Thai Journal of Mathematics Volume 11 (2013) Number 2 : 319–335

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

S_{β} -Open Sets and S_{β} -Continuity in Topological Spaces

Alias B. Khalaf †,1 and Nehmat K. Ahmed ‡

[†]Department of Mathematics, University of Duhok Kurdistan Region, Iraq e-mail : aliasbkhalaf@gmail.com

[‡]Department of Mathematics, College of Education University of Salahaddin, Kurdistan Region, Iraq e-mail : nehmatbalen@yahoo.com

Abstract: In this paper we introduce a subclass of semi open sets called S_{β} -open sets in topological spaces. This class of sets used to define and study the concept of S_{β} -continuous functions.

Keywords : semi-open sets; β -closed sets; S_{β} -open sets. 2010 Mathematics Subject Classification : 54A05; 54A10; 54C05.

1 Introduction and Preliminaries

Throughout this paper, a space means a topological space on which no separation axioms are assumed unless explicitly stated. In 1963 [1] Levine was initiated semi open sets and their properties, Mathematicians gives in several papers interesting and different new types of sets. In [2], Abd-El-Moonsef in 1983 defined the class of β -open set. In 2010, Shareef [3] introduced a new class of semi-open sets called S_P -open sets. We recall the following definitions and characterizations. The closure (resp., interior) of a subset A of X is denoted by clA (resp., intA). A subset A of X is said to be semi-open [1] (resp., pre-open [4], α -open [5], β -open [3], regular open [6] and regular β -open [7]) set if $A \subseteq clintA$ (resp., $A \subseteq intclA$, $A \subseteq intclintA$, $A \subseteq clintclA$, A = intclA and $A = \beta int\beta clA$). The complement

Copyright $\odot~2013$ by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

of semi-open (resp., pre-open, α -open, β -open, regular open, regular β -open) set is said to be semi-closed (resp., pre- closed, α -closed, β -closed, regular closed, regular β -closed). The intersection of all semi-closed (resp., pre-closed, β -closed) sets of X containing a subset A is called the semi-closure (resp., pre-closure, β closure) of A and denoted by sclA (resp., pclA, βclA). The union of all semi-open (resp., pre-open, β -open) set of X contained in A is called the semi-interior (resp., pre-interior, β -interior) of A and denoted by sintA (resp., pintA, β intA). The family of all semi-open (resp., pre-open, α -open, β -open, regular β -open, regular open, semi-closed, pre-closed, α -closed, β -closed, regular β -closed, and regular closed) subset of a topological space X is denoted by SO(X) (resp., PO(X), α $O(X), \beta O(X), R\beta O(X) RO(X), SC(X), PC(X), \alpha C(X), \beta C(X), R\beta C(X)$ and RC(X)). A subset A of X is called δ -open [8] if for each $x \in A$, there exists an open set B such that $x \in B \subseteq intcl B \subseteq A$. A subset A of a space X is called θ -semi-open [9] (resp., semi- θ -open [10] if for each $x \in A$, there exists a semi-open set G such that $x \in G \subseteq clG \subseteq A$ (resp., $x \in G \subseteq sclG \subseteq A$). A function $f: X \to Y$ is a semi-continuous if the inverse image of each open subset of Y is semi-open in X Also f is said to be δ -continuous if for each x in X and each open set V of Y containing f(x) there exists an open set U of X such that $f(intclU) \subseteq intclf(V).$

Definition 1.1 ([4]). A topological space (X, τ) is said to be

- 1. Extremally disconnected if $clV \in \tau$ for every $V \in \tau$.
- 2. Locally indiscrete if every open subset of X is closed.
- 3. Hyperconnected if every nonempty open subset of X is dense.

Lemma 1.2.

- 1. If X is a locally indiscrete space, then each semi-open subset of X is closed and hence each semi-closed subset of X is open [11].
- 2. A topological space (X, τ) is hyperconnected if and only if $RO(X) = \{\phi, X\}$ [12].

Theorem 1.3 ([13]). Let (X, τ) be a topological space, then:

- 1. $SO(X, \tau) = SO(X, \alpha O(X)).$
- 2. $\beta C(X, \tau) = \beta C(X, \alpha O(X)).$

Theorem 1.4 ([1]).

- 1. Let A be any subset of a space X. Then $A \in SO(X,\tau)$ if and only if clA = clintA.
- 2. If $\{A_{\gamma} : \gamma \in \Gamma\}$ is a collection of semi-open sets in a topological space (X, τ) , then $\cup \{A_{\gamma} : \gamma \in \Gamma\}$ is semi-open.
- 3. Let (Y, τ_Y) be a subspace of a space (X, τ) . If $A \subseteq Y$ and $A \in SO(X)$, then $A \in SO(Y, \tau_Y)$.

Theorem 1.5.

- 1. If Y is a semi-open subspace of a space X, then a subset A of Y is a semiopen set in X if and only if A is semi-open set in Y [14].
- 2. Let (Y, τ_Y) be a subspace of a space (X, τ) . If $A \in SO(Y, \tau_Y)$ and $Y \in SO(X, \tau)$, then $A \in SO(X, \tau)$ [15].
- 3. If F is an closed subset of a space X and $B \in \beta c(X)$, then $F \cup B \in \beta c(X)$ [7].

Theorem 1.6 ([16]). Let (X, τ) be a topological space. If $A \in \tau$ and $B \in SO(X)$, then $A \cap B \in SO(X)$.

Theorem 1.7. For any spaces X and Y. If $A \subseteq X$ and $B \subseteq Y$, then:

1. $\beta cl_{X \times Y}(A \times B) = \beta cl_X(A) \times \beta cl_Y(B)$ [7]. 2. $sint_{X \times Y}(A \times B) = sint_X(A) \times sint_Y(B)$ [15].

Definition 1.8. A subset A of a space X is said to be $S_p - open$ [3] (resp., $S_c - open$ [17]) if for each $x \in A$ there exists a pre-closed (resp., closed) set F such that $x \in F \subseteq A$.

Proposition 1.9 ([16]). Let A be any subset of a space X. Then $A \in SC(X)$ if and only if $intcl A \subseteq A$.

Theorem 1.10 ([14]). A subset A of a space X is dense in X if and only if A is semi-dense in X.

Theorem 1.11 ([7]). The intersection of a β -open set and an α -open set is β -open.

Theorem 1.12 ([7]). Let (Y, τ_Y) be a subspace of a space (X, τ) , and $Y \in \alpha C(X)$, then $A \in \beta C(X)$ If and only if $A \in \beta C(Y)$.

Theorem 1.13 ([18]). A space X is extremely disconnected if and only if RO(X) = RC(X).

2 S_{β} -Open Sets

In this section, we introduce and study the concept of S_{β} -open sets in topological spaces and give some basic properties of this set.

Definition 2.1. A semi open subset A of a topological space (X, τ) is said to be S_{β} -open if for each $x \in A$ there exists a β -closed set F such that $x \in F \subseteq A$. A subset B of a topological space X is S_{β} -closed, if $X \setminus B$ is S_{β} -open.

