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1 Introduction and Preliminaries

Banach fixed point theorem [1] in a complete metric space has been generalized
in many spaces. In 2011, Azam et al. [2] introduced the notion of complex-valued
metric space and established sufficient conditions for the existence of common
fixed points of a pair of mappings satisfying a contractive condition. The idea of
complex-valued metric spaces can be exploited to define complex-valued normed
spaces and complex-valued Hilbert spaces; additionally it offers numerous research
activities in mathematical analysis. The theorems proved by Azam et al. [2] and
Bhatt et al. [3] uses the rational inequality in a complex-valued metric space as
contractive condition. In this paper, we introduce the concept of property (E.A)
in a complex-valued metric space, to prove some common fixed point results for a
quadruple of self-mappings satisfying a contractive condition of ‘max’ type. Our
results generalizes various theorems of ordinary metric spaces.

An ordinary metric d is a real-valued function from a set X ×X into R, where
X is a nonempty set. That is, d : X × X → R. A complex number z ∈ C is an
ordered pair of real numbers, whose first co-ordinate is called Re(z) and second
coordinate is called Im(z). Thus a complex-valued metric d is a function from a
set X ×X into C, where X is a nonempty set and C is the set of complex number.
That is, d : X × X → C. Let z1, z2 ∈ C, define a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

It follows that z1 - z2 if one of the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2),

(ii) Re(z1) < Re(z2), Im(z1 = Im(z2),

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),

(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In (i), (ii) and (iii), we have |z1| < |z2|. In (iv), we have |z1| = |z2|. So |z1| ≤ |z2|.
In particular, z1 � z2 if z1 6= z2 and one of (i), (ii), (iii) is satisfy. In this case
|z1| < |z2|. We will write z1 ≺ z2 if only (iii) satisfy. Further,

0 - z1 � z2 ⇒ |z1| < |z2|,

z1 - z2 and z2 ≺ z3 ⇒ z1 ≺ z3.

Azam et al. [2] defined the complex-valued metric space (X, d) in the following
way:

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d : X×X →
C satisfies the following conditions:

(C1) 0 - d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(C2) d(x, y) = d(y, x) for all x, y ∈ X ;
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(C3) d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X .

Then d is called a complex-valued metric on X , and (X, d) is called a complex-
valued metric space.

A point x ∈ X is called an interior point of A ⊆ X if there exists r ∈ C, where
0 ≺ r, such that

B(x, r) = {y ∈ X : d(x, y) ≺ r} ⊆ A.

A point x ∈ X is called a limit point of A ⊆ X , if for every 0 ≺ r ∈ C,

B(x, r) ∩ (A − X) 6= φ.

The set A is called open whenever each element of A is an interior point of A. A
subset B is called closed whenever each limit point of B belongs to B.

The family F := {B(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for a Hausdorff
topology τ on X .

Let {xn} be a sequence in X and x ∈ X . If for every c ∈ C, with 0 ≺ c

there exists n0 ∈ N such that for all n > n0, d(xn, x) ≺ c, then {xn} is called
convergent. Also, {xn} converges to x (written as, xn → x or limn→∞ xn = x);
and x is the limit point of {xn}. The sequence {xn} converges to x if and only if
limn→∞ |d(xn, x)| = 0.

If for every c ∈ C, with 0 ≺ c there exists n0 ∈ N such that for all n > n0,
d(xn, xn+m) ≺ c, then {xn} is called Cauchy sequence in (X, d). If every Cauchy
sequence converges in X , then X is called a complete complex-valued metric space.
The sequence {xn} is called Cauchy if and only if limn→∞ |d(xn, xn+m)| = 0.

Definition 1.2 ([3]). A pair of self-mappings A, S : X → X is called weakly-
compatible if they commute at their coincidence points. That is, if there be a
point u ∈ X such that Au = Su, then ASu = SAu, for each u ∈ X .

Example 1.3. Let X = C. Define complex-metric d : X×X → C by: d(z1, z2) :=
eia|z1 − z2|, where a is any real constant. Then (X, d) is a complex-valued metric
space. Suppose A, S : X → X be defined as: Az = 2eiπ/4 if Re(z) 6= 0, Az = 3eiπ/3

if Re(z) = 0, and Sz = 2eiπ/4 if Re(z) 6= 0, Sz = 4eiπ/6 if Re(z) = 0.
Then observe that: A and S are coincident when Re(z) 6=0 and Az = Sz =

2eiπ/4. At this point ASz = SAZ = 2eiπ/4. Hence pair (A, S) commutes at their
coincidence point, so it is weakly compatible at all z ∈ C with Re(z) 6=0.

