
Thai Journal of Mathematics
Volume 11 (2013) Number 2 : 357–370

http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

Statistically Convergent Difference

Sequence Spaces of Fuzzy Real

Numbers Defined by Orlicz Function1

Binod Chandra Tripathy
†,2

and Stuti Borgohain
‡

†Mathematical Sciences Division
Institute of Advanced Study in Science and Technology
Paschim Boragaon, Garchuk, Guwahati-781035, India

e-mail : tripathybc@yahoo.com;
tripathybc@rediffmail.com

‡Department of Mathematics, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
e-mail : stutiborgohain@yahoo.com

Abstract : The classes of statistically convergent difference sequence spaces of
fuzzy real numbers defined by Orlicz functions are introduced. Some properties
of these sequence spaces like solidness, symmetricity, convergence-free etc. are
studied. We obtain some inclusion relations involving these sequence spaces.

Keywords : Orlicz function; symmetric space; solid space; convergence-free;
metric space; completeness.

2010 Mathematics Subject Classification : 40A05; 40A25; 40A30; 40C05.

1 Introduction

In order to extend the notion of convergence of sequences, statistical conver-
gence of sequences was introduced by Fast [1] and Schoenberg [2] independently.
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project No.-F. No. 30 − 240/2004 (RS).
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It is also found in Zygmund [3]. Later on it was studied from sequence space point
of view and linked with summability theory by Tripathy ([4, 5]), Tripathy and Sen
[6], Rath and Tripathy [7], Fridy [8], Kwon [9], Nuray and Savas [10], Šalàt [11],
Altin [12] and many others.

The notion depends on the idea of asymptotic density of subsets of the set N

of natural numbers. A subset A of N is said to have natural density δ(A) if

δ(A) = lim
n→∞

1

n

n
∑

k=1

χA(k) exists,

where χA is the characteristic function of A. Clearly all-finite subsets of N have
zero natural density and δ(Ac) = δ(N − A) = 1 − δ(A).

A sequence (xk) is said to be statistically convergent to L, if for any ε > 0, we

have δ{(k ∈ N : |xk − L| ≥ ε)} = 0. We write xk
stat
−→ L or stat − limk→∞xk = L.

For two sequences (xk) and (yk), we say that xk 6= yk for almost all k (in short
a.a.k.) if δ({k ∈ N : xk = yk}) = 0.

Let x ∈ w and let p be a positive real number. The sequence x is said to be
strongly p-Cesàro summable if there is a complex number L such that,

lim
n

1

n

n
∑

k=1

|xk − L|p = 0.

We say that x is strongly p-Cesàro summable to L.
The concept of fuzzy set theory was introduced by Zadeh in the year 1965.

Gradually the potential of the notion of fuzzy set was realized by the scientific
group and many researchers were motivated for further investigation and its ap-
plication. It has been applied for the studies in almost all the branches of science,
where mathematics plays a role. Workers on sequence spaces have also applied the
notion and introduced sequences of fuzzy real numbers and studied their different
properties. The concept of fuzzyness has been applied in various fields like Cyber-
natics, Artificial Intelligence, Expert System and Fuzzy control, Pattern recogni-
tion, Operation research, Decision making, Image analysis, Projectiles, Probability
theory, Agriculture, Weather forecasting etc. The fuzzyness of all the subjects of
Mathematical Sciences have been investigated. Fuzzy probability theory is known
as Possibility theory. The notion of statistical convergence of sequences has rela-
tionship with possibility theory. The distribution that is used in case of statistical
convergence is uniform distribution. The notion of statistical convergence is same
as the notion of almost sure convergence of probability theory. The results on
almost sure convergence are of single sequence type.

The notion of fuzzy set theory has been applied for investigating different
classes of sequences. We have listed some of the papers mostly recent in the list
of references. We have observed that only a few papers have been published on
sequence spaces of fuzzy numbers till date. Therefore we were motivated by the
recent publications as well as the application of the notion of fuzzy set.

Sequences of fuzzy numbers have been discussed by Nuray and Savas [10],
Kwon [9], Tripathy and Dutta ([13, 14]), Tripathy and Sarma [15], Altin [12], Altin
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et al. [16], Altin et al. [17] and many others. Nuray and Savas [10] introduced the
concept of statistically convergent sequences of fuzzy real numbers.