The family of S_{β} -open subsets of X is denoted by $S_{\beta}O(X)$.

Proposition 2.2. A subset A of a topological space (X, τ) is S_{β} -open set if and only if A is semi open and it is a union of β -closed sets.

Proof. Obvious.

The following result shows that any union of S_{β} -open sets in a topological space is S_{β} -open.

Theorem 2.3. Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of S_{β} -open sets in a topological space (X, τ) . Then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is an S_{β} -open set.

Proof. The union of an arbitrary semi open sets is semi open Theorem 1.4. Suppose that $x \in \bigcup_{\alpha \in \Delta} A_{\alpha}$, this implies that there exists $\alpha_0 \in \Delta$ such that $x \in A_{\alpha 0}$ and since $A_{\alpha 0}$ is an S_{β} -open set, so there exists a β -closed set F in X such that $x \in F \subseteq A_{\alpha 0} \subseteq \bigcup_{\alpha \in \Delta} A_{\alpha}$. Therefore, $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is an S_{β} -open set. \Box

From Theorem 2.3 it is clear that any intersection of S_{β} -closed sets of a topological space (X, τ) is S_{β} -closed. The following example shows that the intersection of two S_{β} -open sets is not an S_{β} -open set.

Example 2.4. Consider $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then $\{a, c\}$ and $\{b, c\}$ are S_{β} -open sets in X but $\{a, c\} \cap \{b, c\} = \{c\}$ is not S_{β} -open sets.

Proposition 2.5. A subset G in the space X is S_{β} -open, if and only if for each $x \in G$ there exists an S_{β} -open set H such that $x \in H \subseteq G$.

Proof. Let G be an S_{β} -open set in X, then for each $x \in G$, we have G is an S_{β} -open set containing x such that $x \in G \subseteq G$.

Conversely, suppose that for each $x \in G$ there exists an S_{β} -open set H such that $x \in H \subseteq G$, then G is a union of S_{β} -open sets, hence by Theorem 2.3, G is S_{β} -open.

Proposition 2.6. Every semi- θ -open subset A of X is S_{β} -open.

Proof. Let $A \in S_{\theta}O(X)$, then for each $x \in A$ there exists a semi-open set G such that $x \in G \subseteq sclG \subseteq A$, So A is semi-open and moreover, sclG is semi-closed and hence it is β -closed. Therefore, by Proposition 2.5 $A \in S_{\beta}(O(X))$.

Proposition 2.7. A subset A of a topological space X is regular β open if A is $S_{\beta}O(X)$.

Proof. First if $A \in S_{\beta}O(X)$ then A is semi-open and for each $x \in A$ there exist a β -closed set F such that $x \in F \subseteq A$, therefore $x \in F = \beta clF \subseteq A$, so we get $x \in \beta clF \subseteq A$, since $A \in SO(X)$, then $A \in \beta O(X)$ and $x \in \beta clF \subseteq A$, it follows that A is regular $\beta O(X)$

Corollary 2.8. Every $\theta SO(X), \theta(OX), RSO(X)$ and $\delta(OX)$ are $S_{\beta}(OX)$.

 $S_{\beta}\text{-}\mathsf{Open}$ Sets and $S_{\beta}\text{-}\mathsf{Continuity}$ in Topological Spaces

Proof. Since each of $\theta SO(X)$, $\theta(OX)$, RSO(X) and $\delta(OX)$ are $S\theta O(X)$.

Proposition 2.9.

- 1. Every S_P -open set is S_β -open
- 2. S_{β} -open set is regular β -open set.
- 3. Regular closed set is S_{β} -open set.
- 4. Every Regular open sets is S_{β} -closed set.

Proof. Obvious.

In general, the converse of above proposition not true in general as shown in the following examples.

Example 2.10. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, b\}, X\}$, then $S_{\beta}(O(X)) = \{\phi, X\}$ and $R\beta(O(X)) = PO(X) \setminus \{\{a, b\}, \{c\}\}.$

Example 2.11. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$, then $SO(X) = \beta O(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, c, d\}, \{a, b, c\}, \{a, b, d\}, X\}$ so $S_{\beta}O(X) = \{\phi, \{b\}, \{a, c, d\}, X\}$ but $S\theta O(X) = SO(X)$.

Example 2.12. Let $X = \{a, b, c, d\}$ and let $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ then $\beta O(X) = SO(X) = \backslash \{\{c\}, \{d\}, \{c, d\}\}$ and $PO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, X\}$ we get that $S_{\beta}O(X) = SO(X)$ but $S_PO(X) = \{\phi, X\}$.

Proposition 2.13. If a space X is T_1 -space, then $S_\beta O(X) = SO(X)$.

Proof. Since every closed set is β -closed and every singleton set is closed. Hence $SO(X) = S_{\beta}O(X)$.

Proposition 2.14. If the family of all semi-open subsets of a topological space is a topology on X then the family of all $S_{\beta}O(X)$ is also a topology on X.

Proof. Obvious.

Proposition 2.15. Let (X, τ) be a topological space and if X is extremally disconnected then $S_{\beta}O(X)$ form a topology on X.

Proof. Obvious.

Proposition 2.16. If a space X is hyperconnected, then the only S_{β} - open sets in X are ϕ , and X.

Proof. Suppose that $A \subseteq X$ such that A is S_{β} - open sets in X. If A = X, then there is nothing to prove. If $A \neq X$, then we must prove that $A = \phi$, since A is S_{β} - open sets in X then by definition 2.1, for each $x \in A$ there exist $F \in \beta C(X)$ such that $x \in F \subseteq A$, therefore $X \setminus A \subseteq X \setminus F$, but $X \setminus A$ is semi closed, then by Preposition 1.9 implies that $intclX \setminus A \subseteq (X \setminus A)$. Since X is hyperconnected, then by definition 1.1 and Theorem 1.10 $Scl(int(cl(X \setminus A)) = X \subseteq (X \setminus A)$. Thus $X \setminus A = X$ this implies that $A = \phi$. Hence the only S_{β} -open sets of X are ϕ and X.

323

If (Y, τ_Y) is a subspace of the space (X, τ) and if a subset A is S_{β} - open set relative to Y, then A may not be S_{β} - open set in X, as shown in the following example:

Example 2.17. Let $X = \{a, b, c, d\}$ and let $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, c, d\}, \{a, b, c\}, \{a, b, d\}, X\}$. So we obtain that $S_{\beta}O(X) = \{\phi, \{b\}, \{c\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, X\}$. let $Y = \{b, c, d\}$, then $\tau_Y = \{\phi, \{d\}, \{b\}, \{c\}, \{c, d\}, \{b, c\}, Y\}$ is relative topology on Y, $S_{\beta}O(Y) = P(X)$ then $\{a\}$ is S_{β} -open set on Y, but $\{a\}$ is not S_{β} -open set in X.

Also if Y is a subspace of a space X, and if A is S_{β} -open set in X, then $A \cup Y$ may not be S_{β} -open set in Y. As shown in the following example.

