Thai Journal of Mathematics Volume 11 (2013) Number 2 : 347–355

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Common Fixed Point Theorems Using Property (E.A) in Complex-Valued Metric Spaces

R. K. Verma †,1 and H. K. Pathak ‡

[†]Department of Mathematics, Govt. C.L.C. College Patan Dist.-Durg (C.G.) 491111, India e-mail : rohitverma1967@rediffmail.com
[‡]School of Studies in Mathematics, Pt. Ravishankar Shukla University Raipur (C.G.) 492010, India e-mail : hkpathak05@gmail.com

Abstract : In this paper, we introduce the concept of property (E.A) in a complex-valued metric space to prove some common fixed point results for two pairs of weakly compatible mappings, satisfying a contractive condition of 'max' type. Further, we prove a common fixed point theorem for two pairs of self-mappings satisfying the common limit property in the range of a mapping *called* (*CLR*)-property by Sintunavarat and Kumam [Common fixed point theorem for a pair of weakly compatible mappings in fuzzy metric space, J. Appl. Math., Vol. 2011 (2011), Article ID 637958, 14 pages]. The related result generalizes various theorems of ordinary metric spaces.

Keywords : Banach contraction principal; common fixed point; complex-valued metric space; contractive condition; metric space; property (E.A); partial order; weakly compatible mappings.

2010 Mathematics Subject Classification : 47H10; 54H25.

¹Corresponding author.

Copyright C 2013 by the Mathematical Association of Thailand. All rights reserved.

1 Introduction and Preliminaries

Banach fixed point theorem [1] in a complete metric space has been generalized in many spaces. In 2011, Azam et al. [2] introduced the notion of complex-valued metric space and established sufficient conditions for the existence of common fixed points of a pair of mappings satisfying a contractive condition. The idea of complex-valued metric spaces can be exploited to define complex-valued normed spaces and complex-valued Hilbert spaces; additionally it offers numerous research activities in mathematical analysis. The theorems proved by Azam et al. [2] and Bhatt et al. [3] uses the rational inequality in a complex-valued metric space as contractive condition. In this paper, we introduce the concept of property (E.A) in a complex-valued metric space, to prove some common fixed point results for a quadruple of self-mappings satisfying a contractive condition of 'max' type. Our results generalizes various theorems of ordinary metric spaces.

An ordinary metric d is a real-valued function from a set $X \times X$ into \mathbb{R} , where X is a nonempty set. That is, $d: X \times X \to \mathbb{R}$. A complex number $z \in \mathbb{C}$ is an ordered pair of real numbers, whose first co-ordinate is called Re(z) and second coordinate is called Im(z). Thus a complex-valued metric d is a function from a set $X \times X$ into \mathbb{C} , where X is a nonempty set and \mathbb{C} is the set of complex number. That is, $d: X \times X \to \mathbb{C}$. Let $z_1, z_2 \in \mathbb{C}$, define a partial order \preceq on \mathbb{C} as follows:

 $z_1 \preceq z_2$ if and only if $Re(z_1) \leq Re(z_2)$, $Im(z_1) \leq Im(z_2)$.

It follows that $z_1 \preceq z_2$ if one of the following conditions is satisfied:

- (i) $Re(z_1) = Re(z_2), Im(z_1) < Im(z_2),$
- (ii) $Re(z_1) < Re(z_2), Im(z_1 = Im(z_2)),$
- (iii) $Re(z_1) < Re(z_2), Im(z_1) < Im(z_2),$
- (iv) $Re(z_1) = Re(z_2), Im(z_1) = Im(z_2).$

In (i), (ii) and (iii), we have $|z_1| < |z_2|$. In (iv), we have $|z_1| = |z_2|$. So $|z_1| \le |z_2|$. In particular, $z_1 \not\preccurlyeq z_2$ if $z_1 \neq z_2$ and one of (i), (ii), (iii) is satisfy. In this case $|z_1| < |z_2|$. We will write $z_1 \prec z_2$ if only (iii) satisfy. Further,

$$0 \precsim z_1 \precneqq z_2 \Rightarrow |z_1| < |z_2|,$$

$$z_1 \precsim z_2 \text{ and } z_2 \prec z_3 \Rightarrow z_1 \prec z_3.$$

Azam et al. [2] defined the complex-valued metric space (X, d) in the following way:

Definition 1.1. Let X be a nonempty set. Suppose that the mapping $d: X \times X \to \mathbb{C}$ satisfies the following conditions:

- (C1) $0 \preceq d(x, y)$ for all $x, y \in X$ and d(x, y) = 0 if and only if x = y;
- (C2) d(x,y) = d(y,x) for all $x, y \in X$;

(C3)
$$d(x,y) \preceq d(x,z) + d(z,y)$$
 for all $x, y, z \in X$.

Then d is called a *complex-valued metric on* X, and (X, d) is called a complex-valued metric space.

A point $x \in X$ is called an *interior point* of $A \subseteq X$ if there exists $r \in \mathbb{C}$, where $0 \prec r$, such that

$$B(x,r) = \{y \in X : d(x,y) \prec r\} \subseteq A.$$

A point $x \in X$ is called a *limit point* of $A \subseteq X$, if for every $0 \prec r \in \mathbb{C}$,

$$B(x,r) \cap (A - X) \neq \phi.$$

The set A is called *open* whenever each element of A is an interior point of A. A subset B is called *closed* whenever each limit point of B belongs to B.

The family $\mathcal{F} := \{B(x,r) : x \in X, 0 \prec r\}$ is a sub-basis for a Hausdorff topology τ on X.

Let $\{x_n\}$ be a sequence in X and $x \in X$. If for every $c \in \mathbb{C}$, with $0 \prec c$ there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$, $d(x_n, x) \prec c$, then $\{x_n\}$ is called *convergent*. Also, $\{x_n\}$ *converges* to x (written as, $x_n \to x$ or $\lim_{n\to\infty} x_n = x$); and x is the *limit point* of $\{x_n\}$. The sequence $\{x_n\}$ converges to x if and only if $\lim_{n\to\infty} |d(x_n, x)| = 0$.

If for every $c \in \mathbb{C}$, with $0 \prec c$ there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$, $d(x_n, x_{n+m}) \prec c$, then $\{x_n\}$ is called *Cauchy sequence* in (X, d). If every Cauchy sequence converges in X, then X is called a *complete complex-valued metric space*. The sequence $\{x_n\}$ is called Cauchy if and only if $\lim_{n\to\infty} |d(x_n, x_{n+m})| = 0$.

Definition 1.2 ([3]). A pair of self-mappings $A, S : X \to X$ is called *weakly-compatible* if they commute at their coincidence points. That is, if there be a point $u \in X$ such that Au = Su, then ASu = SAu, for each $u \in X$.

Example 1.3. Let $X = \mathbb{C}$. Define complex-metric $d: X \times X \to \mathbb{C}$ by: $d(z_1, z_2) := e^{ia}|z_1 - z_2|$, where a is any real constant. Then (X, d) is a complex-valued metric space. Suppose $A, S: X \to X$ be defined as: $Az = 2e^{i\pi/4}$ if $Re(z) \neq 0$, $Az = 3e^{i\pi/3}$ if Re(z) = 0, and $Sz = 2e^{i\pi/4}$ if $Re(z) \neq 0$, $Sz = 4e^{i\pi/6}$ if Re(z) = 0.

Then observe that: A and S are coincident when $Re(z)\neq 0$ and $Az = Sz = 2e^{i\pi/4}$. At this point $ASz = SAZ = 2e^{i\pi/4}$. Hence pair (A, S) commutes at their coincidence point, so it is weakly compatible at all $z \in \mathbb{C}$ with $Re(z)\neq 0$.

