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1 Introduction and Preliminaries

Throughout this paper, a space means a topological space on which no separa-
tion axioms are assumed unless explicitly stated. In 1963 [1] Levine was initiated
semi open sets and their properties, Mathematicians gives in several papers in-
teresting and different new types of sets. In [2], Abd-El-Moonsef in 1983 defined
the class of β-open set. In 2010, Shareef [3] introduced a new class of semi-open
sets called SP -open sets. We recall the following definitions and characterizations.
The closure (resp., interior) of a subset A of X is denoted by clA (resp., intA). A
subset A of X is said to be semi-open [1] (resp., pre-open [4], α-open [5], β-open
[3], regular open [6] and regular β-open [7]) set if A ⊆ clintA (resp., A ⊆ intclA,
A ⊆ intclintA , A ⊆ clintclA, A = intclA and A = βintβclA). The complement
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of semi-open (resp., pre-open, α-open, β-open, regular open, regular β-open) set
is said to be semi-closed (resp., pre- closed, α-closed, β-closed, regular closed,
regular β-closed). The intersection of all semi-closed (resp., pre-closed, β-closed)
sets of X containing a subset A is called the semi-closure (resp., pre-closure, β-
closure) of A and denoted by sclA (resp., pclA , βclA). The union of all semi-open
(resp., pre-open, β-open) set of X contained in A is called the semi-interior (resp.,
pre-interior, β-interior) of A and denoted by sintA (resp., pintA, βintA). The
family of all semi-open (resp., pre-open, α-open, β-open, regular β-open, regu-
lar open, semi-closed, pre-closed, α-closed, β-closed, regular β-closed, and regular
closed) subset of a topological space X is denoted by SO(X) (resp., PO(X), α
O(X), β O(X),Rβ O(X) RO(X), SC(X), PC(X), α C(X), β C(X), Rβ C(X)
and RC(X)). A subset A of X is called δ-open [8] if for each x ∈ A, there exists
an open set B such that x ∈ B ⊆ intclB ⊆ A . A subset A of a space X is
called θ-semi-open [9] (resp., semi-θ-open [10] if for each x ∈ A, there exists a
semi-open set G such that x ∈ G ⊆ clG ⊆ A (resp., x ∈ G ⊆ sclG ⊆ A). A
function f : X → Y is a semi-continuous if the inverse image of each open subset
of Y is semi-open in X Also f is said to be δ-continuous if for each x in X and
each open set V of Y containing f(x) there exists an open set U of X such that
f(intclU) ⊆ intclf(V ).

Definition 1.1 ([4]). A topological space (X, τ) is said to be

1. Extremally disconnected if clV ∈ τ for every V ∈ τ .

2. Locally indiscrete if every open subset of X is closed.

3. Hyperconnected if every nonempty open subset of X is dense.

Lemma 1.2.

1. If X is a locally indiscrete space, then each semi-open subset of X is closed
and hence each semi-closed subset of X is open [11].

2. A topological space (X, τ) is hyperconnected if and only if RO(X) = {φ, X}
[12].

Theorem 1.3 ([13]). Let (X, τ) be a topological space, then:

1. SO(X, τ) = SO(X, αO(X)).

2. βC(X, τ) = βC(X, αO(X)).

Theorem 1.4 ([1]).

1. Let A be any subset of a space X. Then A ∈ SO(X, τ) if and only if
clA = clintA.

2. If {Aγ : γ ∈ Γ} is a collection of semi-open sets in a topological space (X, τ),
then ∪{Aγ : γ ∈ Γ} is semi-open.

3. Let (Y, τY ) be a subspace of a space (X, τ). If A ⊆ Y and A ∈ SO(X), then
A ∈ SO(Y, τY ).
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Theorem 1.5.

1. If Y is a semi-open subspace of a space X, then a subset A of Y is a semi-
open set in X if and only if A is semi-open set in Y [14].

2. Let (Y, τY ) be a subspace of a space (X, τ). If A ∈ SO(Y, τY ) and Y ∈
SO(X, τ), then A ∈ SO(X, τ) [15].

3. If F is an closed subset of a space X and B ∈ βc(X), then F ∪ B ∈ βc(X)
[7].

Theorem 1.6 ([16]). Let (X, τ) be a topological space. If A ∈ τ and B ∈ SO(X),
then A ∩ B ∈ SO(X).

Theorem 1.7. For any spaces X and Y . If A ⊆ X and B ⊆ Y , then:

1. βclX×Y (A × B) = βclX(A) × βclY (B) [7].

2. sintX×Y (A × B) = sintX(A) × sintY (B) [15].

Definition 1.8. A subset A of a space X is said to be Sp − open [3] (resp.,
Sc −open [17]) if for each x ∈ A there exists a pre-closed (resp., closed) set F such
that x ∈ F ⊆ A.

Proposition 1.9 ([16]). LetA be any subset of a space X.Then A ∈ SC(X)if and
only if intclA ⊆ A.

Theorem 1.10 ([14]). A subset A of a space X is dense in X if and only if A is
semi-dense in X.

Theorem 1.11 ([7]). The intersection of a β-open set and an α-open set is β-
open.

Theorem 1.12 ([7]). Let(Y, τY ) be a subspace of a space(X, τ), and Y ∈ αC(X),
then A ∈ βC(X) If and only if A ∈ βC(Y ).

Theorem 1.13 ([18]). A space X is extremely disconnected if and only if RO(X) =
RC(X).

