qv) with elements from T. If A = (A;;) with blocks of order a has
the additional property that (i) Ai; O A =0 or (ii)(Aij)° O (Aw)® =0,(4,k) =
(1,2),(4,k) = (3,4),i = 1,2,3,4 then there exist two matrices E and F with
elements from S of order 4ab, satisfying EF® = FE® =0, EE® +FF® = ¢ l4ap.

Corollary 5.3. If there exist a CSOD (4a;p1,...,pu) with elements from R and
an Hadamard matriz of order 4h then there exist four matrices Uy, Us, Us, Uy with
elements from R of order 4hn, satisfying

1. U UP + UU + UsUP + UsUP = 200 Lypn-

2. U;UP =0 fori#j.

3. Uy QU =0,UsOUy =0.

Corollary 5.4. If there exist CSOD (4n;p1, ..., pu) with elements from R and an
Hadamard matriz of order 4h then there exist two matrices E and F with elements
from S of order 4hn, satisfying EF® = FE® = 0, EE® + FF® = 2h¢Iup, also
we have a CSOD (8hn; 2hp1, ..., 2hp,).

6 Conclusion

We have constructeted the some orthogonal matrices by Strong Kronecker mul-
tiplication. These results are particularly important as they allow small matrices
to be combined to from larger matrices, but of smaller order than the straight
forward Kronecker product would permit.
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