Definition 1.4. We define the 'max' function for the partial order relation \preceq by:

- (1) $\max\{z_1, z_2\} = z_2 \Leftrightarrow z_1 \precsim z_2.$
- (2) $z_1 \preceq \max\{z_2, z_3\} \Rightarrow z_1 \preceq z_2$, or $z_1 \preceq z_3$.
- (3) $\max\{z_1, z_2\} = z_2 \Leftrightarrow z_1 \precsim z_2 \text{ or } |z_1| \le |z_2|.$

Using Definition 1.4 we have the following lemma:

Lemma 1.5. Let $z_1, z_2, z_3, ... \in \mathbb{C}$ and the partial order relation \preceq is defined on \mathbb{C} . Then following statements are easy to prove:

- (i) If $z_1 \preceq \max\{z_2, z_3\}$ then $z_1 \preceq z_2$ if $z_3 \preceq z_2$;
- (ii) If $z_1 \preceq \max\{z_2, z_3, z_4\}$ then $z_1 \preceq z_2$ if $\max\{z_3, z_4\} \preceq z_2$;
- (*iii*) If $z_1 \preceq \max\{z_2, z_3, z_4, z_5\}$ then $z_1 \preceq z_2$ if $\max\{z_3, z_4, z_5\} \preceq z_2$, and so on.

Now, we give the following definition of property (E.A), like [4] in complexvalued metric space:

Definition 1.6. Let $A, S : X \to X$ be two self-maps of a complex-valued metric space (X, d). The pair (A, S) is said to satisfy *property* (E.A), if there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = t$, for some $t \in X$.

Pathak et al. has shown in [5] that weakly compatibility and property (E.A) are independent to each other (see Ex.2.5, Ex.2.6, Ex.2.7 of [5]).

Example 1.7. Let $X = \mathbb{C}$ and d be any complex-valued metric on X. Define $f, g: X \to X$ by: $fz = \frac{1}{2}z^2$ and gz = -bz, for all $z \in X$, where b is a fixed complex number, $b \neq 0$. Consider a sequence $\{z_n\} = \{\frac{1}{n}\}_{n\geq 1}$ in X, then $\lim_{n\to\infty} fz_n = 0$ and $\lim_{n\to\infty} gz_n = \lim_{n\to\infty} (-\frac{b}{n}) = 0$, as $b \neq 0$.

Similarly, for another sequence $\{w_n\} = \{-2b + \frac{1}{n}\}_{n\geq 1}$ in X, we have $\lim_{n\to\infty} fw_n = \frac{1}{2}(-2b + \frac{1}{n})^2 = 2b^2$ and $\lim_{n\to\infty} gw_n = \lim_{n\to\infty} -bw_n = \lim_{n\to\infty} (2b^2 - \frac{b}{n}) = 2b^2$. Hence, the pair (f,g) satisfies property (E.A) for the sequences $\{z_n\}$ and $\{w_n\}$ in X with $t = 0, 2b^2 \in X$ respectively.

2 Main Results

2.1 Fixed Point Theorem Using (E.A)-Property

Theorem 2.1. Let (X, d) be a complex-valued metric space and $A, B, S, T : X \to X$ be four self-mappings satisfying:

- (i) $A(X) \subseteq T(X), B(X) \subseteq S(X),$
- (ii) $d(Ax, By) \preceq k \max\left\{d(Sx, Ty), d(By, Sx), d(By, Ty)\right\}, \forall x, y \in X, 0 < k < 1,$
- (iii) the pairs (A, S) and (B, T) are weakly compatible,
- (iv) one of the pair (A, S) or (B, T) satisfy property (E.A).

If the range of one of the mappings S(X) or T(X) is a complete subspace of X, then mappings A, B, S and T have a unique common fixed point in X.