2 Sβ-Open Sets

In this section, we introduce and study the concept of Sβ-open sets in topo-
logical spaces and give some basic properties of this set.

Definition 2.1. A semi open subset A of a topological space (X, τ) is said to be
Sβ-open if for each x ∈ A there exists a β-closed set F such that x ∈ F ⊆ A. A
subset B of a topological space X is Sβ-closed, if X \ B is Sβ-open.

The family of Sβ-open subsets of X is denoted by SβO(X).
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Proposition 2.2. A subset A of a topological space (X, τ) is Sβ-open set if and
only if A is semi open and it is a union of β-closed sets.

Proof. Obvious.

The following result shows that any union of Sβ-open sets in a topological
space is Sβ-open.

Theorem 2.3. Let {Aα : α ∈ ∆} be a family of Sβ-open sets in a topological
space (X, τ).Then

⋃
α∈∆ Aα is an Sβ-open set.

Proof. The union of an arbitrary semi open sets is semi open Theorem 1.4. Sup-
pose that x ∈

⋃
α∈∆ Aα, this implies that there exists α0 ∈ ∆ such that x ∈ Aα0

and since Aα0 is an Sβ-open set, so there exists a β-closed set F in X such that
x ∈ F ⊆ Aα0 ⊆

⋃
α∈∆ Aα. Therefore,

⋃
α∈∆ Aα is an Sβ-open set.

From Theorem 2.3 it is clear that any intersection of Sβ-closed sets of a topo-
logical space (X, τ) is Sβ-closed. The following example shows that the intersection
of two Sβ-open sets is not an Sβ-open set.

Example 2.4. Consider X = {a, b, c, d} with the topology τ = {φ, X, {a}, {b},{a, b},
{a, b, c}, {a, b, d}}. Then {a, c} and {b, c} are Sβ-open sets in X but {a, c}∩{b, c}=
{c} is not Sβ-open sets.

Proposition 2.5. A subset G in the space X is Sβ-open, if and only if for each
x ∈ G there exists an Sβ-open set H such that x ∈ H ⊆ G.

Proof. Let G be an Sβ-open set in X , then for each x ∈ G, we have G is an
Sβ-open set containing x such that x ∈ G ⊆ G.

Conversely, suppose that for each x ∈ G there exists an Sβ-open set H such
that x ∈ H ⊆ G, then G is a union of Sβ-open sets, hence by Theorem 2.3, G is
Sβ-open.

Proposition 2.6. Every semi-θ-open subset A of X is Sβ-open.

Proof. Let A ∈ SθO(X), then for each x ∈ A there exists a semi-open set G such
that x ∈ G ⊆ sclG ⊆ A, So A is semi open and moreover, sclG is semi closed and
hence it is β-closed. Therefore, by Proposition 2.5 A ∈ Sβ(O(X)).

Proposition 2.7. A subset A of a topological space X is regular β open if A is
SβO(X).

Proof. First if A ∈ SβO(X)) then A is semi-open and for each x ∈ A there exist
a β-closed set F such that x ∈ F ⊆ A, therefore x ∈ F = βclF ⊆ A, so we get
x ∈ βclF ⊆ A,since A ∈ SO(X), then A ∈ βO(X) and x ∈ βclF ⊆ A, it follows
that A is regular βO(X)

Corollary 2.8. Every θSO(X), θ(OX), RSO(X) and δ(OX) are Sβ(OX).
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Proof. Since each of θSO(X), θ(OX), RSO(X) and δ(OX) are SθO(X).

Proposition 2.9.

1. Every SP -open set is Sβ-open

2. Sβ-open set is regular β-open set.

3. Regular closed set is Sβ-open set.

4. Every Regular open sets is Sβ-closed set.

Proof. Obvious.

In general, the converse of above proposition not true in general as shown in
the following examples.

Example 2.10. Let X = {a, b, c} and τ = {φ, {a, b}, X}, then Sβ(O(X)) =
{φ, X} and Rβ(O(X)) = PO(X) \ {{a, b}, {c}}.

Example 2.11. Let X = {a, b, c, d} and τ = {φ, {a}, {b}, {a, b}, {a, b, c}, X} , then
SO(X) = βO(X) = {φ, {a}, {b}, {a, b}, {a, c}, {a, d}, {a, c, d}, {a, b, c}, {a, b, d}, X}
so SβO(X) = {φ, {b}, {a, c, d}, X} but SθO(X) = SO(X).

Example 2.12. Let X = {a, b, c, d} and let τ = {φ, {a}, {b}, {a, b}, X} then
βO(X) = SO(X) = \{{c}, {d}, {c, d}} and PO(X) = {φ, {a}, {b}, {a, b}, {a, c},
{a, b, c}, {a, b, d}, X} we get that SβO(X) = SO(X) but SP O(X) = {φ, X}.

Proposition 2.13. If a space X is T1-space, then SβO(X) = SO(X).

Proof. Since every closed set is β-closed and every singleton set is closed. Hence
SO(X) = SβO(X).

Proposition 2.14. If the family of all semi-open subsets of a topological space is
a topology on X then the family of all SβO(X) is also a topology on X.

Proof. Obvious.

Proposition 2.15. Let (X, τ) be a topological space and if X is extremally dis-
connected then SβO(X) form a topology on X.

Proof. Obvious.

Proposition 2.16. If a space X is hyperconnected, then the only Sβ- open sets
in X are φ, and X.