Kizmaz [4] studied the notion of difference sequence spaces at the initial stage.
Kizmaz [18] introduced and investigated the difference sequence spaces ℓ∞(∆),
c(∆) and c0(∆) for crisp sets. The notion is defined as follows:

Z(∆) = {x = (xk) : (∆xk) ∈ Z},

for Z = ℓ∞, c and c0, where ∆x = (∆xk) = (xk − xk+1).
The above spaces are Banach spaces, normed by,

‖ x ‖∆= |x1| + sup
k

|∆xk|.

The idea of Kizmaz [18] was applied to introduce different type of difference se-
quence spaces and study their different properties by Tripathy [5], Tripathy et al.
[19], Tripathy and Mahanta [20], Tripathy and Sen [6] and many others.

Tripathy and Esi [21] introduced the new type of difference sequence spaces,
for fixed m ∈ N by,

Z(∆m) = {x = (xk) : (∆mXk) ∈ Z},

for Z = ℓ∞, c and c0 where ∆mx = (∆mxk) = (xk − xk+m).
The above spaces are Banach spaces, normed by,

‖ x ‖∆m
=

m
∑

r=1

|xr| + sup
k

|∆mxk|.

Tripathy et al. [22] further generalized this notion and introduced the follow-
ing. For m ≥ 1 and n ≥ 1,

Z(∆n
m) = {x = (xk) : (∆n

mxk) ∈ Z},

for Z = ℓ∞, c and c0. Where (∆n
mxk) = (∆n−1

m xk − ∆n−1
m xk+m) for all k ∈ N .

This generalized difference notion has the following binomial representation,

∆n
mxk =

n
∑

r=0

(−1)r

(

n

r

)

xk+rm. (1.1)

An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous,
non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) → ∞,
as x → ∞. An Orlicz function M is said to satisfy ∆2-condition for all values
of x, if there exists a constant K > 0, such that M(Lx) ≤ KLM(x), for all
x > 0 and for L > 1. If the convexity of the Orlicz function is replaced by
M(x+y) ≤ M(x)+M(y), then this function is called as modulus function. In the
recent past different classes of sequences have been introduced and investigated
using modulus function by Tripathy and Chandra [23], Esi and Tripathy [24],
Lindenstrauss and Tzafriri [25], Et et al. [26] and many others.
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Remark 1.1. An Orlicz function satisfies the inequality M(λx) ≤ λM(x) for all
λ with 0 < λ < 1.

Throughout the article wF , ℓF , ℓF
∞ represent the classes of all, absolutely sum-

mable and bounded sequences of fuzzy real numbers respectively.

2 Preliminaries

A fuzzy real number X is a fuzzy set on R, i.e. a mapping X : R → I(= [0, 1])
associating each real number t with its grade of membership X(t). A fuzzy real
number X is called convex if X(t) ≥ X(s)∧X(r) =min(X(s), X(r)), where s <

t < r. If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy real number X is
called normal. A fuzzy real number X is said to be upper semi-continuous if for
each ε > 0, X−1([0, a + ε)), for all a ∈ I, is open in the usual topology of R.

The class of all upper semi-continuous, normal, convex fuzzy real numbers is
denoted by R(I). For X ∈ R(I), the α-level set Xα for 0 < α ≤ 1 is defined by,
Xα = {t ∈ R : X(t) ≥ α}. The 0-level of X i.e. X0 is the closure of strong 0-cut,
i.e. cl{t ∈ R : X(t) > 0}.

The absolute value of X ∈ R(I) i.e. |X | is defined by

|X |(t) =

{

max{X(t), X(−t)} for t ≥ 0;
0 otherwise.

For r ∈ R, r ∈ R(I) is defined by

r(t) =

{

1 for t = r;
0 otherwise.

The additive identity and multiplicative identity of R(I) are denoted by 0 and
1 respectively. The zero sequence of fuzzy real numbers is denoted by θ.

Let D be the set of all closed bounded intervals X = [XL, XR]. Define
d : D × D → R by d(X, Y )= max {|XL − Y L|, |XR − Y R|}. Then clearly
(D, d) is a complete metric space. Define d : R(I) × R(I) → R by d(X, Y ) =

sup
0<α≤1d(Xα, Y α), for X, Y ∈ R(I). Then it is well known that (R(I), d) is a
complete metric space.