Definition 1.4. We define the ‘max’ function for the partial order relation - by:

(1) max{z1, z2} = z2 ⇔ z1 - z2.

(2) z1 - max{z2, z3} ⇒ z1 - z2, or z1 - z3.

(3) max{z1, z2} = z2 ⇔ z1 - z2 or |z1| ≤ |z2|.

Using Definition 1.4 we have the following lemma:
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Lemma 1.5. Let z1, z2, z3, ... ∈ C and the partial order relation - is defined on
C. Then following statements are easy to prove:

(i) If z1 - max{z2, z3} then z1 - z2 if z3 - z2;

(ii) If z1 - max{z2, z3, z4} then z1 - z2 if max{z3, z4} - z2;

(iii) If z1 - max{z2, z3, z4, z5} then z1 - z2 if max{z3, z4, z5} - z2, and so on.

Now, we give the following definition of property (E.A), like [4] in complex-
valued metric space:

Definition 1.6. Let A, S : X → X be two self-maps of a complex-valued metric
space (X, d). The pair (A, S) is said to satisfy property (E.A), if there exists a
sequence {xn} in X such that limn→∞ Axn = limn→∞ Sxn = t, for some t ∈ X .

Pathak et al. has shown in [5] that weakly compatibility and property (E.A)
are independent to each other (see Ex.2.5, Ex.2.6, Ex.2.7 of [5]).

Example 1.7. Let X = C and d be any complex-valued metric on X. Define
f, g : X → X by: fz = 1

2
z2 and gz = −bz, for all z ∈ X, where b is a fixed complex

number, b 6= 0. Consider a sequence {zn} = { 1

n}n≥1 in X, then limn→∞ fzn = 0

and limn→∞ gzn = limn→∞(− b
n ) = 0, as b 6= 0.

Similarly, for another sequence {wn} = {−2b + 1

n}n≥1 in X, we have
limn→∞ fwn = 1

2
(−2b + 1

n )2 = 2b2 and limn→∞ gwn = limn→∞ −bwn =

limn→∞(2b2 − b
n ) = 2b2. Hence, the pair (f, g) satisfies property (E.A) for the

sequences {zn} and {wn} in X with t = 0, 2b2 ∈ X respectively.

2 Main Results

2.1 Fixed Point Theorem Using (E.A)-Property

Theorem 2.1. Let (X, d) be a complex-valued metric space and A, B, S, T : X →
X be four self-mappings satisfying:

(i) A(X) ⊆ T (X), B(X) ⊆ S(X),

(ii) d(Ax, By) - k max
{

d(Sx, T y), d(By, Sx), d(By, Ty)
}

, ∀x, y ∈ X,

0 < k < 1,

(iii) the pairs (A, S) and (B, T ) are weakly compatible,

(iv) one of the pair (A, S) or (B, T ) satisfy property (E.A).

If the range of one of the mappings S(X) or T (X) is a complete subspace of X,
then mappings A, B, S and T have a unique common fixed point in X.
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Proof. First suppose that the pair (B, T ) satisfy property (E.A). Then, by defini-
tion 1.6, there exist a sequence {xn} in X such that limn→∞ Bxn = limn→∞ Txn =
t, for some t ∈ X . Further, since B(X) ⊆ S(X), there exist a sequence {yn} in X

such that Bxn = Syn. Hence limn→∞ Syn = t. We claim that limn→∞ Ayn = t.
If not, then putting x = yn, y = xn in condition (ii), we have

d(Ayn, Bxn) - k max
{

d(Syn, Txn), d(Bxn, Syn), d(Bxn, Txn)
}

= k max
{

d(Bxn, Txn), 0, d(Bxn, Txn)
}

.

