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1 Introduction and Preliminaries

Throughout this paper, a space means a topological space on which no separa-
tion axioms are assumed unless explicitly stated. In 1963 [1] Levine was initiated
semi open sets and their properties, Mathematicians gives in several papers in-
teresting and different new types of sets. In [2], Abd-El-Moonsef in 1983 defined
the class of B-open set. In 2010, Shareef [3] introduced a new class of semi-open
sets called Sp-open sets. We recall the following definitions and characterizations.
The closure (resp., interior) of a subset A of X is denoted by clA (resp., intA). A
subset A of X is said to be semi-open [1] (resp., pre-open [4], a-open [5], -open
[3], regular open [6] and regular S-open [7]) set if A C clintA (resp., A C intclA,
A CintclintA , A C clintclA, A = intclA and A = BintfclA). The complement
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of semi-open (resp., pre-open, a-open, (-open, regular open, regular S-open) set
is said to be semi-closed (resp., pre- closed, a-closed, (-closed, regular closed,
regular B-closed). The intersection of all semi-closed (resp., pre-closed, 3-closed)
sets of X containing a subset A is called the semi-closure (resp., pre-closure, (-
closure) of A and denoted by sclA (resp., pclA , BclA). The union of all semi-open
(resp., pre-open, B-open) set of X contained in A is called the semi-interior (resp.,
pre-interior, S-interior) of A and denoted by sintA (resp., pintA, BintA). The
family of all semi-open (resp., pre-open, a-open, [-open, regular S-open, regu-
lar open, semi-closed, pre-closed, a-closed, (-closed, regular (-closed, and regular
closed) subset of a topological space X is denoted by SO(X) (resp., PO(X), «
O(X), p O(X),R8 O(X) RO(X),SC(X),PC(X), a C(X), 8 C(X), R C(X)
and RC(X)). A subset A of X is called d-open [8] if for each & € A, there exists
an open set B such that © € B C intclB C A . A subset A of a space X is
called @-semi-open [9] (resp., semi-f-open [10] if for each x € A, there exists a
semi-open set G such that x € G C clG C A (resp., z € G C sclG C A). A
function f: X — Y is a semi-continuous if the inverse image of each open subset
of Y is semi-open in X Also f is said to be d-continuous if for each z in X and
each open set V' of Y containing f(z) there exists an open set U of X such that
f@intcU) Cintcl f(V).

Definition 1.1 ([4]). A topological space (X, 7) is said to be
1. Eaxtremally disconnected if ¢lV € 1 for every V € 7.
2. Locally indiscrete if every open subset of X is closed.

3. Hyperconnected if every nonempty open subset of X is dense.

Lemma 1.2.

1. If X is a locally indiscrete space, then each semi-open subset of X is closed
and hence each semi-closed subset of X is open [11].

2. A topological space (X, 1) is hyperconnected if and only if RO(X) = {¢, X}
[12].
Theorem 1.3 ([13]). Let (X, 7) be a topological space, then:
1. SO(X,7) = SO(X,a0(X)).
2. BO(X,7) = BC(X,a0(X)).
Theorem 1.4 ([1]).

1. Let A be any subset of a space X. Then A € SO(X,7) if and only if
clA = clintA.

2. If{A, : v €T} is a collection of semi-open sets in a topological space (X, T),
then U{A, : v € T'} is semi-open.

3. Let (Y, 1y) be a subspace of a space (X, 7). If ACY and A € SO(X), then
A e SOY,1y).
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Theorem 1.5.

1. If Y is a semi-open subspace of a space X, then a subset A of Y is a semi-
open set in X if and only if A is semi-open set in'Y [14].

2. Let (Y,7y) be a subspace of a space (X,7). If A € SOY,7y) and Y €
SO(X, 1), then A e SO(X,T) [15].

3. If F is an closed subset of a space X and B € B¢(X), then FF'U B € (e(X)
[7].

Theorem 1.6 ([16]). Let (X, 7) be a topological space. If A € T and B € SO(X),
then AN B € SO(X).

Theorem 1.7. For any spaces X andY . If AC X and BCY, then:
1. ﬁclxxy(A X B) = ﬁclx(A) X ﬁCly(B) /7]
2. sintxxy (A X B) = sintx(A) x sinty (B) [15].

Definition 1.8. A subset A of a space X is said to be S, — open [3] (resp.,
S.—open [17]) if for each © € A there exists a pre-closed (resp., closed) set F' such
that z € F' C A.

Proposition 1.9 ([16]). LetA be any subset of a space X.Then A € SC(X)if and
only if intclA C A.

Theorem 1.10 ([14]). A subset A of a space X is dense in X if and only if A is
semi-dense in X .

Theorem 1.11 ([7]). The intersection of a (-open set and an a-open set is (3-
open.

Theorem 1.12 ([7]). Let(Y,7y) be a subspace of a space(X, 1), and Y € aC(X),
then A € BC(X) If and only if A € BC(Y).