Proof. First suppose that the pair (B,T) satisfy property (E.A). Then, by definition 1.6, there exist a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} Bx_n = \lim_{n\to\infty} Tx_n = t$, for some $t \in X$. Further, since $B(X) \subseteq S(X)$, there exist a sequence $\{y_n\}$ in X such that $Bx_n = Sy_n$. Hence $\lim_{n\to\infty} Sy_n = t$. We claim that $\lim_{n\to\infty} Ay_n = t$. If not, then putting $x = y_n$, $y = x_n$ in condition (ii), we have

$$d(Ay_n, Bx_n) \preceq k \max\left\{d(Sy_n, Tx_n), d(Bx_n, Sy_n), d(Bx_n, Tx_n)\right\}$$
$$= k \max\left\{d(Bx_n, Tx_n), 0, d(Bx_n, Tx_n)\right\}.$$

Thus $|d(Ay_n, Bx_n)| \le k |\max \{ d(Bx_n, Tx_n), 0, d(Bx_n, Tx_n) \} | = k |d(Bx_n, Tx_n)|,$ which is a contradiction. Letting $n \to \infty$ we have

$$\lim_{n \to \infty} |d(Ay_n, Bx_n)| \le k \cdot 0 = 0,$$

which is a contradiction. Thus $\lim_{n\to\infty} Ay_n = \lim_{n\to\infty} Bx_n = t$.

Now, suppose first that S(X) is a complete subspace of X, then t = Su for some $u \in X$. Subsequently, we have

$$\lim_{n \to \infty} Ay_n = \lim_{n \to \infty} Bx_n = \lim_{n \to \infty} Tx_n = \lim_{n \to \infty} Sy_n = t = Su.$$
(2.1)

We claim that Au = Su. For, putting x = u and $y = x_n$ in (ii) we have

$$d(Au, Bx_n) \preceq k \max\left\{ d(Su, Tx_n), d(Bx_n, Su), d(Bx_n, Tx_n) \right\},\$$

letting $n \to \infty$ and using eq.(2.1), we have

$$d(Au, t) \preceq k \max \{ d(t, t), d(t, t), d(t, t) \} = k \cdot 0 = 0$$

whence Au = t = Su. Hence u is a coincidence point of (A, S). Now, the weak compatibility of pair (A, S) implies that ASu = SAu, or At = St.

On the other hand, since $A(X) \subseteq T(X)$, there exist v in X such that Au = Tv. Thus Au = Su = Tv = t. Let us show that v is a coincidence point of (B, T), i.e., Bv = Tv = t. If not, then putting x = u, y = v in (ii), we have

$$d(Au, Bv) \preceq k \max\left\{d(Su, Tv), d(Bv, Su), d(Bv, Tv)\right\},\$$

or,

$$d(t, Bv) \preceq k \max\left\{d(t, t), d(Bv, t), d(Bv, t)\right\};$$

whence $|d(t, Bv)| \leq k |\max \{d(t, t), d(Bv, t), d(Bv, t)\}| \leq k |d(Bv, t)| < |d(Bv, t)|$, a contradiction. Thus Bv = t. Hence Bv = Tv = t, and v is a coincidence point of B and T. Further, the weak compatibility of pair (B, T) implies that BTv = TBv, or Bt = Tt. Therefore t is a common coincidence point of A, B, S and T.

In order to show that t is a common fixed point, let us put x = u and y = t in (ii) we have

$$d(t, Bt) = d(Au, Bt) \preceq k \max\left\{d(Su, Tt), d(Bt, Su), d(Bt, Tt)\right\}$$
$$= k \max\left\{d(t, Bt), d(Bt, t), 0\right\},$$

or

$$|d(t, Bt)| \le k |\max\{d(t, Bt), d(Bt, t), 0\}| \le k |d(t, Bt)| < |d(t, Bt)|$$

a contradiction. Thus Bt = t. Hence At = Bt = St = Tt = t.

Similar argument arises if we assume that T(X) is a complete subspace of X. Similarly, the property (E.A) of the pair (A, S) will give the similar result.

