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Abstract : In this paper, we study inextensible flows of tangent developable sur-
faces of timelike biharmonic general helices in the Lorentzian group of rigid motions
E(1, 1). We obtain the corresponding equations for the inextensible flow of tan-
gent developable surfaces of timelike biharmonic general helices in the Lorentzian
group of rigid motions E(1, 1).
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1 Introduction

Geometric flows have been extensively used in mathematics. In particular,
surface flows based on functional minimization (i.e. evolving a surface so as to
progressively decrease an energy functional) is a common methodology in geometry
processing with applications spanning surface diffusion, shape optimization and
surface design, minimal surfaces, (geodesic) shortest paths, and animation, [1–4].

Physically, inextensible curve and surface flows are characterized by the
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absence of any strain energy induced from themotion. The earliest (and most
mathematically tractable), is as an equilibrium of moments, drawing on a fun-
damental principle of statics. Another approach, ultimately yielding the same
equation for the curve, is as a minimum of bending energy in the elastic curve. A
forcebased approach finds that normal, compression, and shear forces are also in
equilibrium; this approach is useful when considering specific constraints on the
endpoints, which are often intuitively expressed in terms of these forces, [5–7].
On the other hand, harmonic maps f : (M, g) −→ (N, h) between Riemannian
manifolds are the critical points of the energy

E (f) =
1

2

∫

M

|df |2 vg, (1.1)

and they are therefore the solutions of the corresponding Euler–Lagrange equation.
This equation is given by the vanishing of the tension field

τ (f) = trace∇df. (1.2)

Bienergy of a map f by

E2 (f) =
1

2

∫

M

|τ (f)|
2
vg, (1.3)

and say that is biharmonic if it is a critical point of the bienergy.
Jiang derived the first and the second variation formula for the bienergy in [8],

showing that the Euler–Lagrange equation associated to E2 is

τ2 (f) = −J f (τ (f)) = −∆τ (f) − traceRN (df, τ (f)) df (1.4)

= 0,

where J f is the Jacobi operator of f . The equation τ2 (f) = 0 is called the
biharmonic equation. Since J f is linear, any harmonic map is biharmonic [9–13].
Therefore, we are interested in proper biharmonic maps, that is non-harmonic
biharmonic maps.

This study is organised as follows: Firstly, we study tangent developable sur-
faces of timelike biharmonic general helices in the Lorentzian group of rigid motions
E(1, 1). Finally, we obtain parametric equation of tangent developable surfaces of
timelike biharmonic general helices in the Lorentzian group of rigid motions E(1, 1).

2 Preliminaries

Let E(1, 1) be the group of rigid motions of Euclidean 2-space. This consists
of all matrices of the form





coshx sinhx y

sinhx coshx z

0 0 1



 .
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Topologically, E(1, 1) is diffeomorphic to R3 under the map

E(1, 1) −→ R
3 :





cosh x sinhx y

sinhx coshx z

0 0 1



 −→ (x, y, z) ,

It’s Lie algebra has a basis consisting of

X1 =
∂

∂x
, X2 = coshx

∂

∂y
+ sinhx

∂

∂z
, X3 = sinhx

∂

∂y
+ cosh x

∂

∂z
,

for which
[X1,X2] = X3, [X2,X3] = 0, [X1,X3] = X2.

Put

x1 = x, x2 =
1

2
(y + z) , x3 =

1

2
(y − z) .

Then, we get

X1 =
∂

∂x1
, X2 =

1

2

(

ex1 ∂

∂x2
+ e−x1 ∂

∂x3

)

, X3 =
1

2

(

ex1 ∂

∂x2
− e−x1 ∂

∂x3

)

.

(2.1)
The bracket relations are

[X1,X2] = X3, [X2,X3] = 0, [X1,X3] = X2. (2.2)

We consider left-invariant Lorentzian metrics which has a pseudo-orthonormal
basis {X1,X2,X3} . We consider left-invariant Lorentzian metric [14], given by

g = −
(

dx1
)2

+
(

e−x1

dx2 + ex1

dx3
)2

+
(

e−x1

dx2 − ex1

dx3
)2

, (2.3)

where
g (X1,X1) = −1, g (X2,X2) = g (X3,X3) = 1. (2.4)

Let coframe of our frame be defined by

θ1 = dx1, θ2 = e−x1

dx2 + ex1

dx3, θ3 = e−x1

dx2 − ex1

dx3.