Theorem 1.13 ([18]). A space X is extremely disconnected if and only if RO(X) =
RO(X).

2 S3-Open Sets

In this section, we introduce and study the concept of Sg-open sets in topo-
logical spaces and give some basic properties of this set.

Definition 2.1. A semi open subset A of a topological space (X, 7) is said to be
Sg-open if for each z € A there exists a S-closed set F' such that x € FF C A. A
subset B of a topological space X is Sg-closed, if X \ B is Sg-open.

The family of Sg-open subsets of X is denoted by SzO(X).
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Proposition 2.2. A subset A of a topological space (X, T) is Sg-open set if and
only if A is semi open and it is a union of B-closed sets.

Proof. Obvious. O

The following result shows that any union of Sg-open sets in a topological
space is Sg-open.

Theorem 2.3. Let {A, : a € A} be a family of Sz-open sets in a topological
space (X, 7). Then J,cn Aa is an Sg-open set.

Proof. The union of an arbitrary semi open sets is semi open Theorem 1.4. Sup-
pose that x € |J,ca Aa, this implies that there exists ap € A such that x € Ao
and since Aqo is an Sg-open set, so there exists a O-closed set F' in X such that

zeFCAw0CU Ag. Therefore, | Aq is an Sg-open set. O

acA aEA

From Theorem 2.3 it is clear that any intersection of Sg-closed sets of a topo-
logical space (X, 7) is Sg-closed. The following example shows that the intersection
of two Sg-open sets is not an Sg-open set.

Example 2.4. Consider X = {a,b, ¢, d} with the topology T = {$, X, {a}, {b},{a, b},
{a,b,c}, {a,b,d}}. Then {a,c} and{b,c} are Sg-open sets in X but {a,c}N{b,c}=
{c} is not S-open sets.

Proposition 2.5. A subset G in the space X is Sg-open, if and only if for each
x € G there exists an Sg-open set H such that x € H C G.

Proof. Let G be an Sg-open set in X, then for each z € G, we have G is an
Sg-open set containing x such that x € G C G.

Conversely, suppose that for each € G there exists an Sg-open set H such
that x € H C G, then G is a union of Sg-open sets, hence by Theorem 2.3, G is
Sg-open. O

Proposition 2.6. Every semi-0-open subset A of X is Sg-open.

Proof. Let A € SpO(X), then for each x € A there exists a semi-open set G such
that x € G C sclG C A, So A is semi open and moreover, sclG is semi closed and
hence it is B-closed. Therefore, by Proposition 2.5 A € S3(0(X)). O

Proposition 2.7. A subset A of a topological space X is reqular 3 open if A is
SO(X).

Proof. First if A € S30(X)) then A is semi-open and for each x € A there exist
a [-closed set F' such that x € FF C A, therefore x € F' = BclF C A, so we get
x € BelF C Asince A € SO(X), then A € BO(X) and = € BelF C A, it follows
that A is regular SO(X) O

Corollary 2.8. Every 6SO(X),0(0X), RSO(X) and 6(OX) are S3(0X).
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Proof. Since each of 0SO(X),0(0X), RSO(X) and §(OX) are SO0(X). O

Proposition 2.9.
1. Every Sp-open set is Sz-open
2. Sg-open set is reqular B3-open set.
3. Regular closed set is Sg-open set.
4. Ewvery Regular open sets is Sg-closed set.
Proof. Obvious. (|

In general, the converse of above proposition not true in general as shown in
the following examples.

Example 2.10. Let X = {a,b,c} and 7 = {¢,{a,b}, X}, then Sp(O(X)) =
{¢, X} and RG(O(X)) = PO(X) \ {{a, b}, {c}}.

Example 2.11. Let X = {a,b,c,d} and 7 = {¢,{a}, {b}, {a,b},{a,b,c}, X}, then
SO(X) = fO(X) = {,{a},{b},{a, b}, {a, ¢}, {a,d}, {a, ¢,d}, {a, b, ¢}, {a,b,d}, X}
s0 SgO(X) = {¢,{b},{a,c,d}, X} but SOO(X) = SO(X).

Example 2.12. Let X = {a,b,c,d} and let 7 = {¢,{a},{b},{a,b}, X} then
BO(X) = SO(X) = \{{c},{d},{c,d}} and PO(X) = {9, {a}, {b},{a,b}, {a,c},
{a,b,c},{a,b,d}, X} we get that SgO(X) = SO(X) but SpO(X) = {¢, X }.
Proposition 2.13. If a space X is T1-space, then SgO(X) = SO(X).

Proof. Since every closed set is 3-closed and every singleton set is closed. Hence
SO(X) = S30(X). O

Proposition 2.14. If the family of all semi-open subsets of a topological space is
a topology on X then the family of all SpO(X) is also a topology on X.

Proof. Obvious. O

Proposition 2.15. Let (X,7) be a topological space and if X is extremally dis-
connected then SgO(X) form a topology on X.