A sequence X = (Xn) of fuzzy real numbers is said to converge to the fuzzy
number X0, if for every ε > 0, there exists n0 ∈ N such that d(Xn, X0) < ε, for
all n ≥ n0. A sequence space E is said to be solid if (Yn) ∈ E, whenever (Xn) ∈ E

and |Yn| ≤ |Xn|, for all n ∈ N . A sequence space E is said to be monotone if E

contains the canonical pre-images of all its step spaces.
Let X = (Xn) be a sequence, then S(X) denotes the set of all permutations of

the elements of (Xn) i.e. S(X) = {(Xπ(n)) : π is a permutation of N}. A sequence
space E is said to be symmetric if S(X) ⊂ E for all X ∈ E. A sequence space E

is said to be convergence-free if (Yn) ∈ E whenever (Xn) ∈ E and Xn = 0 implies
Yn = 0. Sequences of fuzzy numbers have been investigated by Kwon [9], Nuray
[10], Altin [12], Tripathy and Dutta [13, 14], Tripathy and Sarma [15], Et et al.
[27] and others.
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Remark 2.1. A sequence space E is solid implies that E is monotone.

Lindenstrauss and Tzafriri [25] used the notion of Orlicz function and intro-
duced the sequence space:

ℓM =

{

(xk) ∈ w :

∞
∑

k=1

M

(

|xk|

ρ

)

< ∞, for some ρ > 0

}

.

The space ℓM with the norm,

‖ (xk) ‖= inf

{

ρ > 0 :

∞
∑

k=1

M

(

|xk|

ρ

)

≤ 1

}

,

becomes a Banach space, which is called an Orlicz sequence space. The space ℓM is
closely related to the space ℓp , which is an Orlicz sequence space with M(x) = xp,
for 1 ≤ p < ∞.

In the later stage different classes of Orlicz sequence spaces have been in-
troduced and investigated by Tripathy et al. [19], Tripathy and Mahanta [20],
Tripathy and Sarma [15] and many others.

In this article we introduce the following sequence spaces.

c(M, ∆n
m)F =

�
(Xk) ∈ wF : stat-lim M

�
d(∆n

mXk, L)

ρ

�
= 0, for some ρ > 0, L ∈ R(I)

�
,

c0(M, ∆n
m)F =

�
(Xk) ∈ wF : stat-lim M

�
d(∆n

mXk, 0)

ρ

�
= 0, for some ρ > 0

�
,

W (M,∆n
m, p)F =

(
(Xk) ∈ wF : lim

n→∞

1

n

nX
k=1

�
M

�
d(∆n

mXk, L)

ρ

��p

= 0,

for some ρ > 0, L ∈ R(I)

)
.

Also, we define,

mF (M) = c(M, ∆n
m)F ∩ ℓ∞(M, ∆n

m)F ,

mF
0 (M) = c0(M, ∆n

m)F ∩ ℓ∞(M, ∆n
m)F .

3 Main Results

Theorem 3.1. The spaces mF (M) and mF
0 (M) are complete metric spaces by

the metric,

η(X, Y ) =
mn
∑

r=1

d(Xr, Yr) + inf

{

ρ > 0 : sup
k

M

(

d(∆n
mXk, ∆n

mYk)

ρ

)

≤ 1

}

,

for X, Y ∈ mF (M) and mF
0 (M) .
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Proof. Consider the class of sequences mF (M). Let (X(i)) be a Cauchy sequence

in mF (M) such that X(i) = (X
(i)
k )∞k=1.

Let ε > 0 be given. For a fixed x0 > 0, choose r > 0 such that M
(

rx0

2

)

≥ 1.
Then there exists a positive integer n0 = n0(ε) such that

η(X(i), X(j)) <
ε

rx0
,

for all i, j ≥ n0.
By the definition of η we get,

mn
∑

r=1

d(X(i)
r , X(j)

r ) + inf

{

ρ > 0 : sup
k

M

(

d(∆n
mX

(i)
k , ∆n

mX
(j)
k )

ρ

)

≤ 1

}

< ε, (3.1)

for all i, j ≥ n0. Which implies,

mn
∑

r=1

d(X(i)
r , Y (j)

r ) < ε, for all i, j ≥ n0

⇒ d(X(i)
r , Y (j)

r ) < ε, for all i, j ≥ n0, r = 1, 2, 3, ..., mn.