Example 2.18. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\} = S_{\beta}O(X)$, let $Y = \{a, c, d\}$, then $\tau_Y = \{\phi, \{a\}, \{c\}, \{a, c\}, \{a, d\}, Y\}$ is relative topology on Y, and $S_{\beta}O(Y) = \{\phi, \{c\}, \{a, d\}, Y\}$, but $\{a, b\} \in S_{\beta}O(X)$ and $\{a, b\} \cap Y = \{a\} \notin S_{\beta}O(Y)$.

Proposition 2.19. If a topological space X is locally indiscrete, then every semiopen set is S_{β} -open.

Proof. Let A be a semi-open set in X, then $A \subseteq (intclA)$. Since X is locally indiscrete, then intA is closed and hence intA = clintA, which implies that A is regular closed in X. Therefore by Proposition 2.9, A is S_{β} -open.

Remark 2.20. Since every open set is semi-open set, it follows that if a topological space (X, τ) is T_1 or Locally indiscrete then $\tau \subseteq S_\beta O(X)$.

Lemma 2.21. If B is clopen subset of a space X and A is S_{β} -open set in X, then $A \cap B \in S_{\beta}O(X)$.

Proof. Let A be S_{β} -open set, so A is semi-open and B is open and closed in X, then by Theorem 1.6 $A \cap B$ is semi-open in X, let $x \in A \cap B$, this implies that $x \in A$ and $x \in B$, since A is S_{β} -open there exist a β -closed set F in X such that $x \in F \subseteq A$, also B is closed then B is β -closed,hence $B \cap F$ is β -closed set, therefore $A \cap B$ is S_{β} -open set in X.

Proposition 2.22. Let (X, τ) be a locally indiscrete topological space, and $A, B \subseteq X$. If $A \in S_{\beta}O(X)$ and B is open, then $A \cap B$ is S_{β} -open set in X.

Proof. Follows from Lemma 2.21.

Proposition 2.23. Let (X, τ) be an extremally disconnected topological space and, $A, B \subseteq X$. If $A \in S_{\beta}O(X)$ and $B \in RO(X)$, then $A \cap B$ is S_{β} -open set in X.

Proof. Let $A \in S_{\beta}O(X)$ and $B \in RO(X)$ so A is semi-open set. Then by Theorem 1.6. $A \cap B \in SO(X)$. Now let $x \in A \cap B$, this implies that $x \in A$ and $x \in B$, since A is S_{β} -open there exist a β -closed set F in X such that $x \in F \subseteq A$. Since X is extremally disconnected, then by Theorem 1.13 B is a regular closed set. This implies that $B \cap F$ is β -closed set, therefore $x \in (F \cap B) \subseteq (A \cap B)$, so $A \cap B$ is S_{β} -open set in X.

Lemma 2.24. Let $A \subseteq Y \subseteq X$, and $A \in S_{\beta}O(X)$, If Y is α -open set in X, then $A \in S_{\beta}O(Y)$.

Proof. Let $A \in S_{\beta}O(X)$ then $A \in SO(X)$ for $A \subseteq Y \subseteq X$, and $A \in \alpha O(X)$, then by Theorem 1.4, $A \in SO(Y)$ and for each $x \in A$ there exists a β -closed set F in X such that $x \in F \subseteq A$. Since F is β -closed, then $X \setminus F$ is β -open in X and since Y is an α -open set in X, then by Theorem 1.11, $(X \setminus F) \cap Y = Y \setminus F$ is β -open in X and since $Y \setminus F \subseteq Y \subseteq X$, by Theorem 1.12, $Y \setminus F$ is β -open in Y. This implies that F is β -closed set in Y, thus $A \in S_{\beta}O(Y)$.

Corollary 2.25. Let Y be a subspace of the space X, and A be a subset of Y. If A is S_{β} -open set in X, and Y is open set in X, then A is S_{β} -open set in Y.

Proof. follows from Lemma 2.24.

Lemma 2.26. Let $A \subseteq Y \subseteq X$, and $A \in S_{\beta}O(Y, \tau_Y)$, If Y is regular-closed set in X, then $A \in S_{\beta}O(X, \tau)$.

Proof. Let $A \in S_{\beta}O(Y, \tau_Y)$ then $A \in SO(Y, \tau_Y)$ and for each $x \in A$ there exists a β -closed set F in X such that $x \in F \subseteq A$. Since $Y \in RC(X)$ then Y is semi-open in X and since $A \in S_{\beta}O(Y, \tau_Y)$, then by Theorem 1.5 $A \in SO(X, \tau)$. Again Since $Y \in RC(X)$, then $Y \in \alpha c(X)$, since F is β -closed in Y, then by Theorem 1.12, F is β -closed in X. Hence $A \in S_{\beta}O(X, \tau)$.

Corollary 2.27. Let Y be a subspace of the space X, and A be a subset of Y. If A is S_{β} -open set in Y, and Y is clopen set in X, then A is S_{β} -open set in X.

Proof. Follows from Lemma 2.26.

Corollary 2.28. Let $A \subseteq Y \subseteq X$, if $A \in S_{\beta}O(X)$ and Y is clopen subset of X, then $A \cap Y \in S_{\beta}O(Y)$.

Proof. Follows from Lemma 2.21 and Corollary 2.25.

Proposition 2.29. If a topological space X is locally indiscrete, then every semiopen set is S_{β} -open set.

Proof. Let A be a semi-open set in X, then $A \subseteq intclA$, since X is locally indiscrete, then intA is closed and hence intA = clintA, which implies that A is regular closed, therefore by Proposition 2.9, A is S_{β} -open set.

Corollary 2.30. For any space X, $S_{\beta}O(X,\tau) = S_{\beta}O(X,\tau_{\alpha})$.

Proof. Let A be any subset of a space X and $A \in S_{\beta}O(X,\tau)$. If $A = \phi$, then $A \in S_{\beta}O(X,\tau_{\alpha})$. If $A \neq \phi$, and since $A \in S_{\beta}O(X,\tau)$, so $A \in SO(X,\tau)$ and $A = \cup F_k$ where F_k is β -closed for each k. Since $A \in SO(X,\tau)$, then by Theorem 1.3 $A \in SO(X,\tau_{\alpha})$. Since F_k is β -closed in (X,τ) for each k, then by Theorem 1.3, F_k is β -closed in (X,τ_{α}) for each k, therefore by Proposition 2.2 $A \in S_{\beta}O(X,\tau_{\alpha})$, So $S_{\beta}O(X,\tau_{\alpha}) \subseteq S_{\beta}O(X,\tau)$. By the same way we can prove $S_{\beta}O(X,\tau) \subseteq S_{\beta}O(X,\tau_{\alpha})$. Hence we get $S_{\beta}O(X,\tau) = S_{\beta}O(X,\tau_{\alpha})$.

Theorem 2.31. Let X, Y be two topological spaces and $X \times Y$ be the topological product. If $A_1 \in S_\beta O(X)$, and $A_2 \in S_\beta(Y)$, then $(A_1 \times A_2) \in S_\beta O(X \times Y)$.