Proof. Obvious. (|

Proposition 2.16. If a space X is hyperconnected, then the only Sz- open sets
i X are ¢, and X.

Proof. Suppose that A C X such that A is Sg- open sets in X. If A = X, then
there is nothing to prove. If A # X, then we must prove that A = ¢, since A is
Sp- open sets in X then by definition 2.1, for each « € A there exist F' € fC(X)
such that z € F C A,therefore X \ A C X \ F, but X \ A is semi closed, then by
Preposition 1.9 implies that intclX \ A C (X \ A). Since X is hyperconnected,
then by definition 1.1 and Theorem 1.10 Scl(int(cl(X \ A)) = X C (X \ A). Thus
X \ A = X this implies that A = ¢. Hence the only Sg-open sets of X are ¢ and
X. O
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If (Y,7y) is a subspace of the space (X, 7) and if a subset A is Sg- open set
relative to Y, then A may not be Sg- open set in X, as shown in the following
example:

Example 2.17. Let X = {a,b,c,d} and let 7 = {¢,{a}, {b},{c},{a,b}, {a,c},
{a,d}, {b,c}, {a,c,d}, {a,b,c},{a,b,d}, X}. Sowe obtain that SzO(X) = {¢, {b},
{c},{a,d}, {b,c}, {a,b,c},{a,b,d}, X}. let Y = {b,c,d}, then v = {¢,{d}, {b},
{c},{c,d}, {b,d}, {b,c}, Y} is relative topology on'Y, SgO(Y) = P(X) then {a} is
Sg-open set on'Y, but {a} is not Sz-open set in X.

Also if Y is a subspace of a space X, and if A is Sg-open set in X, then AUY
may not be Sg-open set in Y. As shown in the following example.

Example 2.18. Let X = {a,b,c,d} and T = {9, {c},{a,b},{a,b,c},{a,b,d}, X} =
S30(X), let Y = {a,c,d},then v = {¢,{a},{c},{a,c}, {a,d}, Y} is relative
topology on Y, and SgO(Y) = {¢,{c},{a,d}, Y}, but {a,b} € S3O(X) and
{a,b} NY ={a} ¢ S0(Y).

Proposition 2.19. If a topological space X is locally indiscrete, then every semi-
open set is Sg-open.

Proof. Let A be a semi-open set in X, then A C (intclA). Since X is locally
indiscrete, then intA is closed and hence intA = clintA, which implies that A is
regular closed in X. Therefore by Proposition 2.9, A is Sg-open. O

Remark 2.20. Since every open set is semi-open set, it follows that if a topological
space (X, 7) is T1 or Locally indiscrete then T C SgO(X).

Lemma 2.21. If B is clopen subset of a space X and A is Sg-open set in X, then
ANB e S0(X).

Proof. Let A be Sg-open set, so A is semi-open and B is open and closed in X,
then by Theorem 1.6 AN B is semi-open in X, let x € AN B, this implies that
x € A and 2 € B, since A is Sg-open there exist a (-closed set F' in X such
that z € F C A, also B is closed then B is -closed,hence B N F is (-closed set,
therefore AN B isSg-open set in X. O

Proposition 2.22. Let (X, ) be a locally indiscrete topological space, and A, B C
X. If A€ SgO(X) and B is open, then AN B is Sg-open set in X.

Proof. Follows from Lemma 2.21. O

Proposition 2.23. Let (X, 7) be an extremally disconnected topological space and,
A BCX. IfAe S30(X) and B € RO(X), then AN B is Sz-open set in X.

Proof. Let A€ S30(X) and B € RO(X) so A is semi-open set. Then by Theorem
1.6. ANB € SO(X). Now let z € AN B, this implies that © € A and x € B, since
A is Sg-open there exist a (-closed set F in X such that x € F C A. Since X
is extremally disconnected, then by Theorem 1.13 B is a regular closed set. This
implies that BN F' is B-closed set, therefore z € (FNB) C (ANB),so AN B is
Sg-open set in X. O
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Lemma 2.24. Let ACY C X, and A € SgO(X), If Y is a-open set in X, then
A€ S0(Y).

Proof. Let A € SgO(X) then A € SO(X) for ACY C X, and A € aO(X), then
by Theorem 1.4, A € SO(Y') and for each x € A there exists a S-closed set F' in
X such that x € F C A. Since F is (-closed, then X \ F' is S-open in X and since
Y is an a-open set in X, then by Theorem 1.11, (X \ F)NY =Y \ F is S-open
in X and since Y\ F C Y C X, by Theorem 1.12, Y \ F is S-open in Y. This
implies that F' is B-closed set in Y, thus A € SgO(Y). O

Corollary 2.25. Let Y be a subspace of the space X, and A be a subset of Y. If
A is Sg-open set in X, and Y is open set in X, then A is Sg-open set in Y.

Proof. follows from Lemma 2.24. O

Lemma 2.26. Let ACY C X, and A € SgO(Y,1y), If Y is reqular-closed set
in X, then A € SgO(X,T).