Proof. Suppose that A ⊆ X such that A is Sβ- open sets in X . If A = X , then
there is nothing to prove. If A 6= X , then we must prove that A = φ, since A is
Sβ- open sets in X then by definition 2.1, for each x ∈ A there exist F ∈ βC(X)
such that x ∈ F ⊆ A,therefore X \ A ⊆ X \ F , but X \ A is semi closed, then by
Preposition 1.9 implies that intclX \ A ⊆ (X \ A). Since X is hyperconnected,
then by definition 1.1 and Theorem 1.10 Scl(int(cl(X \A)) = X ⊆ (X \A). Thus
X \ A = X this implies that A = φ. Hence the only Sβ-open sets of X are φ and
X .
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If (Y, τY ) is a subspace of the space (X, τ) and if a subset A is Sβ- open set
relative to Y , then A may not be Sβ- open set in X , as shown in the following
example:

Example 2.17. Let X = {a, b, c, d} and let τ = {φ, {a}, {b}, {c}, {a, b}, {a, c},
{a, d}, {b, c}, {a, c, d}, {a, b, c}, {a, b, d}, X}. So we obtain that SβO(X) = {φ, {b},
{c}, {a, d}, {b, c}, {a, b, c}, {a, b, d}, X}. let Y = {b, c, d}, then τY = {φ, {d}, {b},
{c}, {c, d}, {b, d}, {b, c}, Y } is relative topology on Y , SβO(Y ) = P (X) then {a} is
Sβ-open set on Y , but {a} is not Sβ-open set in X.

Also if Y is a subspace of a space X , and if A is Sβ-open set in X , then A∪Y
may not be Sβ-open set in Y . As shown in the following example.

Example 2.18. Let X = {a, b, c, d} and τ = {φ, {c}, {a, b}, {a, b, c}, {a, b, d}, X}=
SβO(X), let Y = {a, c, d},then τY = {φ, {a}, {c}, {a, c}, {a, d}, Y } is relative
topology on Y , and SβO(Y ) = {φ, {c}, {a, d}, Y }, but {a, b} ∈ SβO(X) and
{a, b} ∩ Y = {a} /∈ SβO(Y ).

Proposition 2.19. If a topological space X is locally indiscrete, then every semi-
open set is Sβ-open.

Proof. Let A be a semi-open set in X , then A ⊆ (intclA). Since X is locally
indiscrete, then intA is closed and hence intA = clintA, which implies that A is
regular closed in X . Therefore by Proposition 2.9, A is Sβ-open.

Remark 2.20. Since every open set is semi-open set, it follows that if a topological
space (X, τ) is T1 or Locally indiscrete then τ ⊆ SβO(X).

Lemma 2.21. If B is clopen subset of a space X and A is Sβ-open set in X, then
A ∩ B ∈ SβO(X).

Proof. Let A be Sβ-open set, so A is semi-open and B is open and closed in X ,
then by Theorem 1.6 A ∩ B is semi-open in X , let x ∈ A ∩ B, this implies that
x ∈ A and x ∈ B, since A is Sβ-open there exist a β-closed set F in X such
that x ∈ F ⊆ A, also B is closed then B is β-closed,hence B ∩ F is β-closed set,
therefore A ∩ B isSβ-open set in X .

Proposition 2.22. Let (X, τ) be a locally indiscrete topological space, and A, B ⊆
X. If A ∈ SβO(X) and B is open, then A ∩ B is Sβ-open set in X.

Proof. Follows from Lemma 2.21.

Proposition 2.23. Let (X, τ) be an extremally disconnected topological space and,
A, B ⊆ X. If A ∈ SβO(X) and B ∈ RO(X), then A ∩ B is Sβ-open set in X.

Proof. Let A ∈ SβO(X) and B ∈ RO(X) so A is semi-open set. Then by Theorem
1.6. A∩B ∈ SO(X). Now let x ∈ A∩B, this implies that x ∈ A and x ∈ B, since
A is Sβ-open there exist a β-closed set F in X such that x ∈ F ⊆ A. Since X
is extremally disconnected, then by Theorem 1.13 B is a regular closed set. This
implies that B ∩ F is β-closed set, therefore x ∈ (F ∩ B) ⊆ (A ∩ B), so A ∩ B is
Sβ-open set in X .
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Lemma 2.24. Let A ⊆ Y ⊆ X, and A ∈ SβO(X), If Y is α-open set in X, then
A ∈ SβO(Y ).

Proof. Let A ∈ SβO(X) then A ∈ SO(X) for A ⊆ Y ⊆ X , and A ∈ αO(X), then
by Theorem 1.4, A ∈ SO(Y ) and for each x ∈ A there exists a β-closed set F in
X such that x ∈ F ⊆ A. Since F is β-closed, then X \F is β-open in X and since
Y is an α-open set in X , then by Theorem 1.11, (X \ F ) ∩ Y = Y \ F is β-open
in X and since Y \ F ⊆ Y ⊆ X , by Theorem 1.12, Y \ F is β-open in Y . This
implies that F is β-closed set in Y , thus A ∈ SβO(Y ).

Corollary 2.25. Let Y be a subspace of the space X, and A be a subset of Y . If
A is Sβ-open set in X, and Y is open set in X, then A is Sβ-open set in Y .

Proof. follows from Lemma 2.24.