Proof. Let $(x, y) \in A_1 \times A_2$. Then $x \in A_1$ and $y \in A_2$. Since $A_1 \in S_\beta O(X)$ and $A_2 \in S_\beta O(Y)$, then $A_1 \in SO(X)$ and $A_2 \in SO(Y)$, and there exist $F_1 \in \beta C(X)$ and $F_2 \in \beta C(Y)$ such that $x \in F_1 \subseteq A_1$ and $y \in F_2 \subseteq A_2$. Therefore, $(x, y) \in F_1 \times F_2 \subseteq A_1 \times A_2$, and since $A_1 \in SO(X)$ and $A_2 \in SO(Y)$, then by Theorem 1.7, $A_1 \times A_2 = Sint_X A_1 \times Sint_Y A_2 = Sint_X \times Y(A_1 \times A_2)$, so $A_1 \times A_2 \in SO(X \times Y)$. Since $F_1 \in \beta C(X)$ and $F_2 \in \beta C(Y)$, then by Theorem 1.7 part(4) we get $F_1 \times F_2 = \beta cl_X F_1 \times \beta cl_Y F_2 = \beta cl_X \times Y(F_1 \times F_2)$, so $F_1 \times F_2$ is β -closed in $X \times Y$. Therefore, $(A_1 \times A_2) \in S\beta O(X \times Y)$.

3 S_{β} -Operations

Definition 3.1. A subset N of a topological space (X, τ) is called S_{β} - neighborhood of a subset A of X, if there exists an S_{β} - open set U such that $A \subseteq U \subseteq N$. When $A = \{x\}$, we say that N is S_{β} - neighborhood of x.

Definition 3.2. A point $x \in X$ is said to be an S_{β} - interior point of A, if there exists an S_{β} - open set U containing x such that $x \in U \subseteq A$. The set of all S_{β} -interior points of A is said to be S_{β} - interior of A and it is denoted by S_{β} intA.

Proposition 3.3. Let A be any subset of a topological space X. If a point x is in the S_{β} - interior of A, then there exists a semi-closed set F of X containing x such that $F \subseteq A$.

Proof. Suppose that $x \in S_{\beta}int(A)$. Then there exists an S_{β} - open set U of X containing x such that $U \subseteq A$. Since U is an S_{β} -open set, so there exists an β -closed set F containing x such that $F \subseteq U \subseteq A$, hence $x \in F \subseteq A$.

Here we give some properties of S_{β} -interior operator on a set.

Proposition 3.4. For any subset A of a topological space X, the following statements are true:

- 1. the S_{β} -interior of A is the union of all S_{β} -open sets contained in A.
- 2. S_{β} int A is the largest S_{β} -open set contained in A.
- 3. A is S_{β} -open set if and only if $A = S_{\beta}$ intA.

Finally from 3, we get that $S_{\beta}intAS_{\beta}intA = S_{\beta}intA$.

Proposition 3.5. If A and B are any subsets of a topological space X, then:

- 1. $S_{\beta}int(\phi) = \phi$, and $S_{\beta}intX = X$.
- 2. $S_{\beta}intA \subseteq A$.
- 3. If $A \subseteq B$, then $S_{\beta}intA \subseteq S_{\beta}intB$.

 $S_{\beta}\text{-}\mathsf{Open}$ Sets and $S_{\beta}\text{-}\mathsf{Continuity}$ in Topological Spaces

- 4. $S_{\beta}intA \cup S_{\beta}intB \subseteq S_{\beta}int(A \cup B).$
- 5. $S_{\beta}int(A \cap B) \subseteq S_{\beta}intA \cap S_{\beta}intB.$
- 6. $S_{\beta}int(A \setminus B) \subseteq S_{\beta}intA \setminus S_{\beta}intB.$
- 7. A is S_{β} -open at $x \in X$ if and only if $x \in S_{\beta}$ intA.

Proof. Straight forward.

Definition 3.6. Intersection of all S_{β} -closed sets containing F is called the S_{β} -closure of F and is denoted by $S_{\beta}clF$.

Corollary 3.7. Let A be a set in a topological space X. A point $x \in X$ is in S_{β} -closure of A if and only if $A \cap U \neq \phi$, for every S_{β} - open set U containing x.

Proof. Obvious.

Proposition 3.8. Let A be any subset of a space X. If $A \cap F \neq \phi$ for every β -closed set F of X containing x, then the point x is in the S_{β} -closure of A.

Proof. Suppose that U is any S_{β} -open set containing x, then by Definition 1.1 there exists β -closed set F such that $x \in F \subseteq U$. So by hypothesis $A \cap F \neq \phi$ which implies that $A \cap U \neq \phi$ for every S_{β} -open set U containing x, therefore $x \in S_{\beta}clA$ by Corollary 3.7.

Here we give some properties of S_{β} -closure of a set:

Theorem 3.9. For any subset F of a topological space X, the following statements are true:

- 1. $S_{\beta}clF$ is the intersection of all S_{β} closed set in X containing F.
- 2. $S_{\beta}clF$ is the smallest S_{β} -closed set containing F.
- 3. F is S_{β} -closed set if and only if $F = S_{\beta}clF$.

Proof. Obvious.

Proposition 3.10. Let A be any subset of a space X. If a point x is in the S_{β} -closure of A, then $A \cap F \neq \phi$ for every β - closed set F of X containing x.

Proof. Suppose that $x \in S_{\beta}clA$, then by Corollary 3.7, $A \cap U \neq \phi$ for every S_{β} open set U containing x. Since U is S_{β} -open set, so there exists a β - closed set Fcontaining x such that $x \in F \subseteq U$. Hence $A \cap F \neq \phi$.

Theorem 3.11. If F and E are any subsets of a topological space X, then

- 1. $S_{\beta}cl(\phi) = \phi$, and $S_{\beta}clX = X$.
- 2. for any subset $F \text{ of } X, F \subseteq S_{\beta}(clF)$.
- 3. If $F \subseteq E$, then $S_{\beta}clF \subseteq S_{\beta}clE$.

- 4. $S_{\beta}clF \cup S_{\beta}clE) \subseteq S_{\beta}cl(f \cup E).$
- 5. $S_{\beta}cl(F \cap E) \subseteq S_{\beta}clF \cap S_{\beta}clE$.

Proof. Obvious.

