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Abstract : Strong Kronecker multiplication of two matrices is useful for
constructing new s-orthogonal matrices from those known. These results are
particularly important as they allow small matrices to be combined to from larger
matrices, but of smaller order than the straight-forward Kronecker product would
permit.
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1 Introduction and Basic Definitions

The study of secondary symmetric, skew-symmetric and orthogonal matrices
was initiated by Lee [1, 2] and the concept of some orthogonal designs constructed
by Kronecker and Hadamard products was introduced by Seberry [3, 4]. In this
paper we extend the results concerning orthogonal matrices to a secondary orthog-
onal matrices.

Throughout this paper we use the following notation:
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Notation 1.1. Write ε = {1,−1, i,−i}, X = {x1, ..., xu, 0}, Y = {y1, ..., yv, 0}, Z =
{xy/x ∈ X, y ∈ Y }where x1, ..., xu, y1, ..., yv are real commuting variables, in the
otherwords, the complex conjugate of xi(yi) is xi(yi). Let R = {αx/α ∈ ε, x ∈
X}, T = {βy/β ∈ ε, y ∈ Y },S = {γxy/γ ∈ ε, x ∈ X, y ∈ Y }. Further we write
φ =

∑u

j=1
pjx

2
j , ψ =

∑v

j=1
qjy

2
j , where pj and qj are positive integers.

Notation 1.2. The secondary transpose (conjugate secondary transpose) of A is
defined by As = V ATV (AΘ = V A∗V ), where “V ”is the fixed disjoint permutation
matrix with units in its secondary diagonal.

Definition 1.3 ([5]). A matrix A ∈ Cn×n is called secondary orthogonal (s-
orthogonal), if AAs = AsA = I, that is As = A−1.

Definition 1.4. Let C be a (1,−1, i,−i, 0) matrix of order c, satisfying CCΘ = rI,
where CΘ(CΘ = C

s
) is the conjugate secondary transpose of C. We call C a

complex weighing matrix order c and weight r, denoted by CW (c, r). In particular,
if C is a real matrix, we call C a weighing matrix denoted by W (c, r). CW (c, c)
is called a complex Hadamard matrix of order c.

From [6] any complex Hadamard matrix has order 1 or order divisible by
2. Let C = X + iY , where X,Y consist of 1,−1, 0 and X © Y = 0, where ©
is the Hadamard product. Clearly if C is a CW (c, r) then XXs + Y Y s = rI,
XY s = Y Xs.

Definition 1.5. A Complex Secondary Orthogonal Design (CSOD) of order n
and type (p1, ..., pu) denoted by CSOD(m; p1, ..., pu) on the commuting variables
x1, ..., xu is a matrix of order n, say A, with elements from R, satisfying

AAΘ = φIn.

In particular, if A has elements from only X , the complex s-orthogonal will be
called an s-orthogonal design by SOD(m; p1, ..., pu).

Let M be a matrix of order tm. Then M can be expressed as

M =









M11 M12 . . . M1t

M21 M22 . . . M2t

. . . . . . . . . . . . . . . . . . . . . .
Mt1 Mt2 . . . Mtt









,

where Mij is of order m(i, j = 1, 2, ..., t). Let N be a matrix of order tn. Then,
write

N =









N11 N12 . . . N1t

N21 N22 . . . N2t

. . . . . . . . . . . . . . . . . . . . .
Nt1 Nt2 . . . Ntt









,

where Nij is of order n(i, j = 1, 2, ..., t). We now define the operation ⊗ as the
following
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M ⊗N =









L11 L12 . . . L1t

L21 L22 . . . L2t

. . . . . . . . . . . . . . . . . . . .
Lt1 Lt2 . . . Ltt









,

where Mij , Nij and Lij are of order m, n, and mn, respectively and

Lij = Mi1 ×N1j +Mi2 ×N2j + · · · +Mit ×Ntj,

where × is the Kronecker product, i, j = 1, 2, ..., t. We call this the strong Kro-
necker multiplication of two matrices.

The aim is to construct new s-orthogonal designs from those known previously.
The most popular method has been the Kronecker product, so that if there exist
Hadamard matrices of order 4h and 4n then there exists an Hadamard matrix of
order 16hn.

In this paper, we systematically study constructions for various s-orthogonal
matrices with special properties, including CSODs, SODs, CWs and weighing
matrices, by using strong Kronecker multiplication.

2 Strong Kronecker Product

Theorem 2.1 (Strong Kronecker Product Lemma). Let A = (Aij) satisfy AAs =
φItm, where Aij have order m and B = (Bij) satisfy BBs = ψItn, where Bij have
order n then

(A⊗B)(A⊗B)s = φψItmn.