Lemma 2.26. Let A ⊆ Y ⊆ X, and A ∈ SβO(Y, τY ), If Y is regular-closed set
in X, then A ∈ SβO(X, τ).

Proof. Let A ∈ SβO(Y, τY ) then A ∈ SO(Y, τY ) and for each x ∈ A there exists a
β-closed set F in X such that x ∈ F ⊆ A. Since Y ∈ RC(X) then Y is semi-open
in X and since A ∈ SβO(Y, τY ), then by Theorem 1.5 A ∈ SO(X, τ). Again Since
Y ∈ RC(X), then Y ∈ αc(X), since F is β-closed in Y , then by Theorem 1.12, F
is β-closed in X . Hence A ∈ SβO(X, τ).

Corollary 2.27. Let Y be a subspace of the space X, and A be a subset of Y . If
A is Sβ-open set in Y , and Y is clopen set in X, then A is Sβ-open set in X.

Proof. Follows from Lemma 2.26.

Corollary 2.28. Let A ⊆ Y ⊆ X, if A ∈ SβO(X) and Y is clopen subset of X,
then A ∩ Y ∈ SβO(Y ).

Proof. Follows from Lemma 2.21 and Corollary 2.25.

Proposition 2.29. If a topological space X is locally indiscrete, then every semi-
open set is Sβ-open set.

Proof. Let A be a semi-open set in X , then A ⊆ intclA, since X is locally in-
discrete, then intA is closed and hence intA = clintA, which implies that A is
regular closed, therefore by Proposition 2.9, A is Sβ-open set.

Corollary 2.30. For any space X, SβO(X, τ) = SβO(X, τα).

Proof. Let A be any subset of a space X and A ∈ SβO(X, τ). If A = φ, then
A ∈ SβO(X, τα). If A 6= φ, and since A ∈ SβO(X, τ), so A ∈ SO(X, τ)
and A = ∪Fk where Fk is β-closed for each k. Since A ∈ SO(X, τ), then by
Theorem 1.3 A ∈ SO(X, τα). Since Fk is β-closed in (X, τ) for each k, then by
Theorem 1.3, Fk is β-closed in (X, τα) for each k, therefore by Proposition 2.2
A ∈ SβO(X, τα), So SβO(X, τα) ⊆ SβO(X, τ). By the same way we can prove
SβO(X, τ) ⊆ SβO(X, τα). Hence we get SβO(X, τ) = SβO(X, τα).
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Theorem 2.31. Let X, Y be two topological spaces and X × Y be the topological
product. If A1 ∈ SβO(X), and A2 ∈ Sβ(Y ), then (A1 × A2) ∈ SβO(X × Y ).

Proof. Let (x, y) ∈ A1 × A2. Then x ∈ A1 and y ∈ A2. Since A1 ∈ SβO(X) and
A2 ∈ SβO(Y ), then A1 ∈ SO(X) and A2 ∈ SO(Y ), and there exist F1 ∈ βC(X)
and F2 ∈ βC(Y ) such that x ∈ F1 ⊆ A1 and y ∈ F2 ⊆ A2. Therefore,(x, y) ∈
F1×F2 ⊆ A1×A2, and since A1 ∈ SO(X) and A2 ∈ SO(Y ), then by Theorem 1.7,
A1 ×A2 = SintXA1 ×SintY A2 = SintX ×Y (A1×A2), so A1 ×A2 ∈ SO(X ×Y ).
Since F1 ∈ βC(X) and F2 ∈ βC(Y ), then by Theorem 1.7 part(4) we get F1×F2 =
βclXF1×βclY F2 = βclX ×Y (F1×F2), so F1×F2 is β-closed in X×Y . Therefore,
(A1 × A2) ∈ SβO(X × Y ).

3 Sβ-Operations

Definition 3.1. A subset N of a topological space(X, τ) is called Sβ- neighborhood
of a subset A of X , if there exists an Sβ- open set U such that A ⊆ U ⊆ N . When
A = {x}, we say that N is Sβ- neighborhood of x.

Definition 3.2. A point x ∈ X is said to be an Sβ- interior point of A, if there
exists an Sβ- open set U containing x such that x ∈ U ⊆ A. The set of all Sβ-
interior points of A is said to be Sβ- interior of A and it is denoted by SβintA.

Proposition 3.3. Let A be any subset of a topological space X. If a point x is
in the Sβ- interior of A, then there exists a semi-closed set F of X containing x
such that F ⊆ A.

Proof. Suppose that x ∈ Sβint(A). Then there exists an Sβ- open set U of X
containing x such that U ⊆ A. Since U is an Sβ-open set, so there exists an
β-closed set F containing x such that F ⊆ U ⊆ A, hence x ∈ F ⊆ A.

Here we give some properties of Sβ-interior operator on a set.

Proposition 3.4. For any subset A of a topological space X, the following state-
ments are true:

1. the Sβ-interior of A is the union of all Sβ-open sets contained in A.

2. SβintA is the largest Sβ-open set contained in A.

3. A is Sβ-open set if and only if A = SβintA.

Finally from 3, we get that SβintASβintA = SβintA.

Proposition 3.5. If A and B are any subsets of a topological space X, then:

1. Sβint(φ)=φ, and SβintX=X .

2. SβintA ⊆ A.

3. If A ⊆ B,then SβintA ⊆ SβintB.
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4. SβintA ∪ SβintB ⊆ Sβint(A ∪ B).