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of

the left-invariant metric g, defined above the following is true:

∇ =





0 0 0
−X3 0 −X1

−X2 −X1 0



 , (2.5)

where the (i, j)-element in the table above equals ∇ei
ej for our basis

{Xk, k = 1, 2, 3} = {X1,X2,X3}.
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3 Timelike Biharmonic General Helices in the

Lorentzian Group of Rigid Motions E(1, 1)

Let γ : I −→ E(1, 1) be a non geodesics timelike curve in the group of rigid
motions E(1, 1) parametrized by arc length. Let {T,N,B} be the Frenet frame
fields tangent to the group of rigid motions E(1, 1) along γ defined as follows:

T is the unit vector field γ′ tangent to γ, N is the unit vector field in the
direction of ∇TT (normal to γ) and B is chosen so that {T,N,B} is a positively
oriented orthonormal basis. Then, we have the following Frenet formulas:

∇TT = κN,

∇TN = κT + τB, (3.1)

∇TB = −τN,

where κ is the curvature of γ, τ is its torsion and

g (T,T) = −1, g (N,N) = 1, g (B,B) = 1, (3.2)

g (T,N) = g (T,B) = g (N,B) = 0.

With respect to the orthonormal basis {X1,X2,X3} we can write

T = T1X1 + T2X2 + T3X3,

N = N1X1 + N2X2 + N3X3, (3.3)

B = T × N = B1X1 + B2X2 + B3X3.

Theorem 3.1 ([11]). Let γ : I −→ E(1, 1) is a non geodesic timelike biharmonic

general helix in the Lorentzian group of rigid motions E(1, 1). Then, the parametric

equations of γ are

x1 (s) = coshaκs + ℘3,

x2 (s) =
sinh aecosh aκs+℘3

2
(

℘2
1 + cosh2

a
) {(cosh a − ℘1) cos (℘1κs + ℘2)

+ (cosha + ℘1) sin (℘1κs + ℘2)} + ℘4, (3.4)

x3 (s) =
sinh ae− cosh aκs−℘3

2
(

℘2
1 + sinh2

a
) {− (cosha − ℘1) cos (℘1κs + ℘2)

+ (cosha + ℘1) sin (℘1κs + ℘2)} + ℘5,

where ℘1, ℘2, ℘3, ℘4, ℘5 are constants of integration.
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4 Inextensible Flows of Tangent Developable

Surfaces of Timelike Biharmonic General

Helices in the Lorentzian Group of Rigid

Motions E(1, 1)

Developable surfaces are defined as the surfaces on which the Gaussian curva-
ture is 0 everywhere. The developable surfaces are useful since they can be made
out of sheet metal or paper by rolling a flat sheet of material without stretch-
ing it. Most large-scale objects such as airplanes or ships are constructed using
un-stretched sheet metals, since sheet metals are easy to model and they have
good stability and vibration properties. Moreover, sheet metals provide good fluid
dynamic properties. In ship or airplane design, the problems usually stem from
engineering concerns and in engineering design there has been a strong interest in
developable surfaces.

The tangent developable of γ is a ruled surface

Π (s, u) = γ (s) + uγ′ (s) . (4.1)

Let ̟ be the standard unit normal vector field on a surface Π defined by

̟ =
Πs ∧ Πu

|g (Πs ∧ Πu, Πs ∧ Πu)|
1

2

.

Then, the first fundamental form I is defined by

I= Eds2 + 2Fdsdu + Gdt2,

where
E =g (Πs, Πs) , F =g (Πs, Πu) , G =g (Πu, Πu) .