Proof. Let A € SgO(Y,7y) then A € SO(Y, 7v) and for each x € A there exists a
B-closed set F'in X such that € FF C A. Since Y € RC(X) then Y is semi-open
in X and since A € S3O(Y, 7y), then by Theorem 1.5 A € SO(X, 7). Again Since
Y € RC(X), then Y € ac(X), since F' is S-closed in Y, then by Theorem 1.12, F’
is B-closed in X. Hence A € S30(X, 7). O

Corollary 2.27. Let Y be a subspace of the space X, and A be a subset of Y. If
A is Sg-open set in Y, and Y is clopen set in X, then A is Sg-open set in X.

Proof. Follows from Lemma 2.26. (|

Corollary 2.28. Let ACY C X, if A€ SgO(X) and Y is clopen subset of X,
then ANY € SgO(Y).

Proof. Follows from Lemma 2.21 and Corollary 2.25. (|

Proposition 2.29. If a topological space X is locally indiscrete, then every semi-
open set is Sg-open set.

Proof. Let A be a semi-open set in X, then A C intclA, since X is locally in-
discrete, then intA is closed and hence intA = clintA, which implies that A is
regular closed, therefore by Proposition 2.9, A is Sg-open set. O

Corollary 2.30. For any space X, SgO(X,7) = SgO(X, 74).

Proof. Let A be any subset of a space X and A € SgO(X,7). If A = ¢, then
A e S30(X,1). I A # ¢, and since A € SgO(X,7), so A € SO(X,7)
and A = UF; where F} is (-closed for each k. Since A € SO(X,7), then by
Theorem 1.3 A € SO(X,7,). Since Fy is f-closed in (X, 7) for each k, then by
Theorem 1.3, Fy is (-closed in (X, 7,) for each k, therefore by Proposition 2.2
A € S30(X, 1), So SgO(X,7.) C S3O(X, 7). By the same way we can prove
Sp0(X, 1) C S30(X, 7). Hence we get SgO(X,7) = Sg0(X, 7). O
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Theorem 2.31. Let X, Y be two topological spaces and X XY be the topological
product. If Ay € SgO(X), and Ay € Sp(Y), then (A1 x Ag) € SpO(X xY).

Proof. Let (x,y) € A1 X As. Then z € A; and y € As. Since A; € SgO(X) and
Az € SgO(Y), then 4; € SO(X) and Az € SO(Y'), and there exist Fy € fC(X)
and F» € SC(Y) such that x € F; C Ay and y € Fy C Ay. Therefore,(z,y) €
Fi x F» C Ay x Ay, and since 4; € SO(X) and Az € SO(Y), then by Theorem 1.7,
Al X A2 = SintxAl X SintyAQ = Sintx X Y(A1 X AQ), SO A1 X AQ S SO(X X Y)
Since I} € BC(X) and F» € BC(Y), then by Theorem 1.7 part(4) we get Fy x Fy =
Belx Fy x Bely Fo = Belx x Y (Fy X Fy), so Fy X Fy is (-closed in X x Y. Therefore,
(Al X Ag) (S SﬁO(X X Y) O

3 Ss-Operations

Definition 3.1. A subset IV of a topological space(X, 7) is called Sg- neighborhood
of a subset A of X, if there exists an Sg- open set U such that A C U C N. When
A = {z}, we say that N is Sg- neighborhood of z.

Definition 3.2. A point x € X is said to be an Sg- interior point of A, if there
exists an Sg- open set U containing x such that z € U C A. The set of all Sg-
interior points of A is said to be Sg- interior of A and it is denoted by SgintA.

Proposition 3.3. Let A be any subset of a topological space X. If a point x is
in the Sg- interior of A, then there exists a semi-closed set F' of X containing x
such that FF C A.

Proof. Suppose that x € Sgint(A). Then there exists an Sg- open set U of X
containing z such that U C A. Since U is an Sg-open set, so there exists an
(B-closed set F' containing x such that £ C U C A, hence z € F C A. O

Here we give some properties of Sg-interior operator on a set.

Proposition 3.4. For any subset A of a topological space X, the following state-
ments are true:

1. the Sg-interior of A is the union of all Sg-open sets contained in A.
2. SgintA is the largest Sz-open set contained in A.

3. A is Sg-open set if and only if A = SgintA.

Finally from 3, we get that SgintASgintA = SgintA.

Proposition 3.5. If A and B are any subsets of a topological space X, then:
1. Sgint(¢)=¢, and SpintX =X .
2. SgintA C A.
3. If A C B,then SgintA C SgintB.
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4. SpintAU SgintB C Sgint(AU B).
5. Sgint(AN B) C SgintAN SzintB.
6. Sgint(A\ B) C SgintA\ SgintB.
7. Ais Sg-open at x € X if and only if x € SgintA.
Proof. Straight forward. O

Definition 3.6. Intersection of all Sg-closed sets containing F' is called the Sg-
closure of F' and is denoted by SgclF'.