5. Sβint(A ∩ B) ⊆ SβintA ∩ SβintB.

6. Sβint(A \ B) ⊆ SβintA \ SβintB.

7. A is Sβ-open at x ∈ X if and only if x ∈ SβintA.

Proof. Straight forward.

Definition 3.6. Intersection of all Sβ-closed sets containing F is called the Sβ-
closure of F and is denoted by SβclF .

Corollary 3.7. Let A be a set in a topological space X. A point x ∈ X is in
Sβ-closure of A if and only if A ∩ U 6= φ, for every Sβ- open set U containing x.

Proof. Obvious.

Proposition 3.8. Let A be any subset of a space X. If A ∩ F 6= φ for every
β-closed set F of X containing x, then the point x is in the Sβ-closure of A.

Proof. Suppose that U is any Sβ-open set containing x, then by Definition 1.1
there exists β-closed set F such that x ∈ F ⊆ U . So by hypothesis A ∩ F 6= φ
which implies that A ∩ U 6= φ for every Sβ-open set U containing x, therefore
x ∈ SβclA by Corollary 3.7.

Here we give some properties of.Sβ-closure of a set:

Theorem 3.9. For any subset F of a topological space X, the following statements
are true:

1. SβclF is the intersection of all Sβ- closed set in X containing F .

2. SβclF is the smallest Sβ-closed set containing F .

3. F is Sβ-closed set if and only if F = SβclF .

Proof. Obvious.

Proposition 3.10. Let A be any subset of a space X. If a point x is in the
Sβ-closure of A, then A ∩ F 6= φ for every β- closed set F of X containing x.

Proof. Suppose that x ∈ SβclA, then by Corollary 3.7, A ∩ U 6= φ for every Sβ-
open set U containing x. Since U is Sβ-open set, so there exists a β- closed set F
containing x such that x ∈ F ⊆ U . Hence A ∩ F 6= φ.

Theorem 3.11. If F and E are any subsets of a topological space X, then

1. Sβcl(φ)=φ, and SβclX=X.

2. for any subset Fof X, F ⊆ Sβ(clF ).

3. If F ⊆ E,then SβclF ⊆ SβclE.
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4. SβclF ∪ SβclE) ⊆ Sβcl(f ∪ E).

5. Sβcl(F ∩ E) ⊆ SβclF ∩ SβclE.

Proof. Obvious.

In general SβclF ∪ SβclE 6= Sβcl(f ∪ E) and Sβcl(F ∩ E) 6= SβclF ∩ SβclE,
as it is shown in the following example:

Example 3.12. Considering a space X = {a, b, c, d} and τ = {φ, {a}, {b}, {a, b},
{a, c}, {b, d},{a, b, c}, {a, b, d}, X}, then SO(X) = SβO(X) = PO(X) \ {d, {c, d}},
if we take F = {b, d} and E = {a, b, c} then SβclF = F = {b, d}, and SβclE = X,
and SβclF ∩ SβclE= SβclF = {b, d}, and Sβcl(F ∩ E) = {b}. It follow that
SβclF ∪ SβclE 6= Sβcl(f ∪ E). Again if we take F = {a} and E = {b}, we get
SβclF = F = {a} and SβclE = E = {b}, then Sβcl(F ∪ E) = {a} ∪ {b} = {a, b},
but SβclF ∪ E) = {a, b, c}, so Sβcl(F ∩ E) 6= SβclF ∩ SβclE.

Corollary 3.13. For any subset A of topological space X. Then the following
statements are true:

1. X \ SβclA= Sβint(X \ A).

2. X \ SβintA = Sβcl(X \ A).

3. SβintA = X \ Sβcl(X \ A).

Proof. Obvious.

Proposition 3.14. Let A and Y be subsets of a topological space X such that
A ⊆ Y ⊆ X. If Y is clopen, then SβclA ∩ Y = SβclY (A).

Proof. Let x ∈ (SβclA∩ Y ) and V ∈ SβO(Y ) containing x. Since Y clopen, then,
Y ∈ RC(X), by Lemma 2.26, V ∈ SβO(X) containing x, and hence V ∩ A 6= φ.
Therefore, x ∈ SβclY (A). Hence SβclA ∩ Y ⊆ SβclY (A)). On the other hand,
let x ∈ SβclY (A), and V ∈ SβO(X) containing x. Then x ∈ V ∩ Y . Since
Y clopen, then by Corollary 2.28, we have x ∈ V ∩ Y ∈ SβO(Y ) and hence
φ 6= (A ∩ (V ∩ Y )) ⊆ (A ∩ V ). Therefore, we obtain x ∈ SβclA ∩ Y . Hence
SβclY (A) ⊆ SβclA ∩ Y , therefore SβclA ∩ Y ⊆ SβclY (A).

Definition 3.15. Let A be a subset of a topological space X . A point x ∈ X is said
to be Sβ-limit point of A if for each Sβ-open set U containing x,U ∩ (A\ {x}) 6= φ.
The set of all Sβ-limit point of A is called Sβ- derived set of A and is denoted by
SβD(A).

Proposition 3.16. Let A be any subset of X. If F ∩ (A \ {x}) 6= φ, for every
β-closed set F containing x, then x ∈ SβD(A).

Proof. Let U be any Sβ-open containing x. Then there exists β-closed set F such
that x ∈ F ⊆ U . By hypothesis, we have F∩(A\{x}) 6= φ, hence U∩(A\{x}) 6= φ.
Therefore, a point x ∈ SβD(A).
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Proposition 3.17. If a subset A of a topological space X is Sβ-closed, then A
contains the set of all of it’s Sβ-limit point.