In general $S_{\beta}clF \cup S_{\beta}clE \neq S_{\beta}cl(f \cup E)$ and $S_{\beta}cl(F \cap E) \neq S_{\beta}clF \cap S_{\beta}clE$, as it is shown in the following example:

Example 3.12. Considering a space $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, X\}$, then $SO(X) = S_{\beta}O(X) = PO(X) \setminus \{d, \{c, d\}\}$, if we take $F = \{b, d\}$ and $E = \{a, b, c\}$ then $S_{\beta}clF = F = \{b, d\}$, and $S_{\beta}clE = X$, and $S_{\beta}clF \cap S_{\beta}clE = S_{\beta}clF = \{b, d\}$, and $S_{\beta}clF \cap E) = \{b\}$. It follow that $S_{\beta}clF \cup S_{\beta}clE \neq S_{\beta}cl(f \cup E)$. Again if we take $F = \{a\}$ and $E = \{b\}$, we get $S_{\beta}clF = F = \{a\}$ and $S_{\beta}clE = E = \{b\}$, then $S_{\beta}cl(F \cup E) = \{a\} \cup \{b\} = \{a, b\}$, but $S_{\beta}clF \cup E) = \{a, b, c\}$, so $S_{\beta}cl(F \cap E) \neq S_{\beta}clF \cap S_{\beta}clE$.

Corollary 3.13. For any subset A of topological space X. Then the following statements are true:

- 1. $X \setminus S_{\beta} clA = S_{\beta} int(X \setminus A).$
- 2. $X \setminus S_{\beta} int A = S_{\beta} cl(X \setminus A).$
- 3. $S_{\beta}intA = X \setminus S_{\beta}cl(X \setminus A).$

Proof. Obvious.

Proposition 3.14. Let A and Y be subsets of a topological space X such that $A \subseteq Y \subseteq X$. If Y is clopen, then $S_{\beta}clA \cap Y = S_{\beta}cl_Y(A)$.

Proof. Let $x \in (S_{\beta}clA \cap Y)$ and $V \in S_{\beta}O(Y)$ containing x. Since Y clopen, then, $Y \in RC(X)$, by Lemma 2.26, $V \in S_{\beta}O(X)$ containing x, and hence $V \cap A \neq \phi$. Therefore, $x \in S_{\beta}cl_Y(A)$. Hence $S_{\beta}clA \cap Y \subseteq S_{\beta}cl_Y(A)$). On the other hand, let $x \in S_{\beta}cl_Y(A)$, and $V \in S_{\beta}O(X)$ containing x. Then $x \in V \cap Y$. Since Y clopen, then by Corollary 2.28, we have $x \in V \cap Y \in S_{\beta}O(Y)$ and hence $\phi \neq (A \cap (V \cap Y)) \subseteq (A \cap V)$. Therefore, we obtain $x \in S_{\beta}clA \cap Y$. Hence $S_{\beta}cl_Y(A) \subseteq S_{\beta}clA \cap Y$, therefore $S_{\beta}clA \cap Y \subseteq S_{\beta}cl_Y(A)$.

Definition 3.15. Let A be a subset of a topological space X. A point $x \in X$ is said to be S_{β} -limit point of A if for each S_{β} -open set U containing $x, U \cap (A \setminus \{x\}) \neq \phi$. The set of all S_{β} -limit point of A is called S_{β} - derived set of A and is denoted by $S_{\beta}D(A)$.

Proposition 3.16. Let A be any subset of X. If $F \cap (A \setminus \{x\}) \neq \phi$, for every β -closed set F containing x, then $x \in S_{\beta}D(A)$.

Proof. Let U be any S_{β} -open containing x. Then there exists β -closed set F such that $x \in F \subseteq U$. By hypothesis, we have $F \cap (A \setminus \{x\}) \neq \phi$, hence $U \cap (A \setminus \{x\}) \neq \phi$. Therefore, a point $x \in S_{\beta}D(A)$.

Proposition 3.17. If a subset A of a topological space X is S_{β} -closed, then A contains the set of all of it's S_{β} -limit point.

Proof. Suppose that A is S_{β} - closed set, then $X \setminus A$ is S_{β} - open set, thus A is S_{β} -closed set if and only if each point of $X \setminus A$ has S_{β} - neighborhood contained in $X \setminus A$ if and only if no point of $X \setminus A$ is S_{β} -limit point of A, or equivalently that A contains each of its S_{β} -limit points.

Proposition 3.18. Let F and E be subsets of a topological space X. If $F \subseteq E$, then $S_{\beta}D(F) \subseteq S_{\beta}D(E)$.

Proof. Obvious.

Some properties of S_{β} -derived set are mentioned in the following result:

Theorem 3.19. Let A and B be subsets of a topological space X. Then we have the following properties:

1.
$$S_{\beta}D(\phi) = \phi$$

- 2. $x \in S_{\beta}D(A)$ implies $x \in S_{\beta}D(A \setminus X)$.
- 3. $S_{\beta}D(A) \cup S_{\beta}D(B)) \subseteq S_{\beta}D(A \cup B).$
- 4. $S_{\beta}D(A \cap B) \subseteq S_{\beta}D(A) \cap S_{\beta}D(B).$
- 5. If A is S_{β} -closed, then $S_{\beta}D(A) \subseteq A$.

Proof. Obvious.

Theorem 3.20. Let X be a topological space and A be a subset of X, then:

- 1. $A \cup S_{\beta}D(A)$ is S_{β} closed.
- 2. $S_{\beta}D(S_{\beta}D(A)) \setminus A \subseteq S_{\beta}D(A)$.
- 3. $S_{\beta}D(A \cup S_{\beta}D(A)) \subseteq A \cup S_{\beta}D(A).$

Proof.

1- Let $x \notin A \cup S_{\beta}D(A)$. Then $x \notin A$ and $x \notin D(A)$ this implies that there exists an S_{β} - open set N_x in X which contain no point of A other than x. But $x \notin A$, so N_x contains no point of A, which implies that $N_x \subseteq X \setminus A$, again N_x is an S_{β} - open set, it is a neihgbourhood of each of its points, but N_x does not contain any point of A, no point of N_x can be S_{β} -limit of A. Therefore no point of N_x can belong to $S_{\beta}D(A)$, this implies that $N_x \subseteq X \setminus S_{\beta}D(A)$, hence it follows that $x \in N_x \subseteq (X \setminus A) \cap (X \setminus S_{\beta}D(A) \subseteq X \setminus (A \cup S_{\beta}D(A))$. Therefore, $A \cup S_{\beta}D(A)$ is S_{β} -closed.

2- If $x \in S_{\beta}DS_{\beta}D(A) \setminus A$ and U is an S_{β} -open set containing x, then $U \cap (S_{\beta}D(A) \setminus \{x\}) \neq \phi$, let $y \in (U \cap S_{\beta}D(A) \setminus \{x\})$. Then $y \in U$ and $y \in S_{\beta}D(A)$, so $U \cap (A \setminus \{y\}) \neq \phi$, let $z \in (U \cap (A \setminus \{y\})$. Then $z \neq x$ for $z \in A$ and $x \notin A$, hence $U \cap (A \setminus \{x\}) \neq \phi$. Therefore, $x \in S_{\beta}D(A)$.