Corollary 3.7. Let A be a set in a topological space X. A point x € X is in
Sg-closure of A if and only if ANU # ¢, for every Sg- open set U containing x.

Proof. Obvious. (|

Proposition 3.8. Let A be any subset of a space X. If ANF # ¢ for every
B-closed set F' of X containing x, then the point x is in the Sg-closure of A.

Proof. Suppose that U is any Sg-open set containing z, then by Definition 1.1
there exists f-closed set F' such that x € F' C U. So by hypothesis AN F # ¢
which implies that A NU # ¢ for every Sg-open set U containing x, therefore
x € SgclA by Corollary 3.7. O

Here we give some properties of.Sg-closure of a set:

Theorem 3.9. For any subset F' of a topological space X, the following statements
are true:

1. SgclF is the intersection of all Sg- closed set in X containing F'.
2. SgclF is the smallest Sg-closed set containing F.
3. F is Sg-closed set if and only if ' = SgclF'.

Proof. Obvious. O

Proposition 3.10. Let A be any subset of a space X. If a point x is in the
Sg-closure of A, then AN F # ¢ for every - closed set F' of X containing x.

Proof. Suppose that © € SgclA, then by Corollary 3.7, ANU # ¢ for every Sg-
open set U containing x. Since U is Sg-open set, so there exists a 8- closed set F'
containing x such that x € FF C U. Hence AN F # ¢. |

Theorem 3.11. If F and E are any subsets of a topological space X, then
1. Sgcl(¢)=¢, and Sl X =X.
2. for any subset Fof X, F C Sg(clF).
3. If F C E,then SgclF C SgclE.
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4. SgclF'U SﬁClE) - Sgcl(f UE).
5. SBCZ(F N E) - SﬁClFﬂ SBCZE.
Proof. Obvious. O

In general SgclF U SgclE # Spcl(f U E) and Sgcl(F N E) # SgclF N SaclE,
as it is shown in the following example:

Example 3.12. Considering a space X = {a,b,c,d} and 7 = {¢,{a}, {b}, {a,b},
{a,c},{b,d},{a,b,c},{a,b,d}, X}, then SO(X) = Sz0(X) = PO(X)\{d,{c,d}},
if we take F = {b,d} and E = {a,b,c} then SgclF = F = {b,d}, and SgclE = X,
and SgclF N SgclE= SgclF = {b,d}, and Sgcl(F N E) = {b}. It follow that
SgcF U SgclE # Sacl(f U E). Again if we take F = {a} and E = {b}, we get
SgcdF = F = {a} and SgcdE = E = {b}, then Sgcl(FUE) = {a} U {b} = {a,b},
but SgclFF U E) = {a,b,c}, so Sgcl(FNE) # SzclF N SgclE.

Corollary 3.13. For any subset A of topological space X. Then the following
statements are true:

1. X\ SgclA= Sgint(X \ A).
2. X\ SpintA = Sgcl(X \ A).
3. SgintA =X\ Sgcl(X \ A).
Proof. Obvious. O

Proposition 3.14. Let A and Y be subsets of a topological space X such that
ACY CX. IfY is clopen, then SgclANY = Sgcly (A).

Proof. Let x € (SgclANY) and V € SgO(Y") containing z. Since Y clopen, then,
Y € RC(X), by Lemma 2.26, V € SgO(X) containing z, and hence V N A # ¢.
Therefore, z € Sgcly (A). Hence SgclANY C Sgcly(A)). On the other hand,
let z € Sgely(A), and V' € SgO(X) containing z. Then x € V NY. Since
Y clopen, then by Corollary 2.28, we have z € V NY € S30(Y) and hence
o # (AN (VNY)) C (ANV). Therefore, we obtain x € SgclANY. Hence
Sgcly (A) C Sgcl ANY, therefore SgclANY C Sgely (A). O

Definition 3.15. Let A be a subset of a topological space X. A point x € X is said
to be Sg-limit point of A if for each Sg-open set U containing z,U N (A\ {z}) # ¢.
The set of all Sg-limit point of A is called Sg- derived set of A and is denoted by
SzD(A).

Proposition 3.16. Let A be any subset of X. If F N (A\ {z}) # ¢, for every
B-closed set F' containing x, then x € SgD(A).

Proof. Let U be any Sg-open containing x. Then there exists 5-closed set F' such
that z € F C U. By hypothesis, we have FN(A\{z}) # ¢, hence UN(A\{z}) # (;5
Therefore, a point z € SgD(A).
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Proposition 3.17. If a subset A of a topological space X is Sg-closed, then A
contains the set of all of it’s Sg-limit point.