Proof. Suppose that A is Sβ- closed set, then X \ A is Sβ- open set, thus A is
Sβ-closed set if and only if each point of X \A has Sβ- neighborhood contained in
X \ A if and only if no point of X \ A is Sβ-limit point of A, or equivalently that
A contains each of its Sβ-limit points.

Proposition 3.18. Let F and E be subsets of a topological space X. If F ⊆ E,
then SβD(F ) ⊆ SβD(E).

Proof. Obvious.

Some properties of Sβ-derived set are mentioned in the following result:

Theorem 3.19. Let A and B be subsets of a topological space X. Then we have
the following properties:

1. SβD(φ) = φ.

2. x ∈ SβD(A) implies x ∈ SβD(A \ X).

3. SβD(A) ∪ SβD(B)) ⊆ SβD(A ∪ B).

4. SβD(A ∩ B) ⊆ SβD(A) ∩ SβD(B).

5. If A is Sβ-closed, then SβD(A) ⊆ A.

Proof. Obvious.

Theorem 3.20. Let X be a topological space and A be a subset of X, then:

1. A ∪ SβD(A)) is Sβ- closed.

2. SβD(SβD(A)) \ A ⊆ SβD(A).

3. SβD(A ∪ SβD(A)) ⊆ A∪ SβD(A).

Proof.

1- Let x /∈ A ∪ SβD(A). Then x /∈ A and x /∈ D(A) this implies that there exists
anSβ- open set Nx in X which contain no point of A other than x. But x /∈ A,
so Nx contains no point of A, which implies that Nx ⊆ X \ A, again Nx is an
Sβ- open set, it is a neihgbourhood of each of its points, but Nx does not contain
any point of A, no point of Nx can be Sβ-limit of A. Therefore no point of Nx

can belong to SβD(A), this implies that Nx ⊆ X \ SβD(A), hence it follows that
x ∈ Nx ⊆ (X \A) ∩ (X \ SβD(A) ⊆ X \ (A∪ SβD(A)). Therefore, A∪ SβD(A) is
Sβ-closed.

2- If x ∈ SβDSβD(A)\A and U is an Sβ-open set containing x, then U∩(SβD(A)\
{x}) 6= φ, let y ∈ (U ∩ SβD(A) \ {x}). Then y ∈ U and y ∈ SβD(A), so
U ∩ (A \ {y}) 6= φ, let z ∈ (U ∩ (A \ {y}). Then z 6= x for z ∈ A and x /∈ A, hence
U ∩ (A \ {x}) 6= φ. Therefore,x ∈ SβD(A).
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3- Let x ∈ SβD(A ∪ SβD(A)). If x ∈ A, the result is obvious, let x ∈ SβD(A ∪
SβD(A)) \A, then for Sβ-open set U containing x, U ∩ (A∪SβD(A)) \ {x})) 6= φ,
thus U ∩ (A \ {x}) 6= φ, or U ∩ SβD(A){x} 6= φ. Now it follows similarly From
2 that U ∩ (A \ {x}) 6= φ. Hence x ∈ SβD(A), therefore SβD(A ∪ SβD(A)) ⊆
A ∪ SβD(A).

Theorem 3.21. Let A be a subset of a space X, then SβclA = A ∪ SβD(A).

Proof. Since SβD(A) ⊆ SβclA and A ⊆ SβclA, we have A ∪ SβD(A) ⊆ SβclA.
Again since SβclA is the smallest Sβ-closed set containing A, but by Proposition
2.2 A ∪ SβD(A) is Sβ-closed. Hence SβclA ⊆ A ∪ SβD(A). Thus SβclA =
A ∪ SβD(A).

Theorem 3.22. Let X be any topological space and A be a subset of X. Then
SβintA = A \ SβD(X \ A).

Proof. Obvious.

Definition 3.23. If A is a subset of a topological space X , then Sβ- boundary of
A is SβclA \ SβintA, and is denoted by SβBd(A).

Proposition 3.24. For any subset A of a topological space X, the following state-
ments are true:

1. SβclA = SβintA ∪ SβBd(A).

2. SβintA ∩ SβBd(A) = φ.

3. SβBd(A) = SβclA ∩ Sβcl(X \ A).

4. SβBd(A) is Sβ-closed.

Proof. Obvious.

Theorem 3.25. For any subset A of a topological space X, the following state-
ments are true:

1. SβBd(A) = SβBd(X \ A).

2. A ∈ SO(X)) if and only if SβBd(A) ⊆ X \ A,that is A ∩ SβBd(A) = φ.

3. A ⊆ SβC(X) if and only if SβBd(A) ⊆ A.

4. SβBd(Sβ(Bd(A)) ⊆ SβBd(A).

5. SβBd(SβintA) ⊆ SβBd(A).

6. SβBd(SβclA) ⊆ SβBd(A).

7. SβintA = A \ SβBd(A).

Proof. Obvious.

Remark 3.26. Let A be a subset of a topological space X, then SβBd(A) = φ if
and only if A is both Sβ-open and Sβ- closed set.
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4 Sβ-Continuous Functions

In this section, we introduce the concepts of Sβ- continuity by using Sβ-open
sets. Several relations between these functions and other types of continuous
functions and spaces are investigated.