Hence (X
(i)
r ) is a Cauchy sequence in R(I), so it is convergent in R(I), by the

completeness property of R(I), for r = 1, 2, 3, ..., mn.
Let

lim
i→∞

X(i)
r = Xr, for r = 1, 2, 3, ..., mn. (3.2)

Also,

sup
k

M

(

d(∆n
mX

(i)
k , ∆n

mX
(j)
k )

ρ

)

≤ 1, for all i, j ≥ n0 (3.3)

⇒ M

(

d(∆n
mX

(i)
k , ∆n

mX
(j)
k )

η(X(i), X(j))

)

≤ 1 ≤ M
(rx0

2

)

, for all i, j ≥ n0.

Since M is continuous, we get

d(∆n
mX

(i)
k , ∆n

mX
(j)
k ) ≤

rx0

2
.η(X(i), X(j)), for all i, j ≥ n0

⇒ d(∆n
mX

(i)
k , ∆n

mX
(j)
k ) <

rx0

2
.

ε

rx0
=

ε

2
, for all i, j ≥ n0

⇒ d(∆n
mX

(i)
k , ∆n

mX
(j)
k ) <

ε

2
, for all i, j ≥ n0.

Which implies (∆n
mX

(i)
k ) is a Cauchy sequence in R(I) and so it is convergent in

R(I) by the completeness property of R(I).

Let, limi ∆n
mX

(i)
k = Yk (say), in R(I), for each k ∈ N . We have to prove that,

lim
i

X(i) = X and X ∈ mF (M).
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For k = 1, we get, from (1.1) and (3.2),

lim
i→∞

X
(i)
mn+1 = Xmn+1.

Proceeding in this way by using principle of induction, we get

lim
i→∞

X
(i)
k = Xk, for each k ∈ N.

Also, limi→∞ ∆n
mX

(i)
k = ∆n

mXk, for each k ∈ N .
Now, taking j → ∞ and fixing i and using the continuity of M , it follows from

(3.3),

sup
k

M

(

d(∆n
mX

(i)
k , ∆n

mXk)

ρ

)

≤ 1, for some ρ > 0.

Now on taking the infimum of such ρ’s, we get

inf

{

ρ > 0 : sup
k

M

(

d(∆n
mX

(i)
k , ∆n

mXk)

ρ

)

≤ 1

}

< ε, for all i ≥ n0 ( by (1.1)).

Hence, we get

mn
∑

r=1

d(X(i)
r , Xr) + inf

{

ρ > 0 : sup
k

M

(

d(∆n
mX

(i)
k , ∆n

mXk)

ρ

)

≤ 1

}

< ε + ε = 2ε,

for all i ≥ n0. Which implies, η(X(i), X) < 2ε, for all i ≥ n0, i.e. limi X(i) = X.

Now, it is to show that X ∈ mF (M).
Let X(i) ∈ mF (M). Then, for each i there exists Li such that

stat- lim
k→∞

M

(

d(∆n
mX

(i)
k , Li)

ρ

)

= 0, for some ρ > 0, Li ∈ R(I), for each i ∈ N.

We have to show that,

1. (Li) converges to L, for i → ∞.

2. stat-limk→∞M
(

d(∆n

m
Xk,L)
ρ

)

= 0, for some ρ > 0, L ∈ R(I).

Since (X(i)) is a convergent sequence of elements from mF (M), so for a given
ε > 0, there exists n0 ∈ N , such that,

η(X(i), X(j)) <
ε

3
.

Again, for given ε > 0, we have

δ(Ai) = δ
({

k ∈ N : η(X(i), Li) <
ε

3

})

= 1.
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and
δ(Aj) = δ

({

k ∈ N : η(X(j), Li) <
ε

3

})

= 1.

Let A = Ai ∩ Aj , then δ(A) = 1. We choose k ∈ A. Then for each i, j ≥ n0,
we have

η(Li, Lj) ≤ η(Li, X
(i)) + η(X(i), X(j)) + η(X(j), Lj)

<
ε

3
+

ε

3
+

ε

3
= ε.