For uniqueness of common fixed point, let us assume that w be another common fixed point of A, B, S, T. Then, putting x = w, y = t in (ii) we have

$$d(w,t) = d(Aw,Bt) \preceq k \max\left\{d(Sw,Tt), d(Bt,Sw), d(Bt,Tt)\right\}$$
$$= k \max\left\{d(w,t), d(t,w), 0\right\},$$

whence,

$$|d(t,w)| \le k |\max\{d(w,t), d(t,w), 0\}| = k |d(t,w)| < |d(t,w)|,$$

a contradiction. Thus w = t. Hence At = Bt = St = Tt = t, and t is the unique common fixed point of A, B, S, T. This completes the proof.

Remark 2.2. Continuity of mappings A, B, S, T is relaxed in Theorem 2.1.

Remark 2.3. Completeness of space X is relaxed in Theorem 2.1.

If A = B and S = T in Theorem 2.1, we have the following result:

Corollary 2.4. Let (X, d) be any complex-valued metric space and $A, S : X \to X$ be two self-mappings satisfying:

- (i) $A(X) \subseteq S(X)$,
- (ii) $d(Ax, Ay) \preceq k \max \{ d(Sx, Sy), d(Ay, Sx), d(Ay, Sy) \}, \forall x, y \in X, 0 < k < 1,$
- (iii) the pairs (A, S) is weakly compatible,
- (iv) the pair (A, S) satisfy property (E.A).

If S(X) is complete, then A and S have unique common fixed point in X.

2.2 Fixed Point Theorem Using (CLR)-Property

The notion of (CLR)-property was defined by Sintunavarat and Kumam [6] in a metric space for a pair of self-mappings, which have the common limit in the range of one of the mappings.

Definition 2.5 (The (CLR)-property [6]). Suppose that (X, d) is a metric space and $f, g: X \to X$. Two mappings f and g are said to satisfy the *common limit in* the range of g property if $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = gx$, for some $x \in X$.

In the complex-valued metric space, the definition will be same but the space X will be a complex-valued metric space.

Example 2.6. Let $X = \mathbb{C}$ and d be any complex-valued metric on X. Define $f, g: X \to X$ by: fz = z + 3i and gz = 4z, for all $z \in X$. Consider a sequence $\{z_n\} = \{i + \frac{1}{n}\}_{n \ge 1}$ in X, then

 $\lim_{n \to \infty} fz_n = \lim_{n \to \infty} z_n + 3i = \lim_{n \to \infty} (i + \frac{1}{n}) + 3i = 4i, \text{ and}$ $\lim_{n \to \infty} gz_n = \lim_{n \to \infty} 4(i + \frac{1}{n}) = 4i = g(0 + i).$

Hence, the pair (f,g) satisfies property (CLRg) in X with $x = 0 + i \in X$.

Some papers related to (CLR) property and the complex-valued metric spaces can be found in [7–9] of Sintunavarat and Kumam. Here is our main theorem using (CLR) property for two pairs of self-mappings in complex-valued metric space:

Theorem 2.7. Let (X, d) be a complex-valued metric space and $A, B, S, T : X \to X$ be four self-mappings satisfying:

- (i) $A(X) \subseteq T(X)$,
- (ii) $d(Ax, By) \preceq k \max\left\{d(Sx, Ty), d(By, Sx), d(By, Ty)\right\}, \forall x, y \in X, 0 < k < 1,$
- (iii) the pairs (A, S) and (B, T) are weakly compatible.

If the pair (A, S) satisfy (CLR_A) property, or the pair (B, T) satisfy (CLR_B) property, then mappings A, B, S and T have a unique common fixed point in X.