3- Let $x \in S_{\beta}D(A \cup S_{\beta}D(A))$. If $x \in A$, the result is obvious, let $x \in S_{\beta}D(A \cup S_{\beta}D(A)) \setminus A$, then for S_{β} -open set U containing $x, U \cap (A \cup S_{\beta}D(A)) \setminus \{x\}) \neq \phi$, thus $U \cap (A \setminus \{x\}) \neq \phi$, or $U \cap S_{\beta}D(A)\{x\} \neq \phi$. Now it follows similarly From 2 that $U \cap (A \setminus \{x\}) \neq \phi$. Hence $x \in S_{\beta}D(A)$, therefore $S_{\beta}D(A \cup S_{\beta}D(A)) \subseteq A \cup S_{\beta}D(A)$.

Theorem 3.21. Let A be a subset of a space X, then $S_{\beta}clA = A \cup S_{\beta}D(A)$.

Proof. Since $S_{\beta}D(A) \subseteq S_{\beta}clA$ and $A \subseteq S_{\beta}clA$, we have $A \cup S_{\beta}D(A) \subseteq S_{\beta}clA$. Again since $S_{\beta}clA$ is the smallest S_{β} -closed set containing A, but by Proposition 2.2 $A \cup S_{\beta}D(A)$ is S_{β} -closed. Hence $S_{\beta}clA \subseteq A \cup S_{\beta}D(A)$. Thus $S_{\beta}clA = A \cup S_{\beta}D(A)$.

Theorem 3.22. Let X be any topological space and A be a subset of X. Then $S_{\beta}intA = A \setminus S_{\beta}D(X \setminus A)$.

Proof. Obvious.

Definition 3.23. If A is a subset of a topological space X, then S_{β} -boundary of A is $S_{\beta}clA \setminus S_{\beta}intA$, and is denoted by $S_{\beta}Bd(A)$.

Proposition 3.24. For any subset A of a topological space X, the following statements are true:

- 1. $S_{\beta}clA = S_{\beta}intA \cup S_{\beta}Bd(A).$
- 2. $S_{\beta}intA \cap S_{\beta}Bd(A) = \phi$.
- 3. $S_{\beta}Bd(A) = S_{\beta}clA \cap S_{\beta}cl(X \setminus A).$
- 4. $S_{\beta}Bd(A)$ is S_{β} -closed.

Proof. Obvious.

Theorem 3.25. For any subset A of a topological space X, the following statements are true:

- 1. $S_{\beta}Bd(A) = S_{\beta}Bd(X \setminus A).$
- 2. $A \in SO(X)$ if and only if $S_{\beta}Bd(A) \subseteq X \setminus A$, that is $A \cap S_{\beta}Bd(A) = \phi$.
- 3. $A \subseteq S_{\beta}C(X)$ if and only if $S_{\beta}Bd(A) \subseteq A$.
- 4. $S_{\beta}Bd(S_{\beta}(Bd(A)) \subseteq S_{\beta}Bd(A))$.
- 5. $S_{\beta}Bd(S_{\beta}intA) \subseteq S_{\beta}Bd(A).$
- 6. $S_{\beta}Bd(S_{\beta}clA) \subseteq S_{\beta}Bd(A).$
- 7. $S_{\beta}intA = A \setminus S_{\beta}Bd(A).$

Proof. Obvious.

Remark 3.26. Let A be a subset of a topological space X, then $S_{\beta}Bd(A) = \phi$ if and only if A is both S_{β} -open and S_{β} - closed set.

.

4 S_{β} -Continuous Functions

In this section, we introduce the concepts of S_{β} - continuity by using S_{β} -open sets. Several relations between these functions and other types of continuous functions and spaces are investigated.

Definition 4.1. A function $f: (X, \tau) \to (Y, \vartheta)$ is called S_{β} -continuous at a point $x \in X$, if for each open set V of Y containing f(x), there exists an S_{β} -open set U in X containing x such that $f(U) \subseteq V$. If f is S_{β} - continuous at every point x of X, then it is called S_{β} - continuous.

Proposition 4.2. A function $f : (X, \tau) \to (Y, \vartheta)$ is S_{β} - continuous if and only if the inverse image of every open set in Y is S_{β} - open set in X.

Proof. Necessity. Let f be an S_{β} - continuous function and V be any open set in Y. To show that $f^{-1}(V)$ is S_{β} - open set in X, if $f^{-1}(V) = \phi$, implies that $f^{-1}(V)$ is S_{β} -open in X. If $f^{-1}(V) \neq \phi$, then there exists $x \in f^{-1}(V)$ which implies that $f(x) \in V$. Since f is S_{β} - continuous, so there exists an S_{β} - open set U in X containing x such that $f(U) \subseteq V$, this implies that $x \in U \subseteq f^{-1}(V)$, this shows that $f^{-1}(V)$ is S_{β} - open in X.

Sufficiency. Let V be open set in Y, and its inverse is S_{β} - open set in X. Since, $f(x) \in V$, then $x \in f^{-1}(V)$ and by hypothesis $f^{-1}(V)$ is S_{β} - open set in X containing x, so $f(f^{-1}(V)) \subseteq V$. Therefore, f is S_{β} - continuous.

Remark 4.3. Every S_{β} - continuous function is semi- continuous.

The converse of Remark 4.3 is not true in general as it is shown in the following example.

Example 4.4. Let $X = \{a, b, c\}$, and take $\tau = \{\phi, \{a\}, X\}$, then SO(X) = PO(X)and $S_{\beta}O(X) = \{\phi, X\}$, the identity function is semi-continuous but not S_{β} continuous.

Corollary 4.5. If $f : (X, \tau) \to (Y, \vartheta)$ be semi-continuous function and (X, τ) is locally indiscrete, then f is S_{β} -continuous function.

Proof. Let f be semi-continuous and X be locally indiscrete, and let V be any open subset in Y. Then $f^{-1}(V)$ is semi-open subset in X, and since X is locally indiscrete space then $f^{-1}(V) \in S_{\beta}O(X)$, thus by Proposition 4.2 f is S_{β} -continuous function.

Remark 4.6. Every S_p -continuous function is S_β -continuous, but the converse is not true in general. as shown in the following example.

Example 4.7. Let $X = \{a, b, c, d\}$, and, $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$ then $SO(X) = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}, \{a, d\}, \{b, c, d\}\} = S_{\beta}O(X)$ and $S_{p}O(X) = \{X, \phi, \{b, c\}, \{a, d\}, \{b, c, d\}\}$, also identity function is S_{β} -continuous which is not S_{p} -continuous function. **Theorem 4.8.** Let $f : X \to Y$ be a function, then the following statements are equivalent:

- 1. f is S_{β} -continuous function.
- 2. The inverse image of every open set in Y is S_{β} -open set in X.
- 3. The inverse image of every closed set in Y is S_{β} -closed set in X.
- 4. For each $A \subseteq X$, $f(S_{\beta}cl(A)) \subseteq clf(A)$.
- 5. For each $A \subseteq X$, $intf(A) \subseteq f(S_{\beta}int(A))$.
- 6. For each $B \subseteq Y$, $S_{\beta} cl f^{-1}(B) \subseteq f^{-1}(cl B)$.
- 7. For each $B \subseteq Y, f^{-1}(intB) \subseteq S_{\beta}intf^{-1}(B)$.