Since the sequence (Li) fulfills the Cauchy condition for convergence, it must
be convergent to a fuzzy real number L (say). Hence, limi→∞ Li = L. Let ξ > 0.
We show that

δ(F ) = δ({k ∈ N : η(Xk, L) < ξ}) = 1.

Since X(n) → X , there exists q ∈ N , such that

η(X(q), X) <
ξ

3
. (3.4)

The number q can be chosen in such a way that together with (3.4) we have

η(Lq, L) <
ξ

3
.

Since stat-limk→∞M

(

d(∆n

m
X

(i)
k

,Li)

ρ

)

= 0, we have a subset B of N such that

δ(B) = 1, where, B = {k ∈ N : η(X(q), Lq) < ξ
3}. Therefore, for each k ∈ B, we

have

η(X, L) ≤ η(X, X(q)) + η(X(q), Lq) + η(Lq, L)

<
ξ

3
+

ξ

3
+

ξ

3
= ξ.

This completes the proof of the theorem.
Proof is similar for mF

0 (M).

Theorem 3.2. The sequence spaces c(M, ∆n
m)F , c0(M, ∆n

m)F , mF (M) and mF
0 (M)

are neither solid nor monotone in general.

Proof. The result follows from the following example:

Example 3.3. Consider the sequence space c0(M, ∆n
m)F . Let Xk = k, for all

k ∈ K ⊂ N , with δ(K) = 1. Let m = 3 and n = 2. Let M(x) = |x|, for all
x ∈ [0,∞). Then, we have d(∆2

3Xk, 0) = 0, for all k ∈ K ⊂ N . Hence, we get

stat-limM

(

d(∆2
3Xk, 0)

ρ

)

= 0, for some ρ > 0.
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Which implies that, (Xk) ∈ c(M, ∆2
3)

F .
Consider the sequence (αk) of scalars defined by

αk =

{

1 k = 2n, n ∈ N ;
0 otherwise.

Now,

αkXk =

{

k for k = 2n − 1, n ∈ N ;
0 otherwise.

So,

d(∆αkXk, 0) =

{

k for k odd;
k + 1 for k even.

Which shows that, (αkXk) 6∈ c(M, ∆)F . Hence, c(M, ∆n
m)F is not solid, in general.

Proofs are similar for the other spaces also.

Theorem 3.4. The sequence spaces c(M, ∆n
m)F , c0(M, ∆n

m)F , mF (M) and mF
0 (M)

are neither symmetric nor convergence free.

Proof. The result follows from the following example:

Example 3.5. Consider the sequence space c0(M, ∆n
m)F . Let m = 1, n = 1. Let

M(x) = x3 for all x ∈ [0,∞). Taking the focus at a and following the standard
formula of parabolic type fuzzy number,

α = −(x − a)2 + 1.

Consider the sequence (Xk) defined as follows:
For k = i2, i ∈ N, Xk(t) = −(t − k)2 + 1, for t ∈ [−(1 + k), (1 + k)] and

Xk = 0, otherwise. Then, for k = i2 and i2 − 1, i ∈ N ,

∆Xk(t) = −(t − k)2 + 1, for t ∈

[

−(2k2 + 4k + 1)

k2 + k
,
(2k2 + 4k + 1)

k2 + k

]

and ∆Xk = 0, otherwise. So, (Xk) ∈ c0(M, ∆n
m)F . Let (Yk) be a re-arrangement of

(Xk), such that, for k = 2i, i ∈ N, Yk(t) = −(t− k)2 + 1, for t ∈ [−(1 + k), (1 + k)]
and Yk = 0, otherwise. So that, for k odd,

∆Yk(t) = −(t − k)2 + 1, for t ∈

[

−(2k2 + 4k + 1)

k2 + k
,
(2k2 + 4k + 1)

k2 + k

]

and ∆Yk = 0, otherwise. For k even,

∆Yk(t) = −(t − k)2 + 1, for t ∈

[

−(2k2 + 4k + 1)

k2 + k
,
(2k2 + 4k + 1)

k2 + k

]

and ∆Yk = 0, otherwise. Which implies, (Yk) 6∈ c0(M, ∆n
m)F . Hence c0(M, ∆n

m)F

is not symmetric in general.
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Proof is similar for convergence- free also.

Theorem 3.6. Let M, M1and M2be Orlicz functions satisfying ∆2-condition.
Then,

(i) mF (M1) ⊆ mF (M ◦ M1);

(ii) mF (M1) ∩ mF (M2) ⊆ mF (M1 + M2).