Proof. Suppose that A is Sg- closed set, then X \ A is Ss- open set, thus A is
Sp-closed set if and only if each point of X \ A has S3- neighborhood contained in
X \ A if and only if no point of X \ A is Sg-limit point of A, or equivalently that
A contains each of its Sg-limit points. O

Proposition 3.18. Let F' and E be subsets of a topological space X. If F C F,
then SﬁD(F) - SBD(E)
Proof. Obvious. O

Some properties of Sg-derived set are mentioned in the following result:

Theorem 3.19. Let A and B be subsets of a topological space X. Then we have
the following properties:

1. SpD(¢) = ¢.
2. x € SgD(A) implies x € SgD(A\ X).
3. SgD(A)U SsD(B)) € SsD(AU B).
4. SsD(ANB) C SgD(A) N SgD(B).
5. If A is Sg-closed, then SgD(A) C A.
Proof. Obvious. O

Theorem 3.20. Let X be a topological space and A be a subset of X, then:
1. AU SgD(A)) is Sg- closed.
2. SgD(SgD(A))\ A C SzD(A).
3. SgD(AU SgD(A)) C AU SgD(A).

Proof.

1- Let © ¢ AUS3D(A). Then x ¢ A and x ¢ D(A) this implies that there exists
anSg- open set N, in X which contain no point of A other than xz. But z ¢ A,
so N, contains no point of A, which implies that N, C X \ A, again N, is an
Sg- open set, it is a neihgbourhood of each of its points, but IV, does not contain
any point of A, no point of N, can be Sg-limit of A. Therefore no point of N,
can belong to SgD(A), this implies that N, C X \ SzD(A), hence it follows that
€ Ny C(X\A)N(X\SgD(A) C X\ (AUSgD(A)). Therefore, AU SgD(A) is
Sg-closed.

2-Ifx € S3DS3D(A)\ A and U is an Sg-open set containing z, then UN(SgD(A)\
{z}) # ¢, let y € (UNSgD(A) \ {z}). Then y € U and y € SzD(A), so
UnN(A\{y}) # &, let z€ (UN(A\{y}). Then z # x for z € A and = ¢ A, hence
UnN(A\{z}) # ¢. Therefore,z € S3D(A).



330 Thai J. Math. 11 (2013)/ A.B. Khalaf and N.K. Ahmed

3- Let © € S3D(AU S3D(A)). If = € A, the result is obvious, let z € SgD(A U
SgD(A))\ A, then for Ss-open set U containing z, UN (AU SgD(A))\ {z})) # ¢,
thus U N (A\ {z}) # ¢, or UN SgD(A){z} # ¢. Now it follows similarly From
2 that U N (A \ {z}) # ¢. Hence x € SgD(A), therefore SzgD(A U SgD(A)) C
AU SgD(A). O

Theorem 3.21. Let A be a subset of a space X, then SgclA = AU SgD(A).

Proof. Since SzD(A) C SgclA and A C SgclA, we have AU SgD(A) C SgclA.
Again since SgclA is the smallest Sg-closed set containing A, but by Proposition
2.2 AU SgD(A) is Sg-closed. Hence SgclA C AU S3D(A). Thus SgclA =
AU SﬁD(A) O

Theorem 3.22. Let X be any topological space and A be a subset of X. Then
SgintA =A \ SQD(X \ A)
Proof. Obvious. O

Definition 3.23. If A is a subset of a topological space X, then S3- boundary of
Ais SgclA\ SgintA, and is denoted by SgBd(A).

Proposition 3.24. For any subset A of a topological space X, the following state-
ments are true:

1. SgclA = SgintAU SgBd(A).
2. SgintAN SzBd(A) = ¢.
3. SgBd(A) = SgclAN Spcl(X \ A).
4. SgBd(A) is Sg-closed.
Proof. Obvious. O

Theorem 3.25. For any subset A of a topological space X, the following state-
ments are true:

1. SgBd(A) = SgBd(X \ A).
2. Ae SO(X)) if and only if SpBd(A) C X \ A,that is AN SgBd(A) = ¢.
3. A C S3C(X) if and only if SgBd(A) C A.
4. SpBd(Sg(Bd(A)) C SgBd(A).
5. S3Bd(SgintA) C SzBd(A).
6. S3Bd(SsclA) C SsBd(A).
7. SgintA = A\ SgBd(A).
Proof. Obvious. O

Remark 3.26. Let A be a subset of a topological space X, then SgBd(A) = ¢ if
and only if A is both Sg-open and Sg- closed set.



S3-Open Sets and Sg-Continuity in Topological Spaces 331

4 Sp-Continuous Functions

In this section, we introduce the concepts of Sg- continuity by using Sz-open
sets. Several relations between these functions and other types of continuous
functions and spaces are investigated.

Definition 4.1. A function f : (X,7) — (Y, 9) is called Sg-continuous at a point
x € X, if for each open set V' of ¥ containing f(x), there exists an Sg-open set U
in X containing  such that f(U) C V. If f is Sg- continuous at every point z of
X, then it is called Sg- continuous.

Proposition 4.2. A function f: (X,7) — (Y,9) is Sg- continuous if and only if
the inverse image of every open set in'Y is Sg- open set in X.