Proof. First suppose that the pair (B,T) satisfy the (CLR_B) property; then by Definition 2.5, there exist a sequence $\{x_n\}$ in X such that

$$\lim_{n \to \infty} Bx_n = \lim_{n \to \infty} Tx_n = Bx.$$
(2.2)

for some $x \in X$. Further, since $BX \subseteq SX$, we have Bx = Su for some $u \in X$. We claim that Au = Su (= t say). If not, then putting x = u and $y = x_n$ in (ii) we have

$$d(Au, Bx_n) \preceq k \max\left\{ d(Su, Tx_n), d(Bx_n, Su), d(Bx_n, Tx_n) \right\}$$

letting $n \to \infty$ and using (2.2) we have

$$d(Au, Bx) \preceq k \max \left\{ d(Bx, Bx), d(Bx, Bx), d(Bx, Bx) \right\} = k. \ 0 = 0$$

whence $|d(Au, Bx)| \leq 0$, which is a contradiction. Thus Au = Su. Hence Au = Su = Bx = t. It shows that u is a coincidence point of (A, S). Also the weak compatibility of (A, S) implies that ASu = SAu = At = St. Further, since $AX \subseteq TX$, there exist some $v \in X$ such that Au = Tv. We claim that Bv = t. If not, then from (ii), we have

$$d(Au, Bv) \preceq k \max\left\{d(Su, Tv), d(Bv, Su), d(Bv, Tv)\right\}$$

i.e.,

$$d(t, Bv) \preceq k \max\left\{d(t, t), d(Bv, t), d(Bv, t)\right\}.$$

So,

$$|d(t, Bv)| \le k |\max\{0, d(Bv, t), d(Bv, t)\}| \le k |d(Bv, t)| < |d(Bv, t)|,$$

which is a contradiction. Thus Bv = t. Hence Au = Su = t = Bv = Tv. It shows that v is a coincidence point of pair (B,T). Since, the pair (B,T) is weakly compatible, we have BTv = TBv, or, Bt = Tt. Thus t is a common coincidence point of (A, S) and (B, T). We claim that t is a common fixed point of A, B, S, T. If not, then from (ii) we have

$$d(t, Bt) = d(Au, Bt) \precsim k \max\left\{d(Su, Tt), d(Bt, Su), d(Bt, Tt)\right\}$$
$$= k \max\left\{d(t, Bt), d(Bt, t), 0\right\},$$

whence $|d(t, Bt)| \leq k|d(Bt, t)| < |d(Bt, t)|$, which is a contradiction. Thus Bt = t. Hence t is a common fixed point of A, B, S and T. The uniqueness of common fixed point t follows easily. In the similar way, the argument that the pair (A, S) satisfy property (CLR_A) will also give the unique common fixed point of A, B, S and T. Hence in both cases we conclude the same result of existence and uniqueness of common fixed point of A, B, S and T. This completes the proof.

References

- S. Banach, Sür les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922) 133–181.
- [2] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complexvalued metric spaces, Numer. Funct. Anal. Optim. 3 (3) (2011) 243–253.
- [3] S. Bhatt, S, Chaukiyal, R.C. Dimri, A common fixed point theorem for weakly compatible maps in complex-valued metric spaces, Int. J. Math. Sci. Appl. 1 (3) (2011) 1385–1389.
- [4] M. Aamri, D.El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 27 (1) (2002) 181–188.
- [5] H.K. Pathak, R.R. Lopéz, R.K. Verma, A common fixed point theorem of integral type using implicit relation, Nonlinear Funct. Anal. Appl. 15 (1) (2009) 1–12.
- [6] W. Sintunavarat, P. Kumam, Common fixed point theorem for a pair of weakly compatible mappings in fuzzy metric space, J. Appl. Math., Vol. 2011 (2011), Article ID 637958, 14 pages.
- [7] W. Sintunavarat, P. Kumam, Fixed point theorems for a generalized intuitionistic fuzzy contraction in intuitionistic fuzzy metric spaces, Thai. J. Math. 10 (1) (2012) 123–135.
- [8] W. Sintunavarat, P. Kumam, Common fixed point theorem for R-weakly commuting in fuzzy metric spaces, Annali dell'Università de Ferrara 58 (2012) 389–406.

[9] W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and application, Journal of Inequalities and Applications 2012, 2012:84.

(Received 12 December 2011) (Accepted 1 June 2012)

 $\mathbf{T}_{HAI}~\mathbf{J.}~\mathbf{M}_{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th