Proof. (i) Let (Xk) ∈ mF (M1). For ε > 0, there exists η > 0 such that ε = M(η).
Then there exists a set K ⊆ N , with δ(K) = 1 such that

M1

(

d(∆n
mXk, L)

ρ

)

< η, for all k ∈ K and for some ρ > 0.

Let

Yk = M1

(

d(∆n
mXk, L)

ρ

)

, for some ρ > 0.

Since M is continuous and non-decreasing, we get

M(Yk) = M

(

M1

(

d(∆n
mXk, L)

ρ

))

< M(η) = ε, for some ρ > 0.

Which implies, (Xk) ∈ mF (M ◦ M1). This completes the proof.

(ii) Let (Xk) ∈ mF (M1) ∩ mF (M2). Then there exists a set K ⊆ N , with
δ(K) = 1 such that

M1

(

d(∆n
mXk, L)

ρ

)

< ε, for all k ∈ K and for some ρ > 0

and

M2

(

d(∆n
mXk, L)

ρ

)

< ε, for all k ∈ K and for some ρ > 0.

The rest of the proof follows from the equality,

(M1 + M2)

(

d(∆n
mXk, L)

ρ

)

= M1

(

d(∆n
mXk, L)

ρ

)

+ M2

(

d(∆n
mXk, L)

ρ

)

< ε + ε = 2ε

for some ρ > 0. Which implies that (Xk) ∈ mF (M + M1). This completes the
proof.

Theorem 3.7.

(i) W (M, ∆n
m, p)F ⊆ c(M, ∆n

m)F .

(ii) For X = (Xk) ∈ c(M, ∆n
m)F , (Xk) is strongly p-Cesàro summable to X0, if

it is bounded.
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Proof. (i) Let (Xk) ∈ W (M, ∆n
m, p)F . For any ε > 0 and p ∈ R, 0 < p < ∞ and

using the continuity of M , we get

n
∑

k=1

[

M

(

d(∆n
mXk, X0)

ρ

)]p

≥ εp.

∣

∣

∣

∣

{

k ≤ n :

[

M

(

d(∆n
mXk, X0)

ρ

)]

≥ ε

}∣

∣

∣

∣

for some ρ > 0. It follows that (Xk) is statistically convergent to X0. Hence,
(Xk) ∈ c(M, ∆n

m)F ⇒ W (M, ∆n
m, p)F ⊆ c(M, ∆n

m)F . It completes the proof.

(ii) Let ε > 0 be given and let K = d(Xk, 0) + d(X0, 0). Since X = (Xk) ∈
mF (M) is bounded and statistically convergent to X0, there is a positive number
N(ε) such that

1

n

∣

∣

∣

∣

∣

{

k ≤ n :

[

M

(

d(∆n
mXk, X0)

ρ

)]p

≥
ε

2

}∣

∣

∣

∣

∣

<
ε

Kp
, for all n ≥ N(ε).

Now, set

Ln =

{

k ≤ n :

[

M

(

d(∆n
mXk, X0)

ρ

)]p

≥
ε

2

}

.

Then for all n ≥ N(ε), we have

1

n

n
∑

k=1

[

M

(

d(∆n
mXk, X0)

ρ

)]p

=
1

n





∑

k∈Ln

[

M

(

d(∆n
mXk, X0)

ρ

)]p

+
∑

k 6∈Ln,k≤n

[

M

(

d(∆n
mXk, X0)

ρ

)]p


 < ε.

for some fixed ρ > 0. This completes the proof.

The proof of the following result is easy, so omitted.

Corollary 3.8. Let p, q ∈ R, 0 ≤ p < q < ∞, then

1. W (M, ∆n
m, p)F ⊇ W (M, ∆n

m, q)F ;

2. W (M, ∆n
m, p)F ∩ ℓF

∞(M, ∆n
m) = W (M, ∆n

m, q)F ∩ ℓF
∞(M, ∆n

m).

Proposition 3.9. Z(M, ∆i
m) ⊂ Z(M, ∆n

m), for 0 ≤ i < n, for Z = c and c0.