Proof. $(1) \Rightarrow (2)$ Follows from Proposition 4.2.

 $(2) \Rightarrow (3)$ Let B be any closed subset of Y, then $Y \setminus B$ is open subset in Y, and hence $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$ is S_{β} -open set in X. Thus $f^{-1}(B)$ is S_{β} -closed subset in X.

 $(3) \Rightarrow (4)$ Let $A \subseteq X$, then $f(A) \subseteq Y$. But $f(A) \subseteq clf(A)$ and By $(3) f^{-1}(clA)$ is S_{β} -closed subset in X and $A \subseteq f^{-1}(clf(A))$, then $S_{\beta}clA \subseteq f^{-1}(clf(A))$. This implies that $f(S_{\beta}clA) \subseteq clf(A)$.

(4) \Rightarrow (5) Let $A \subseteq X$, then $A \setminus X \subseteq X$ and then By (4) $f(S_betacl(X \setminus A) \subseteq clf(X \setminus A)$. Therefore, $f(X \setminus S_\beta intA) \subseteq cl(Y \setminus f(A))$. This implies that $Y \setminus f(S_\beta intA \subseteq Y \setminus intf(A))$, thus $intf(A) \setminus f(S_\beta intA)$.

 $(5) \Rightarrow (6)$ Let $B \subseteq Y$, then $f^{-1}(B) \subseteq X$ and then $X \setminus f^{-1}(B) \setminus X$. Therefore $int f(X \setminus f^{-1}(B) \subseteq f(S_{\beta}int(X \setminus f^{-1}(B)))$, then $int(Y \setminus f(f^{-1}(B)) \subseteq f(X \setminus (S_{\beta}clf^{-1}(B))))$, this implies that $int(Y \setminus B) \subseteq Y \setminus f(S_{\beta}clf^{-1}(B))$, then $Y \setminus clB \subseteq Y \setminus f(S_{\beta}clf^{-1}(B))$, that is $f(S_{\beta}clf^{-1}(B)) \subseteq clB$, hence $S_{\beta}clf^{-1}(B) \subseteq f^{-1}(clB)$.

(6) \Rightarrow (7) Let $B \subseteq Y$, then $Y \setminus A \subseteq Y$. Therefore, by 6, $S_{\beta}clf^{-1}(Y \setminus B) \subseteq f^{-1}(cl(Y \setminus B))$, then $S_{\beta}cl(X \setminus f^{-1}(B)) \subseteq f^{-1}(Y \setminus intB)$, so we get $X \setminus S_{\beta}int(f^{-1}(B)) \subseteq X \setminus f^{-1}(intB)$, hence $f^{-1}(intB) \subseteq S_{\beta}int(f^{-1}(B))$.

 $(7) \Rightarrow (1)$ Let $x \in X$ and U be any open subset of Y containing f(x), then by $(7) f^{-1}(intU) \subseteq S_{\beta}intf^{-1}(U)$, this implies that $f^{-1}(U) \subseteq S_{\beta}f^{-1}(U)$. Hence $f^{-1}(U)$ is S_{β} -open set in X containing x such that $f(f^{-1}(U)) \subseteq U$). Thus f is S_{β} -continuous function.

Theorem 4.9. Let $f : X \to Y$ be a subjective function, then the following statements are equivalent

- 1. f is S_{β} -continuous function.
- 2. For every $B \subseteq Y$, $intclf^{-1}(B) \subseteq f^{-1}(clB)$ and $f^{-1}(clB) = \bigcap_{i \in \Delta} V_i$ where $V_i \in \beta O(X)$.

 S_{eta} -Open Sets and S_{eta} -Continuity in Topological Spaces

- 3. For every $B \subseteq Y$, $f^{-1}(intB) \subseteq clintf^{-1}(B)$, and $f^{-1}(intB) = \bigcup_{i \in \Delta} F_i$ where $F_i \in \beta C(X)$.
- 4. For every $A \subseteq X$, $f(intclA) \subseteq clf(A)$ and $f^{-1}(clf(A)) = \bigcap_{i \in \Delta} V_i$ where $V_i \in \beta O(X)$.

Proof. (1) \Rightarrow (2) Let $B \subseteq Y$, then clB is closed subset in Y. Since f is S_{β} continuous. Then by Theorem 4.8. $f^{-1}(clB)$ is S_{β} -closed in X. Therefore, by Proposition 2.2 $f^{-1}(clB)$ is semi-closed and $f^{-1}(clB) = \bigcap_{i \in \Delta} V_i$ where $V_i \in \beta O(X)$, thus $intclf^{-1}(clB) \subseteq f^{-1}(clB)$ and $f^{-1}(clB) = \bigcap_{i \in \Delta} V_i$ where $V_i \in \beta O(X)$. Hence $intclf^{-1}(B) \subseteq f^{-1}(clB)$ and $f^{-1}(clB) = \bigcap_{i \in \Delta} V_i$ where $V_i \in \beta O(X)$.

 $(2) \Rightarrow (1)$ Let *B* be closed subset of *Y*, then By (2), $intclf^{-1}(B) \subseteq f^{-1}(clB) = f^{-1}(B)$ and $f^{-1}(B) = \bigcap_{i \in \Delta} V_i$ where $V_i \in \beta O(X)$. This implies that $f^{-1}(B) \subseteq Sc(X)$, and $f^{-1}(B) = \bigcap_{i \in \Delta} V_i$ where $V_i \in \beta O(X)$. Thus by Proposition 2.2 $f^{-1}(B)$ is S_{β} -closed in *X*. Hence by Theorem 4.8 *f* is S_{β} -continuous function.

 $(1) \Rightarrow (3)$ Let $B \subseteq Y$, then intB is open subset in Y, since f is S_{β} -continuous. Therefore, $f^{-1}(intB)$ is S_{β} -open in X. This implies that $f^{-1}(intB) \in SO(X)$, and $f^{-1}(intB) = \bigcup_i i \in \Delta F_i$, where $F_i \in \beta C(X)$, therefore $f^{-1}(intB) \subseteq clintf^{-1}(B)$, and $f^{-1}(intB) = \bigcup_{i \in \Lambda} F_i$, where $F_i \in \beta C(X)$.

(3) \Rightarrow (1) Let *B* be open subset of *Y*, then intB = B and thus by (3), $f^{-1}(B) \subseteq clintf^{-1}(B)$ and $f^{-1}(B) = \bigcup_{i \in \Delta} F_i$, where $F_i \in \beta C(X)$, this implies that $f^{-1}(B) \in S_{\beta}O(X)$. Hence *f* is S_{β} -continuous.

 $(2) \Rightarrow (4)$ Let $A \subseteq X$, then $f(A) \subseteq Y$ and then by(2), $intclf^{-1}(f(A)) \subseteq f^{-1}(clf(A))$ and $f^{-1}(clf(A)) = \bigcap_{i \in \Delta} V_i$ where $V_i \in \beta O(X)$, therefore $intclA \subseteq f^{-1}(clf(A))$ and $f^{-1}(clf(A)) = \bigcap_{i \in \Delta} V_i$ where $V_i \in \beta O(X)$. Thus $f(intclA) \subseteq clf(A)$ and $f^{-1}(clf(A)) = \bigcap_{i \in \Delta} V_i$ where $V_i \in \beta O(X)$.