Proof. Since AAs = φItm, BB
s = ψItn,

(A⊗B)(A⊗B)s = (A⊗B)(As ⊗Bs)

= AAs ⊗BBs

= φItm ⊗ ψItn

= φψItmn.

Remark 2.2. If A and B are s-orthogonal designs A⊗ B is not an s-orthogonal
design but an s-orthogonal matrix.

Theorem 2.3. Let A = (Aij) with elements from R satisfy AAs = φItm, where
Aij have order m and B = (Bij) with elements from T satisfy BBs = ψItn, where
Bij have order n. Then if C = A⊗B,

CCΘ = (A⊗B)(A ⊗B)Θ = φψItmn.

Remark 2.4. C = A ⊗ B is not a complex s-orthogonal design but a complex
s-orthogonal matrix.



386 Thai J. Math. 11 (2013)/ S. Krishnamoorthy and K. Jaikumar

Corollary 2.5. Let A = CW (tm, p), and B = CW (tn, q). Then, writing C =
A⊗B, CCΘ = pqItmn.

The strong Kronecker multiplication has the potential to yield still construc-
tion for new orthogonal matrices as has been shown by [7]. We now extend those
to s-orthogonal matrix.

3 Conferred Amicability Theorem

Lemma 3.1 (Structure Lemma). Let A = (Akj), C = (Ckj) be matrices of order
tm with elements from T , where Akj , Ckj are of order m and B = (Bkj), D =
(Dkj) be matrices of order tn with elements from R, where Bkj , Dkj are of order
n. Write (A⊗B)(C ⊗D)Θ = (Lab), where a, b = 1, ..., t then

Lab =
t
∑

r=1

t
∑

j=1

t
∑

k=1

AajC
Θ
bk ×BjrD

Θ
kr.

In particular, if C = A and D = B

Lab =
t
∑

r=1

t
∑

j=1

t
∑

k=1

AajA
Θ
bk ×BjrB

Θ
kr.

Now if B is s-orthogonal with BBΘ = ψItn, where ψ is defined in (1.1), then

Lab =

(

t
∑

j=1

AajA
Θ
bj

)

× ψImn.

Further if A is s-orthogonal with AAΘ = φItn, where φ is defined in (1.1), then
Lab = 0, for a 6= b and Laa = φψImn.

Proof. It is easy to calculate

Lab =

t
∑

r=1

(Aa1 ×B1r + · · · +Aat ×Btr)(C
Θ
a1 ×DΘ

1r + · · · + CΘ
at ×DΘ

tr)

=
t
∑

r=1

t
∑

j=1

t
∑

k=1

(Aaj ×Bjr)(C
Θ
bk ×DΘ

kr).

Obviously, if C = A and D = B

Lab =

t
∑

r=1

t
∑

j=1

t
∑

k=1

AajA
Θ
bk ×BjrB

Θ
kr.

Further if B is s-orthogonal,
∑t

r=1
BjrB

Θ
kr = 0, forj 6= k. So

Lab =
t
∑

j=1

t
∑

k=1

AajA
Θ
bk ×

(

t
∑

r=1

BjrB
Θ
kr

)

=
t
∑

r=1

AajA
Θ
bk × ψIn.

So, Lab = 0, a 6= b and Laa = φψImn.
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Theorem 3.2 (Conferred Amicability Theorem). Suppose A = (Akj) is a matrix
of order tm with elements from R, where Akj is of order m and B = (Bkj) and
C = (Ckj) are matrices of order tn with elements from T , where Bkj and Ckj are
of order n. Write P = A ⊗ B and Q = A ⊗ C. Suppose BCΘ = CBΘ. Then
PQΘ = QPΘ.

Proof. Let PQΘ = (Lab) and QPΘ = (Rab), where a, b = 1, ..., t. By the Structure
Lemma,

Lab =

t
∑

r=1

t
∑

j=1

t
∑

k=1

AajA
Θ
bk ×BjrC

Θ
kr

=

t
∑

j=1

t
∑

k=1

AajA
Θ
bk ×

(

t
∑

r=1

BjrC
Θ
kr

)

.

Similarly,

Rab =

t
∑

r=1

t
∑

j=1

t
∑

k=1

AajA
Θ
bk × CjrB

Θ
kr

=
t
∑

j=1

t
∑

k=1

AajA
Θ
bk ×

(

t
∑

r=1

CjrB
Θ
kr

)

.

Note BCΘ = CBΘ implies
∑t

r=1
BjrC

Θ
kr =

∑t

r=1
CjrB

Θ
kr, j, k = 1, ..., t. So Lab =

Rab and PQΘ = QPΘ.