Definition 4.1. A function f : (X, τ) → (Y, ϑ) is called Sβ-continuous at a point
x ∈ X , if for each open set V of Y containing f(x), there exists an Sβ-open set U
in X containing x such that f(U) ⊆ V . If f is Sβ- continuous at every point x of
X , then it is called Sβ- continuous.

Proposition 4.2. A function f : (X, τ) → (Y, ϑ) is Sβ- continuous if and only if
the inverse image of every open set in Y is Sβ- open set in X.

Proof. Necessity. Let f be an Sβ- continuous function and V be any open set in
Y . To show thatf−1(V ) is Sβ- open set in X , if f−1(V ) = φ, implies that f−1(V )
is Sβ-open in X . If f−1(V ) 6= φ, then there exists x ∈ f−1(V ) which implies
that f(x) ∈ V . Since f is Sβ- continuous, so there exists an Sβ- open set U in X
containing x such that f(U) ⊆ V , this implies that x ∈ U ⊆ f−1(V ), this shows
that f−1(V )is Sβ- open in X .

Sufficiency. Let V be open set in Y , and its inverse is Sβ- open set in X .
Since, f(x) ∈ V , then x ∈ f−1(V ) and by hypothesis f−1(V ) is Sβ- open set in X
containing x, so f(f−1(V )) ⊆ V . Therefore, f is Sβ- continuous.

Remark 4.3. Every Sβ- continuous function is semi- continuous.

The converse of Remark 4.3 is not true in general as it is shown in the following
example.

Example 4.4. Let X = {a, b, c}, and take τ = {φ, {a}, X}, then SO(X)=PO(X)
and SβO(X) = {φ, X}, the identity function is semi-continuous but not Sβ-
continuous.

Corollary 4.5. If f : (X, τ) → (Y, ϑ) be semi-continuous function and (X, τ) is
locally indiscrete, then f is Sβ-continuous function.

Proof. Let f be semi-continuous and X be locally indiscrete, and let V be any
open subset in Y . Then f−1(V ) is semi-open subset in X , and since X is locally in-
discrete space then f−1(V ) ∈ SβO(X)), thus by Proposition 4.2 f is Sβ-continuous
function.

Remark 4.6. Every Sp-continuous function is Sβ-continuous, but the converse is
not true in general. as shown in the following example.

Example 4.7. Let X = {a, b, c, d}, and, τ = {X, φ, {a}, {b, c}, {a, b, c}} then
SO(X) = {X, φ, {a}, {b, c}, {a, b, c}, {a, d}, {b, c, d}} = SβO(X) and SpO(X) =
{X, φ, {b, c}, {a, d}, {b, c, d}}, also identity function is Sβ-continuous which is
not Sp-continuous function.
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Theorem 4.8. Let f : X → Y be a function, then the following statements are
equivalent:

1. f is Sβ-continuous function.

2. The inverse image of every open set in Y is Sβ-open set in X.

3. The inverse image of every closed set in Y is Sβ-closed set in X.

4. For each A ⊆ X ,f(Sβcl(A)) ⊆ clf(A).

5. For each A ⊆ X, intf(A) ⊆ f(Sβint(A)).

6. For eachB ⊆ Y , Sβclf−1(B) ⊆ f−1(clB).

7. For each B ⊆ Y ,f−1(intB) ⊆ Sβintf−1(B).

Proof. (1) ⇒ (2) Follows from Proposition 4.2.

(2) ⇒ (3) Let B be any closed subset of Y , then Y \B is open subset in Y , and
hencef−1(Y \ B) = X \ f−1(B) is Sβ-open set in X . Thus f−1(B) is Sβ-closed
subset in X .

(3) ⇒ (4) Let A ⊆ X , then f(A) ⊆ Y . But f(A) ⊆ clf(A) and By (3) f−1(clA)
is Sβ-closed subset in X and A ⊆ f−1(clf(A)), then SβclA ⊆ f−1(clf(A)). This
implies that f(SβclA) ⊆ clf(A).

(4) ⇒ (5) Let A ⊆ X , then A \ X ⊆ X and then By (4) f(Sbetacl(X \
A) ⊆ clf(X \ A). Therefore, f(X \ SβintA) ⊆ cl(Y \ f(A)). This implies that
Y \ f(SβintA ⊆ Y \ intf(A), thus intf(A) \ f(SβintA).

(5) ⇒ (6) Let B ⊆ Y , then f−1(B) ⊆ X and thenX \ f−1(B) \ X . There-
fore intf(X \ f−1(B) ⊆ f(Sβint(X \ f−1(B)), then int(Y \ f(f−1(B)) ⊆ f(X \
(Sβclf−1(B)), this implies that int(Y \ B) ⊆ Y \ f(Sβclf−1(B)), then Y \ clB ⊆
Y \ f(Sβclf−1(B)), that is f(Sβclf−1(B)) ⊆ clB,hence Sβclf−1(B) ⊆ f−1(clB).

(6) ⇒ (7) Let B ⊆ Y , then Y \ A ⊆ Y . Therefore, by 6, Sβclf−1(Y \
B) ⊆ f−1(cl(Y \ B), then Sβcl(X \ f−1(B)) ⊆ f−1(Y \ intB), so we get X \
Sβint(f−1(B)) ⊆ X \ f−1(intB), hence f−1(intB) ⊆ Sβint(f−1(B)).