Proof. Necessity. Let f be an Sg- continuous function and V' be any open set in
Y. To show thatf~1(V) is Sg- open set in X, if f~1(V) = ¢, implies that f~1(V)
is Sg-open in X. If f=1(V) # ¢, then there exists x € f~!(V) which implies
that f(z) € V. Since f is Sg- continuous, so there exists an Sg- open set U in X
containing x such that f(U) C V, this implies that z € U C f~(V), this shows
that f~1(V)is Ss- open in X.

Sufficiency. Let V be open set in Y, and its inverse is Sg- open set in X.
Since, f(z) € V, then x € f~1(V) and by hypothesis f~!(V) is Ss- open set in X
containing z, so f(f~1(V)) C V. Therefore, f is Ss- continuous. O

Remark 4.3. Every Sg- continuous function is semi- continuous.

The converse of Remark 4.3 is not true in general as it is shown in the following
example.

Example 4.4. Let X = {a,b,c}, and take 7 = {¢,{a}, X}, then SO(X)=PO(X)
and SgO(X) = {¢,X}, the identity function is semi-continuous but not Sg-
continuous.

Corollary 4.5. If f : (X,7) — (Y,9) be semi-continuous function and (X, 1) is
locally indiscrete, then f is Sg-continuous function.

Proof. Let f be semi-continuous and X be locally indiscrete, and let V' be any
open subset in Y. Then f~!(V) is semi-open subset in X, and since X is locally in-
discrete space then f~1(V) € S3O(X)), thus by Proposition 4.2 f is Sg-continuous
function. O

Remark 4.6. Fvery Sy,-continuous function is Sg-continuous, but the converse is
not true in general. as shown in the following example.

Example 4.7. Let X = {a,b,c,d}, and, 7 = {X,¢,{a},{b,c},{a,b,c}} then
SO(X) = {X,¢,{a},{b,c},{a,b,c},{a,d},{b,c,d}} = SgO(X) and S,0(X) =
{X,¢, {b,c}, {a,d}, {b,c,d}}, also identity function is Sg-continuous which is
not Sy,-continuous function.
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Theorem 4.8. Let f : X — Y be a function, then the following statements are
equivalent:

~

. f is Sg-continuous function.

The inverse image of every open set in'Y is Sg-open set in X.
The inverse image of every closed set in'Y is Sg-closed set in X.
For each A C X ,f(Spcl(A)) Cclf(A).

For each A C X, intf(A) C f(Sgint(A)).

For eachB CY, Sgclf~Y(B) C f~1(clB).

For each B CY,f~(intB) C Sgintf~'(B).

NS v

Proof. (1) = (2) Follows from Proposition 4.2.

(2) = (3) Let B be any closed subset of Y, then Y\ B is open subset in Y, and
hencef ' (Y \ B) = X \ f~1(B) is Sg-open set in X. Thus f~1(B) is Ss-closed
subset in X.

(3) = (4) Let A C X, then f(A) C Y. But f(A) C clf(A) and By (3) f~1(clA)
is Sg-closed subset in X and A C f~1(clf(A)), then SgclA C f=1(clf(A)). This
implies that f(SgclA) C clf(A).

(4) = (5) Let A C X, then A\ X C X and then By (4) f(Spetacl(X \
A) Cf(X\ A). Therefore, f(X \ SgintA) C cl(Y \ f(A)). This implies that
Y\ f(SgintA CY \intf(A), thus intf(A) \ f(SgintA).

(5) = (6) Let B C Y, then f~!(B) C X and thenX \ f~!(B) \ X. There-
fore intf (X \ f~1(B) C f(Sgint(X \ f~1(B)), then int(Y' \ f(f'(B)) C f(X \
(Sgclf~(B)), this implies that int(Y \ B) CY \ f(Sgclf~1(B)), then Y \ cIB C
Y\ f(Sgclf~1(B)), that is f(Sgclf~1(B)) C clBhence Szelf~1(B) C f~1(cIB).

(6) = (7) Let B C Y, then Y \ A C Y. Therefore, by 6, Sgclf= (Y \
B) C f~}cl(Y \ B), then Sgcl(X \ f~YB)) C f~YY \ intB), so we get X \
Sgint(f~1(B)) C X \ f~1(intB), hence f~!(intB) C Sgint(f~1(B)).

(7) = (1) Let € X and U be any open subset of ¥ containing f(z), then
by (7) f=(intU) C Sgintf~Y(U), this implies that f~*(U) C Sgf~1(U). Hence
f71(U) is Sg-open set in X containing = such that f(f~1(U)) C U). Thus f is
Sg-continuous function. O

Theorem 4.9. Let f: X — Y be a subjective function, then the following state-
ments are equivalent

1. f is Sg-continuous function.

2. For every B C Y, intclf~1(B) C f~(cIB) and f~(cIB) = (;ca Vi where
Vi € BO(X).
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8. For every B C Y, f~'(intB) C clintf~"(B), and f~'(intB) = J;cp Fi
where F; € fC(X).