Thus |d(Ayn, Bxn)| ≤ k |max
{

d(Bxn, Txn), 0, d(Bxn, Txn)
}

| = k |d(Bxn, Txn)|,
which is a contradiction. Letting n → ∞ we have

lim
n→∞

|d(Ayn, Bxn)| ≤ k · 0 = 0,

which is a contradiction. Thus limn→∞ Ayn = limn→∞ Bxn = t.
Now, suppose first that S(X) is a complete subspace of X , then t = Su for

some u ∈ X . Subsequently, we have

lim
n→∞

Ayn = lim
n→∞

Bxn = lim
n→∞

Txn = lim
n→∞

Syn = t = Su. (2.1)

We claim that Au = Su. For, putting x = u and y = xn in (ii) we have

d(Au, Bxn) - k max
{

d(Su, Txn), d(Bxn, Su), d(Bxn, Txn)
}

,

letting n → ∞ and using eq.(2.1), we have

d(Au, t) - k max
{

d(t, t), d(t, t), d(t, t)
}

= k · 0 = 0,

whence Au = t = Su. Hence u is a coincidence point of (A, S). Now, the weak
compatibility of pair (A, S) implies that ASu = SAu, or At = St.

On the other hand, since A(X) ⊆ T (X), there exist v in X such that Au = Tv.
Thus Au = Su = Tv = t. Let us show that v is a coincidence point of (B, T ), i.e.,
Bv = Tv = t. If not, then putting x = u, y = v in (ii), we have

d(Au, Bv) - k max
{

d(Su, T v), d(Bv, Su), d(Bv, T v)
}

,

or,
d(t, Bv) - k max

{

d(t, t), d(Bv, t), d(Bv, t)
}

;

whence |d(t, Bv)| ≤ k |max
{

d(t, t), d(Bv, t), d(Bv, t)
}

| ≤ k |d(Bv, t)| < |d(Bv, t)|,
a contradiction. Thus Bv = t. Hence Bv = Tv = t, and v is a coincidence point of
B and T . Further, the weak compatibility of pair (B, T ) implies that BTv = TBv,
or Bt = T t. Therefore t is a common coincidence point of A, B, S and T .

In order to show that t is a common fixed point, let us put x = u and y = t in
(ii) we have

d(t, Bt) = d(Au, Bt) - k max
{

d(Su, T t), d(Bt, Su), d(Bt, T t)
}

= k max
{

d(t, Bt), d(Bt, t), 0
}

,
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or
|d(t, Bt)| ≤ k |max

{

d(t, Bt), d(Bt, t), 0
}

| ≤ k|d(t, Bt)| < |d(t, Bt)|,

a contradiction. Thus Bt = t. Hence At = Bt = St = T t = t.
Similar argument arises if we assume that T (X) is a complete subspace of X .

Similarly, the property (E.A) of the pair (A, S) will give the similar result.
For uniqueness of common fixed point, let us assume that w be another com-

mon fixed point of A, B, S, T . Then, putting x = w, y = t in (ii) we have

d(w, t) = d(Aw, Bt) - k max
{

d(Sw, T t), d(Bt, Sw), d(Bt, T t)
}

= k max
{

d(w, t), d(t, w), 0
}

,

whence,

|d(t, w)| ≤ k |max
{

d(w, t), d(t, w), 0
}

| = k |d(t, w)| < |d(t, w)|,

a contradiction. Thus w = t. Hence At = Bt = St = T t = t, and t is the unique
common fixed point of A, B, S, T . This completes the proof.

Remark 2.2. Continuity of mappings A, B, S, T is relaxed in Theorem 2.1.

Remark 2.3. Completeness of space X is relaxed in Theorem 2.1.

If A = B and S = T in Theorem 2.1, we have the following result:

Corollary 2.4. Let (X, d) be any complex-valued metric space and A, S : X → X

be two self-mappings satisfying:

(i) A(X) ⊆ S(X),

(ii) d(Ax, Ay) - k max
{

d(Sx, Sy), d(Ay, Sx), d(Ay, Sy)
}

, ∀x, y ∈ X,

0 < k < 1,

(iii) the pairs (A, S) is weakly compatible,

(iv) the pair (A, S) satisfy property (E.A).

If S(X) is complete, then A and S have unique common fixed point in X.

2.2 Fixed Point Theorem Using (CLR)-Property

The notion of (CLR)-property was defined by Sintunavarat and Kumam [6]
in a metric space for a pair of self-mappings, which have the common limit in the
range of one of the mappings.