Corollary 3.3. Suppose A = (Akj) is a matrix of order tm with elements from
R, where Akj is of order m and B = (Bkj) and C = (Ckj) are matrices of order
tn with elements from T , where Bkj and Ckj are of order n. Write P = A ⊗ B
and Q = A⊗ C. Suppose BCΘ = 0. Then PQΘ = 0.

Proof. Let PQΘ = (Lab) and QPΘ = (Rab), where a, b = 1, ..., t. By the Structure
Lemma,

Lab =

t
∑

r=1

t
∑

j=1

t
∑

k=1

AajA
Θ
bk ×BjrC

Θ
kr

=

t
∑

j=1

t
∑

k=1

AajA
Θ
bk ×





t
∑

j=1

BjrC
Θ
kr



 .

Note BCΘ = 0 ⇒
∑t

r=1
BjrC

Θ
kr = 0, j, k = 1, ..., t. So, Lab = 0 and then PQΘ = 0,

also QPΘ = 0.
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4 Using CSOD(2n; p1, ..., pu)

Theorem 4.1. Let A be a CSOD (2a; p1, ..., pu) with elements from R and B
be a CSOD (2b; q1, ..., qv) with elements from T . If A = (Aij) with blocks of
order a has the additional property that Aij © Aik = 0 or (Aij)

s © (Aik)s =
0[i.e., Aa−j+1,a−i+1 © Aa−k+1,a−i+1 = 0], j 6= k, i = 1, 2 then there exist four
matrices with elements from S of order 2ab, P,Q, U, V satisfying

1. PQΘ = QPΘ, PPΘ = QQΘ = φψI2ab.

2. UUΘ+V V Θ = φψI2ab, U©V = 0, UV Θ = V UΘ = 0, U+V = P,U−V = Q.

Corollary 4.2. Suppose there exist a CSOD(2n; p1, ..., pu) with elements from
R and a W (2h, r) = A = (Aij) with blocks of order h which has the additional
property thatAij ©Aik = 0 or (Aij)

s © (Aik)s = 0, j 6= k, i = 1, 2 then there exist

1. Two CSOD(2hn; rp1, ..., rpu), P and Q, satisfying PQΘ = QPΘ.

2. Two matrices with elements from R, of order 2hn, U and V , satisfying
UUΘ+V V Θ = rφI2hn, U©V = 0, UV Θ = V UΘ = 0, U+V = P,U−V = Q.

Corollary 4.3. Suppose there exist a Hadamard matrix of order 2c and a CW (2h, e)
= A = (Aij) with blocks of order h which satisfy Aij©Aik = 0 or (Aij)

s©(Aik)s =
0, j 6= k, i = 1, 2 then there exist

1. Two CW(2ch, 2ce), P and Q, satisfying PQΘ = QPΘ.

2. Two (1,−1, 0) matrices U and V of order 2ch, satisfying UUΘ + V V Θ =
2ceI2ch, U © V = 0, UV Θ = V UΘ = 0, U + V = P,U − V = Q.

Corollary 4.4. If there exist a W(2n, e)and a W (2h, t) = A = (Aij) with blocks
of order h which satisfy Aij ©Aik = 0 or (Aij)

s © (Aik)s = 0, j 6= k, i = 1, 2 then
there exist

1. Two W(2hn, et), P and Q, satisfying PQs = QP s.

2. Two (1,−1, 0) matrices U and V of order 2hn, satisfying UUs + V V s =
etI2hn, U © V = 0, UV s = V Us = 0, U + V = P,U − V = Q.

Corollary 4.5. Let there exist a CSOD (2n; p1, ..., pu) with elements from R and
an Hadamard matrix of order 4h then there exist

1. Two CSOD(4hn; 2hp1, ..., 2hpu), P and Q, satisfying PQΘ = QPΘ.

2. Two matrices with elements from R, of order 4hn, U and V , satisfying
UUΘ +V V Θ = 2hφI4hn, U©V = 0, UV Θ = V UΘ = 0, U+V = P,U−V =
Q.

Corollary 4.6. If there exist a CW(2n, k) and an Hadamard matrix of order 4h
then there exist

1. Two CW(4hn, 2hk), P and Q, satisfying PQΘ = QPΘ.
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2. Two matrices with elements from {±1,±i, 0}, U and V of order 4hn, sat-
isfying UUΘ + V V Θ = 2khφI4hn, U © V = 0, UV Θ = V UΘ = 0, U + V =
P,U − V = Q.

Corollary 4.7. If there exist a complex Hadamard matrix of order 2c and an
Hadamard matrix of order 4h then there exist

1. Two complex Hadamard matrices of order 4hc, P and Q, satisfying PQΘ =
QPΘ.

2. Two matrices with elements from {±1,±i, 0}, U and V of order 4hc, sat-
isfying UUΘ + V V Θ = 4hcφI4hc, U © V = 0, UV Θ = V UΘ = 0, U + V =
P,U − V = Q.