 $\begin{array}{l} (4) \Rightarrow (2) \text{ Let } B \subseteq Y, \text{ then } f^{-1}(B) \subseteq X. \text{ Therefore by } (4), f(intclf^{-1}(B)) \subseteq clf(f^{-1}(B)) \subseteq clB \text{ and } f^{-1}(clf(f^{-1}(B))) = \bigcap_{i \in \Delta} V_i \text{ where } V_i \in \beta O(X). \text{ This implies that } intclf^{-1}(B) \subseteq f^{-1}(clB) \text{ and } f^{-1}(cl(B)) = \bigcap_{i \in \Delta} V_i \text{ where } V_i \in \beta O(X). \end{array}$

Proposition 4.10. Let $f : X \to Y$ be S_β -continuous function and $A \subseteq X$ such that A is clopen, then the restriction function $f|A : A \to Y$ is S_β -continuous.

Proof. Let *B* be any open subset of *Y*, since *f* is S_{β} - continuous, then By Proposition 4.2 $f^{-1}(B) \in S_{\beta}O(X)$, but *A* is clopen then $A \in \alpha O(X)$ By Lemma 2.21, $f^{-1}(B) \bigcap A \in S_{\beta}O(X)$, since *A* is open then $A \in \alpha O(X)$ so $f^{-1}(B) \bigcap A = (f|A)^{-1}(B) \in S_{\beta}O(A)$. Hence f|A is S_{β} -continuous.

Theorem 4.11. Let $f : X \to Y$ be S_{β} -continuous function and let $\{A_{\lambda} : \lambda \in \Delta\}$ be regular closed cover of X. If the restriction $f|A_{\lambda} : A_{\lambda} \to Y$ is S_{β} -continuous for each $\lambda \in \Delta$, then f is S_{β} -continuous. Proof. Let $f|A_{\lambda} : A_{\lambda} \to Y$ be S_{β} -continuous for each $\lambda \in \Delta$, and let G be any open subset in Y, then by Proposition 4.2, $(f|A_{\lambda})^{-1}(G) \in S_{\beta}O(A_{\lambda})$ for each $\lambda \in \Delta$, but $(f|A_{\lambda})^{-1}(G) = f^{-1}(G) \bigcap A_{\lambda} \in S_{\beta}O(A_{\lambda})$ for each $\lambda \in \Delta$, Since for each for each $\lambda \in \Delta$, A_{λ} is regular closed, then by Proposition 2.9, $f^{-1}(G \bigcap A_{\lambda}) \in S_{\beta}O(A_{\lambda})$ for each $\lambda \in \Delta$, but $\bigcup (f^{-1}(G \bigcap A_{\lambda}) \in S_{\beta}O(X))$, and $f^{-1}(G) = \bigcup_{\lambda \in \Delta} (f^{-1}(G \bigcap A_{\lambda})) \in S_{\beta}O(X)$, then $f^{-1}(G) \in S_{\beta}O(X)$. Thus by Theorem 4.8, f is S_{β} -continuous.

Theorem 4.12. Let $f : X \to Y$ be a function. Let \mathfrak{F} be any basis for σ in Y. Then f is S_{β} -continuous if and only if for each $B \in \mathfrak{F}$, $f^{-1}(B)$ is S_{β} -open subset of X.

Proof. Suppose that f is S_{β} -continuous, since each $B \in \mathfrak{S}$ is open subset of Yand f is S_{β} -continuous. Then by Proposition 4.2, $f^{-1}(B)$ is S_{β} -open subset of X. Conversely; Let for each $B \in \mathfrak{S}$, is S_{β} -open subset of X. Let V be any open set in Y, then $V = \bigcup B_i : i \in \Delta$ where B_i is a member of \mathfrak{S} and \mathfrak{S} is a suitable index set. It follows that $f^{-1}(V) = f^{-1} \bigcup B_i : i \in \Delta$ } = $\bigcup f^{-1}(B_i) : \{i \in \Delta\}$. But $f^{-1}(B_i)$ is an S_{β} -open subset in X for each $i \in \Delta$. Therefore $f^{-1}(V)$ is the union of a family of S_{β} -open sets of X and hence is a S_{β} -open set of X. Therefore, by Proposition 4.2, f is S_{β} -continuous function.

References

- N. Levine, Semi open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36–41.
- [2] M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-open sets and βcontinuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983) 77–90.
- [3] A.H. Shareef, S_pre-open sets, S_pre-continuity and S_pre-compactness in topological spaces, M.Sc. Thesis, College of Science, Sulaimani Univ., 2007.
- [4] A.S. Mashhour, M.E. Abd El-monsef, S.N. El.Deeb, On pre-continuous and week pre-continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982) 47– 53.
- [5] O. Njstad, On some classes of nearly open sets, Pacific J. Math. 15 (3) (1965) 961–970.
- [6] L.A. Steen, J.A. Seebach Jr., Counterexamples in topology, Holt, Rinehart and Winston, Inc., New York, 1970.
- [7] R.H. Yunis, Regular β -open sets, Zonco J. Pure and Applied Science 16 (3) (2004) 79–83.
- [8] N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (2) (1992) 103–118.

 $S_{\beta}\text{-}\mathsf{Open}$ Sets and $S_{\beta}\text{-}\mathsf{Continuity}$ in Topological Spaces

- [9] J.E. Joseph, M.H. Kwach, On S-closed spaces, Proc. Amer. Math Soc. 80 (2) (1980) 341–348.
- [10] G. Dimaio, T. Noiri, On S-closed spaces, Indian J. Pure Apple .Math. 18 (3) (1987) 226–233.
- [11] B.A. Asaad, Utilization of some types of pre-open sets in topological space, M.Sc. Thesis, College of Science, Dohuk Univ., 2007.
- [12] K. Dlaska, M. Ganster, S-sets and Co-S-closed topologies, Indian J. Pure Apple. Math. 23 (10) (1992) 731–737.
- [13] D.E. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc. 72 (1978) 581–586.
- [14] T. Noiri, On semi continuous mapping, Accad. Naz. Lincei. Rend. CLSci. Fis. Mat. Natur. 54 (8) (1973) 210–214.
- [15] N.K. Ahmed, On some types of separation axioms, M.Sc. Thesis, College of Science, Salahaddin Univ., 1990.
- [16] S.G. Crossely, S.K. Hildebrand, Semi closure, Texas. J. Sci. 22 (1971) 99–112.
- [17] Z.A. Ameen, A new class of semi-open sets in topological spaces, M.Sc. Thesis, College of Science, Dohuk Univ., 2009.
- [18] J. Dontchev, Survey on pre-open sets, The proceedings of Yatsushiro topological conference, (1998) 1–18.

(Received 16 November 2011) (Accepted 14 June 2012)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th