Definition 2.5 (The (CLR)-property [6]). Suppose that (X, d) is a metric space
and f, g : X → X . Two mappings f and g are said to satisfy the common limit in
the range of g property if limn→∞ fxn = limn→∞ gxn = gx, for some x ∈ X .

In the complex-valued metric space, the definition will be same but the space
X will be a complex-valued metric space.
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Example 2.6. Let X = C and d be any complex-valued metric on X. Define
f, g : X → X by: fz = z + 3i and gz = 4z, for all z ∈ X. Consider a sequence
{zn} = {i + 1

n}n≥1 in X, then
limn→∞ fzn = limn→∞ zn + 3i = limn→∞(i + 1

n ) + 3i = 4i, and
limn→∞ gzn = limn→∞ 4(i + 1

n ) = 4i = g(0 + i).
Hence, the pair (f, g) satisfies property (CLRg) in X with x = 0 + i ∈ X.

Some papers related to (CLR) property and the complex-valued metric spaces
can be found in [7–9] of Sintunavarat and Kumam. Here is our main theorem using
(CLR) property for two pairs of self-mappings in complex-valued metric space:

Theorem 2.7. Let (X, d) be a complex-valued metric space and A, B, S, T : X →
X be four self-mappings satisfying:

(i) A(X) ⊆ T (X),

(ii) d(Ax, By) - k max
{

d(Sx, T y), d(By, Sx), d(By, Ty)
}

, ∀x, y ∈ X,

0 < k < 1,

(iii) the pairs (A, S) and (B, T ) are weakly compatible.

If the pair (A, S) satisfy (CLRA) property, or the pair (B, T ) satisfy (CLRB)
property, then mappings A, B, S and T have a unique common fixed point in X.

Proof. First suppose that the pair (B, T ) satisfy the (CLRB) property; then by
Definition 2.5, there exist a sequence {xn} in X such that

lim
n→∞

Bxn = lim
n→∞

Txn = Bx. (2.2)

for some x ∈ X . Further, since BX ⊆ SX , we have Bx = Su for some u ∈ X .
We claim that Au = Su (= t say). If not, then putting x = u and y = xn in (ii)
we have

d(Au, Bxn) - k max
{

d(Su, Txn), d(Bxn, Su), d(Bxn, Txn)
}

letting n → ∞ and using (2.2) we have

d(Au, Bx) - k max
{

d(Bx, Bx), d(Bx, Bx), d(Bx, Bx)
}

= k. 0 = 0

whence |d(Au, Bx)| ≤ 0, which is a contradiction. Thus Au = Su. Hence Au =
Su = Bx = t. It shows that u is a coincidence point of (A, S). Also the weak
compatibility of (A, S) implies that ASu = SAu = At = St. Further, since
AX ⊆ TX , there exist some v ∈ X such that Au = Tv. We claim that Bv = t. If
not, then from (ii), we have

d(Au, Bv) - k max
{

d(Su, T v), d(Bv, Su), d(Bv, T v)
}

i.e.,
d(t, Bv) - k max

{

d(t, t), d(Bv, t), d(Bv, t)
}

.
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So,

|d(t, Bv)| ≤ k|max
{

0, d(Bv, t), d(Bv, t)
}

| ≤ k|d(Bv, t)| < |d(Bv, t)|,

which is a contradiction. Thus Bv = t. Hence Au = Su = t = Bv = Tv. It
shows that v is a coincidence point of pair (B, T ). Since, the pair (B, T ) is weakly
compatible, we have BTv = TBv, or, Bt = T t. Thus t is a common coincidence
point of (A, S) and (B, T ). We claim that t is a common fixed point of A, B, S, T .
If not, then from (ii) we have

d(t, Bt) = d(Au, Bt) - k max
{

d(Su, T t), d(Bt, Su), d(Bt, T t)
}

= k max
{

d(t, Bt), d(Bt, t), 0
}

,

whence |d(t, Bt)| ≤ k|d(Bt, t)| < |d(Bt, t)|, which is a contradiction. Thus Bt = t.
Hence t is a common fixed point of A, B, S and T . The uniqueness of common fixed
point t follows easily. In the similar way, the argument that the pair (A, S) satisfy
property (CLRA) will also give the unique common fixed point of A, B, S and T .
Hence in both cases we conclude the same result of existence and uniqueness of
common fixed point of A, B, S and T . This completes the proof.
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