Corollary 4.8. If there exist a W(2n, k) and an Hadamard matrix of order 4h
then there exist

1. Two W(4hn, 2hk), P and Q, satisfying PQs = QP s.

2. Two {1,−1, 0} matrices U and V of order 4hn, satisfying UUs + V V s =
2hkφI4hn, U © V = 0, UV s = V Us = 0, U + V = P,U − V = Q.

Corollary 4.9. If there exist a CSOD (m; p1, ..., pu) with elements from R and
a CSOD (2n; q1, ..., qv) with elements from T then there exist four matrices with
elements from S, of order 2mn,P,Q,U, V satisfying

1. PQΘ = QPΘ, PPΘ = QQΘ = φψI2mn.

2. UUΘ +V V Θ = φψI2mn, U©V = 0, UV Θ = V UΘ = 0, U+V = P,U −V =
Q.

Corollary 4.10. If there exist a CSOD (m; p1, ..., pu) with elements from R and
a W(2n, k) then there exist

1. Two SOD(2n; kp1, ..., kpu) with elements from X, P and Q, satisfying PQs =
QP s.

2. Two matrices U and V with elements from X, of order 2mn, satisfying
UUs +V V s = kφI2mn, U©V = 0, UV s = V Us = 0, U+V = P,U−V = Q.

Corollary 4.11. If there exist a SOD(2n; p1, ..., pu) with elements from X and a
CW(c, r) then there exist

1. Two SOD(2cn; rp1, ..., rpu) with elements from X, P and Q, satisfying PQs =
QP s.

2. Two matrices U and V with elements from X, of order 2cn, satisfying UUs+
V V s = rφI2cn, U © V = 0, UV s = V Us = 0, U + V = P,U − V = Q.

Corollary 4.12. If there exist a CW(c, r) and a W(2n, k) then there exist

1. Two W(2cn, 2rk), P and Q, satisfying PQs = QP s.

2. Two (1,−1, 0) matrices U and V of order 2cn, satisfying UUs + V V s =
rkφI2cn, U © V = 0, UV s = V Us = 0, U + V = P,U − V = Q.
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5 Using CSOD(4n; p1, ..., pu)

Theorem 5.1. Let A be a CSOD (4a; p1, ..., pu) with elements from R and B be a
CSOD (4b; q1, ..., qv) with elements from T . If A = (Aij) with blocks of order a has
the additional property that (i) Aij ©Aik = 0 or (ii) (Aij)

s © (Aik)s = 0, (j, k) =
(1, 2), (j, k) = (3, 4), i = 1, 2, 3, 4 then there exist four matrices U1, U2, U3, U4 with
elements from S of order 4hb, satisfying

1. U1U
Θ
1 + U2U

Θ
2 + U3U

Θ
3 + U4U

Θ
4 = φψI4ab.

2. UiU
Θ
j = 0 for i 6= j.

3. U1 © U2 = 0, U3 © U4 = 0.

Corollary 5.2. Let A be a CSOD (4a; p1, ..., pu) with elements from R and B be a
CSOD (4b; q1, ..., qv) with elements from T . If A = (Aij) with blocks of order a has
the additional property that (i) Aij © Aik = 0 or (ii)(Aij)

s © (Aik)s = 0, (j, k) =
(1, 2), (j, k) = (3, 4), i = 1, 2, 3, 4 then there exist two matrices E and F with
elements from S of order 4ab, satisfying EFΘ = FEΘ = 0, EEΘ+FFΘ = φψI4ab.

Corollary 5.3. If there exist a CSOD (4a; p1, ..., pu) with elements from R and
an Hadamard matrix of order 4h then there exist four matrices U1, U2, U3, U4 with
elements from R of order 4hn, satisfying

1. U1U
Θ
1 + U2U

Θ
2 + U3U

Θ
3 + U4U

Θ
4 = 2φψI4hn.

2. UiU
Θ
j = 0 for i 6= j.

3. U1 © U2 = 0, U3 © U4 = 0.

Corollary 5.4. If there exist CSOD (4n; p1, ..., pu) with elements from R and an
Hadamard matrix of order 4h then there exist two matrices E and F with elements
from S of order 4hn, satisfying EFΘ = FEΘ = 0, EEΘ + FFΘ = 2hφI4hn also
we have a CSOD (8hn; 2hp1, ..., 2hpu).

6 Conclusion

We have constructeted the some orthogonal matrices by Strong Kronecker mul-
tiplication. These results are particularly important as they allow small matrices
to be combined to from larger matrices, but of smaller order than the straight
forward Kronecker product would permit.
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