Proof. Let (Xk) ∈ cF (M, ∆n−1
m ). Then, we have

stat-limM

(

d(∆n−1
m Xk, L)

ρ

)

= 0, for some ρ > 0 and L ∈ R(I).
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Now, we have

stat-limM

(

d(∆n
mXk, 0)

2ρ

)

= stat-limM

(

d(∆n−1
m Xk − ∆n−1

m Xk+1, 0)

2ρ

)

≤ stat-lim
1

2
M

(

d(∆n−1
m Xk, 0)

ρ

)

+ stat-lim
1

2
M

(

d(∆n−1
m Xk+1, 0)

ρ

)

= 0.

Proceeding in this way by induction, we have Z(M, ∆i
m) ⊂ Z(M, ∆n

m), for 0 ≤
i < n, for Z = ℓF

∞, cF and cF
0 . This completes the proof.

4 Conclusion

In this paper, we have introduced the notions of different types of statisti-
cally convergent sequences of real numbers. We have investigated their different
algebraic and topological properties like completeness, solidness, symmetricity,
convergence free etc. The notion of statistical convergence is similar to the notion
of almost sure convergence of the probability theory. These results can be applied
for investigating the almost sure convergence of difference sequences of random
variables. It is expected that it will attract workers from sequence spaces as well
as from distribution theory for further investigation.
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[11] T. Šalàt, On statistically convergent sequences of fuzzy real numbers, Math.
Slovaca 30 (1980) 139–150.

[12] Y. Altin, A note on lacunary statistically convergent double sequences of
fuzzy numbers, Commun. Korean Math. Soc. 23 (2) (2008) 179–185.

[13] B.C. Tripathy, A.J. Dutta, On fuzzy real-valued double sequence spaces 2ℓ
p
F ,

Math. Comput. Model. 46 (9-10) (2007) 1294–1299.

[14] B.C. Tripathy, A.J. Dutta, Bounded variation double sequence space of fuzzy
real numbers, Comput. Math. Appl. 59 (2) (2010) 1031–1037.

[15] B.C. Tripathy, B. Sarma, Sequence spaces of fuzzy real numbers defined by
Orlicz functions, Math. Slovaca 58 (5) (2008) 621–628.

[16] Y. Altin, M. Et, M. Basarir, On some generalized difference sequences of
fuzzy numbers, Kuwait J. Sci. Engg. 34 (1A) (2007) 1–14.

[17] Y. Altin, M. Et, R. Colak, Lacunary strongly convergence of generalized
difference sequences of fuzzy numbers, Comput. Math. Appl. 52 (6-7) (2006)
1011–1020.

[18] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (2) (1981)
169–176.

[19] B.C. Tripathy, Y. Altin, M. Et, Generalized difference sequences spaces on
seminormed spaces defined by Orlicz functions, Math. Slovaca 58 (3) (2008)
315–324.

[20] B.C. Tripathy, S. Mahanta, On a class of generalized lacunary difference se-
quence spaces defined by Orlicz function, Acta Math. Applicata Sin. 20 (2)
(2004) 231–238.

[21] B.C. Tripathy, A. Esi, A new type of difference sequence spaces, Internat. J.
Sci. Tech. 1 (1) (2006) 11–14.

[22] B.C. Tripathy, A. Esi, B.K. Tripathy, On a new type of generalized difference
Cesro sequence spaces, Soochow J. Math. 31 (2005) 333–340.

[23] B.C. Tripathy, P. Chandra, On some generalized difference paranormed se-
quence spaces associated with multiplier sequences defined by modulus func-
tion, Anal. Theory Appl. 27 (1) (2011) 21–27.



370 Thai J. Math. 11 (2013)/ B.C. Tripathy and S. Borgohain

[24] A. Esi, B.C. Tripathy, Some new type of difference sequence spaces defined
by modulus function and statistical convergence, Anal. Theory Appl. 28 (1)
(2012) 19–26.

[25] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10
(1971) 379–390.

[26] M. Et, Y. Altin, B. Choudhary, B.C. Tripathy, On some classes of sequences
defined by sequences of Orlicz functions, Math. Ineq. Appl. 9 (2) (2006) 335–
342.

[27] M. Et, Y. Altin, H. Altinok, On almost statistical convergence of generalized
difference sequences of fuzzy numbers, Math. Model. Anal. 10 (4) (2005) 345–
352.

(Received 19 October 2011)
(Accepted 3 April 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th