4. For every A C X, f(intclA) C clf(A) and f~'(clf(A)) = Niea Vi where
Vi € BO(X).

Proof. (1) = (2) Let B C Y, then ¢IB is closed subset in Y. Since f is Sg-
continuous. Then by Theorem 4.8. f~1(cIB) is Sg-closed in X. Therefore,
by Proposition 2.2 f~!(cIB) is semi-closed and f~'(cIB)=(";ca Vi where V; €
BO(X), thus intclf~'(cIB) C f~(cIB) and f~'(cIB) = (;ca Vi where V; €
BO(X). Hence intclf~1(B) C f~'(cIB) and f~(cIB) = (\;ca Vi where V; €
pO(X)

(2) = (1) Let B be closed subset of Y, then By (2), intcl f~1(B) C ffl(clB) =
f7Y(B) and f~'(B) = ;ca Vi where V; € BO(X). This implies that f~*(B) C
Se(X), and f~H(B) = (;ea Vi where V; € BO(X). Thus by Proposition 2.2
f71(B) is S5 -closed in X. Hence by Theorem 4.8 f is Sg-continuous function.

(1) = (3) Let B C Y, then intB is open subset in Y, since f is Sg-continuous.
Therefore, f~1(intB) is Sg-open in X. This implies that f~!(intB) € SO(X),
and f~'(intB) = Ui € A)F;, where F; € BC(X), therefore f~t(intB) C
clintf~(B),and f~1(intB) = J;ca Fi, where F; € 3C(X).

(3) = (1) Let B be open subset of Y, then intB = B and thus by (3),
cli

f7Y(B) C dintf~1(B) and f~'(B) = U;ca Fi, where F; € SC(X), this implies
that f~1(B) € SgO(X). Hence f is Sg-continuous.

(2) = (4) Let A C X, then f(A) C Y and then by(2), intclf~(f(A)) C
f7Hclf(A)) and f=1(clf(A)) = N;ea Vi where V; € BO(X), therefore intclA C
f7Hclf(A)) and f=(clf(A)) = N;en Vi where V; € BO(X). Thus f(intclA) C

clf( ) and f1(clf(A)) = N;ea Vi where V; € BO(X).

(4) = (2) Let B C Y, then f~Y(B) C X. Therefore by (4), f(intclf~1(B)) C
cf(f~%(B)) C clB and f Yl f(f~4(B))) = N;ea Vi where V; € BO(X). This
implies that intclf~'(B) C f~'(cdB) and f~'(cl(B)) = (;ea Vi where V; €
BO(X). O

Proposition 4.10. Let f : X — Y be Sg-continuous function and A C X such
that A is clopen, then the restriction function f|A: A —Y is Sg-continuous.

Proof. Let B be any open subset of Y, since f is Sg- continuous, then By Propo-
sition 4.2 f~1(B) € SgO(X), but A is clopen then A € «O(X) By Lemma 2.21,

“1(B)NA € S30(X), since A is open then A € aO(X) so f~1(B)NA =
(f]A)~Y(B) € SgO(A). Hence f|A is Sg-continuous. O

Theorem 4.11. Let f: X — Y be Sg-continuous function and let {Ax : A € A}
be regular closed cover of X. If the restriction flAx : Ax — Y is Sg-continuous
for each A € A, then f is Sz-continuous.
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Proof. Let f|Ax : Ax — Y be Sg-continuous for each A € A, and let G be
any open subset in Y, then by Proposition 4.2, (f|A)\)"*(G) € SzO(A,) for
each A € A, but (f|A\)"HG) = fFHG)NAr € Ss0(A,) for eachh € A,
Since for each for each A € A, Ay is regular closed, then by Proposition 2.9,
UGN AN) € S30(Ay) for each X € A, but J(f~HGNAN) € S50(X), and
J7HE) = Uneal/ (GNAY) € S50(X), then [1(G) € S30(X). Thus by
Theorem 4.8, f is Sg-continuous. O

Theorem 4.12. Let f : X — Y be a function. Let & be any basis for o in Y.
Then f is Sz-continuous if and only if for each B € S, f~1(B) is Sz-open subset
of X.

Proof. Suppose that f is Sg-continuous, since each B € & is open subset of YV
and f is Sg-continuous. Then by Proposition 4.2, f~1(B) is Sg-open subset of
X. Conversely; Let for each B € S, is Sg-open subset of X. Let V' be any open
set in Y, then V = JB; : i € A where B; is a member of & and S is a suitable
index set. It follows that f~*(V) = f~1UB;:ie A}y = f1(B;: {i € A}. But
J7Y(B;) is an Sg-open subset in X for each i € A. Therefore f~1(V) is the union
of a family of Sg-open sets of X and hence is a Sg-open set of X. Therefore, by
Proposition 4.2, f is Sg-continuous function. O
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