Theorem 4.1. Let γ : I −→ E(1, 1) is a non geodesic timelike biharmonic gen-

eral helix in the Lorentzian group of rigid motions E(1, 1). Then, the parametric

equations of tangent developable of γ are

x1
Π (s, u) = cosh aκs + u cosha + ℘3,

x2
Π (s, u) =

sinh aecosh aκs+℘3

2
(

℘2
1 + cosh2

a
) {(cosha − ℘1) cos (℘1κs + ℘2) (4.2)

+ (cosha + ℘1) sin (℘1κs + ℘2)}

+
u sinhaecosh aκs+℘3

2
[cos (℘1κs + ℘2) + sin (℘1κs + ℘2)] + ℘4,

x3
Π (s, u) =

sinh ae− cosh aκs−℘3

2
(

℘2
1 + cosh2

a
) {− (cosha − ℘1) cos (℘1κs + ℘2)

+ (cosha + ℘1) sin (℘1κs + ℘2)}

+
u sinhae− cosh aκs−℘3

2
[cos (℘1κs + ℘2) − sin (℘1κs + ℘2)] + ℘5,
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where ℘1, ℘2, ℘3, ℘4, ℘5 are constants of integration.

Proof. By Theorem (3.1), we immediately arrive at

T =
(

cosha,
1

2
ecosh aκs+℘3 sinh a[cos (℘1κs + ℘2) + sin (℘1κs + ℘2)],

1

2
e− cosh aκs−℘3 sinh a[cos (℘1κs + ℘2) − sin (℘1κs + ℘2)]

)

, (4.3)

where ℘3 is constant of integration. From (4.1) and (4.3), by direct calculation we
have (4.2), which proves the theorem.

Definition 4.2 ([6]). A surface evolution Π(s, u, t) and its flow ∂Π

∂t
are said to be

inextensible if its first fundamental form {E,F,G} satisfies

∂E

∂t
=

∂F

∂t
=

∂G

∂t
= 0. (4.4)

This definition states that the surface Π(s, u, t) is, for all time t, the isometric
image of the original surface Π(s, u, t0) defined at some initial time t0. For a
developable surface, Π(s, u, t) can be physically pictured as the parametrization
of a waving flag. For a given surface that is rigid, there exists no nontrivial
inextensible evolution.

Definition 4.3. We can define the following one-parameter family of developable
ruled surface

Π (s, u, t) = γ (s, t) + uγ′ (s, t) . (4.5)

Hence, we have the following theorem.

Theorem 4.4. Let Π is the one-parameter family of tangent developable surface

associated with non geodesic timelike biharmonic general helix in the Lorentzian

group of rigid motions E(1, 1), then ∂Π

∂t
is inextensible if and only if

∂

∂t
[cosha − 2u

(

sinh2
a cos (℘1κs + ℘2) sin (℘1κs + ℘2)

)

]2 (4.6)

=
∂

∂t
sinh2

a

[

cos (℘1κs + ℘2) − u sin (℘1κs + ℘2)

(

1

℘1κ
+ cosha

)]2

+
∂

∂t
sinh2

a

[

sin (℘1κs + ℘2) + u cos (℘1κs + ℘2)

(

1

℘1κ
− cosh a

)]2

,

where κ, a, ℘1, ℘2 are function of time t.

Proof. Assume that Π (s, u, t) be a one-parameter family of ruled surface. We
show that ∂Π

∂t
is inextensible.

On the other hand, from Theorem 3.1, we have

T = coshae1 + sinh a cos (℘1κs + ℘2) e2 + sinh a sin (℘1κs + ℘2) e3. (4.7)
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Using first equation of (3.3) and basis, we have

∇TT = (T ′

1 − 2T2T3)X1 + (T ′

2 − T1T3)X2 + (T ′

3 − T1T2)X3. (4.8)

Further, substituting components of (4.7) in above equation we get

∇TT =
(

−2 sinh2
a cos (℘1κs + ℘2) sin (℘1κs + ℘2)

)

X1

− sinha sin (℘1κs + ℘2)

(

1

℘1κ
+ cosha

)

X2

+ sinha cos (℘1κs + ℘2)

(

1

℘1κ
− cosha

)

X3.

From the Frenet formula (3.1), we have

N =
1

κ
∇TT.

Since

N = −
2

κ

(

sinh2
a cos (℘1κs + ℘2) sin (℘1κs + ℘2)

)

X1

−
1

κ
sinh a sin (℘1κs + ℘2)

(

1

℘1κ
+ cosh a

)

X2

+
1

κ
sinh a cos (℘1κs + ℘2)

(

1

℘1κ
− cosha

)

X3.

Furthermore, we have the natural frame {Πs, Πu} given by

Πs = [cosha − 2u
(

sinh2
a cos (℘1κs + ℘2) sin (℘1κs + ℘2)

)

]X1

+ sinh a

[

cos (℘1κs + ℘2) − u sin (℘1κs + ℘2)

(

1

℘1κ
+ cosha

)]

X2

+ sinh a

[

sin (℘1κs + ℘2) + u cos (℘1κs + ℘2)

(

1

℘1κ
− cosha

)]

X3

and

Πu = coshaX1 + sinh a cos (℘1κs + ℘2)X2 + sinh a sin (℘1κs + ℘2)X3.

The components of the first fundamental form are

E = g(Πs, Πs) = −[cosha − 2u
(

sinh2
a cos (℘1κs + ℘2) sin (℘1κs + ℘2)

)

]2

+ sinh2
a

[

cos (℘1κs + ℘2) − u sin (℘1κs + ℘2)

(

1

℘1κ
+ cosha

)]2

+ sinh2
a

[

sin (℘1κs + ℘2) + u cos (℘1κs + ℘2)

(

1

℘1κ
− cosha

)]2

,
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F = g(Πs, Πu) = −1,

G = g(Πu, Πu) = −1.

Using second and third equation of above system, we have

∂F

∂t
= 0,

∂G

∂t
= 0.

Hence, ∂Π

∂t
is inextensible if and only if (4.6) is satisfied. This concludes the proof

of theorem.

We can use Mathematica in Theorem 4.1, yields

Figure 1.

Figure 2.

Acknowledgement : The authors thank to the referee for useful suggestions and
remarks for the revised version.



On Characterization of Inextensible Flows of Tangent Developable ... 345

References

[1] R.M.C. Bodduluri, B. Ravani, Design of developable surfaces using duality
between plane and point geometries, Computer Aided Design 25 (1993) 621–
632.

[2] T.A. Cook, The Curves of Life, Constable, London, 1914, Reprinted (Dover,
London, 1979).

[3] P. Redont, Representation and Deformation of Developable Surfaces, Com-
puter Aided Design 21 (1) (1989) 13–20.

[4] G. Weiss, P. Furtner, Computer-aided Treatment of Developable Surfaces,
Computer & Graphics 12 (1) (1988) 39–51.

[5] D.Y. Kwon, F.C. Park, Evolution of inelastic plane curves, Appl. Math. Lett.
12 (1999) 115–119.

[6] D.Y. Kwon, F.C. Park, D.P Chi, Inextensible flows of curves and developable
surfaces, Appl. Math. Lett. 18 (2005) 1156–1162.

[7] J.D. Watson, F.H. Crick, Molecular structures of nucleic acids, Nature 171
(1953) 737–738.

[8] G.Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds,
Chinese Ann. Math. Ser. A 7 (2) (1986) 130–144.

[9] B.Y. Chen, Some open problems and conjectures on submanifolds of finite
type, Soochow J. Math. 17 (1991) 169–188.

[10] J. Eells, J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer.
J. Math. 86 (1964) 109–160.

[11] T. Körpınar, E. Turhan, On timelike biharmonic general helices in the
Lorentzian group of rigid motions E(1, 1), International Journal of Open
Problems in Complex Analysis, (in press).

[12] E. Turhan, T. Körpınar, Null Biminimal General Helices in the Lorentzian
Heisenberg Group, Thai J. Math. 9 (1) (2011) 127-137.

[13] E. Turhan, T. Körpınar, On Characterization Of Timelike Horizontal Bihar-
monic Curves In The Lorentzian Heisenberg Group Heis 3, Zeitschrift für
Naturforschung A- A Journal of Physical Sciences 65a (2010) 641–648.

[14] K. Onda, Lorentz Ricci Solitons on 3-dimensional Lie groups, Geom Dedicata
147 (1) (2010) 313–322.

(Received 17 October 2011)
(Accepted 3 April 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th