(7) ⇒ (1) Let x ∈ X and U be any open subset of Y containing f(x), then
by (7) f−1(intU) ⊆ Sβintf−1(U), this implies that f−1(U) ⊆ Sβf−1(U). Hence
f−1(U) is Sβ-open set in X containing x such that f(f−1(U)) ⊆ U). Thus f is
Sβ-continuous function.

Theorem 4.9. Let f : X → Y be a subjective function, then the following state-
ments are equivalent

1. f is Sβ-continuous function.

2. For every B ⊆ Y , intclf−1(B) ⊆ f−1(clB) and f−1(clB) =
⋂

i∈∆ Vi where
Vi ∈ βO(X).
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3. For every B ⊆ Y , f−1(intB) ⊆ clintf−1(B), and f−1(intB) =
⋃

i∈∆ Fi

where Fi ∈ βC(X).

4. For every A ⊆ X, f(intclA) ⊆ clf(A) and f−1(clf(A)) =
⋂

i∈∆ Vi where
Vi ∈ βO(X).

Proof. (1) ⇒ (2) Let B ⊆ Y , then clB is closed subset in Y . Since f is Sβ-
continuous. Then by Theorem 4.8. f−1(clB) is Sβ-closed in X . Therefore,
by Proposition 2.2 f−1(clB) is semi-closed and f−1(clB)=

⋂
i∈∆ Vi where Vi ∈

βO(X), thus intclf−1(clB) ⊆ f−1(clB) and f−1(clB) =
⋂

i∈∆ Vi where Vi ∈
βO(X). Hence intclf−1(B) ⊆ f−1(clB) and f−1(clB) =

⋂
i∈∆ Vi where Vi ∈

βO(X).

(2) ⇒ (1) Let B be closed subset of Y , then By (2), intclf−1(B) ⊆ f−1(clB) =
f−1(B) and f−1(B) =

⋂
i∈∆ Vi where Vi ∈ βO(X). This implies that f−1(B) ⊆

Sc(X), and f−1(B) =
⋂

i∈∆ Vi where Vi ∈ βO(X). Thus by Proposition 2.2
f−1(B) is Sβ -closed in X . Hence by Theorem 4.8 f is Sβ-continuous function.

(1) ⇒ (3) Let B ⊆ Y , then intB is open subset in Y , since f is Sβ-continuous.
Therefore, f−1(intB) is Sβ-open in X . This implies that f−1(intB) ∈ SO(X),
and f−1(intB) =

⋃
( i ∈ ∆)Fi, where Fi ∈ βC(X), therefore f−1(intB) ⊆

clintf−1(B),and f−1(intB) =
⋃

i∈∆ Fi, where Fi ∈ βC(X).

(3) ⇒ (1) Let B be open subset of Y , then intB = B and thus by (3),
f−1(B) ⊆ clintf−1(B) and f−1(B) =

⋃
i∈∆ Fi, where Fi ∈ βC(X), this implies

that f−1(B) ∈ SβO(X). Hence f is Sβ-continuous.

(2) ⇒ (4) Let A ⊆ X , then f(A) ⊆ Y and then by(2), intclf−1(f(A)) ⊆
f−1(clf(A)) and f−1(clf(A)) =

⋂
i∈∆ Vi where Vi ∈ βO(X), therefore intclA ⊆

f−1(clf(A)) and f−1(clf(A)) =
⋂

i∈∆ Vi where Vi ∈ βO(X). Thus f(intclA) ⊆
clf(A) and f−1(clf(A)) =

⋂
i∈∆ Vi where Vi ∈ βO(X).

(4) ⇒ (2) Let B ⊆ Y , then f−1(B) ⊆ X . Therefore by (4), f(intclf−1(B)) ⊆
clf(f−1(B)) ⊆ clB and f−1(clf(f−1(B))) =

⋂
i∈∆ Vi where Vi ∈ βO(X). This

implies that intclf−1(B) ⊆ f−1(clB) and f−1(cl(B)) =
⋂

i∈∆ Vi where Vi ∈
βO(X).

Proposition 4.10. Let f : X → Y be Sβ-continuous function and A ⊆ X such
that A is clopen, then the restriction function f |A : A → Y is Sβ-continuous.

Proof. Let B be any open subset of Y , since f is Sβ- continuous, then By Propo-
sition 4.2 f−1(B) ∈ SβO(X), but A is clopen then A ∈ αO(X) By Lemma 2.21,
f−1(B)

⋂
A ∈ SβO(X), since A is open then A ∈ αO(X) so f−1(B)

⋂
A =

(f |A)−1(B) ∈ SβO(A). Hence f |A is Sβ-continuous.

Theorem 4.11. Let f : X → Y be Sβ-continuous function and let {Aλ : λ ∈ ∆}
be regular closed cover of X. If the restriction f |Aλ : Aλ → Y is Sβ-continuous
for each λ ∈ ∆, then f is Sβ-continuous.
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Proof. Let f |Aλ : Aλ → Y be Sβ-continuous for each λ ∈ ∆, and let G be
any open subset in Y , then by Proposition 4.2, (f |Aλ)−1(G) ∈ SβO(Aλ) for
each λ ∈ ∆, but (f |Aλ)−1(G) = f−1(G)

⋂
Aλ ∈ SβO(Aλ) for eachλ ∈ ∆,

Since for each for each λ ∈ ∆, Aλ is regular closed, then by Proposition 2.9,
f−1(G

⋂
Aλ) ∈ SβO(Aλ) for each λ ∈ ∆, but

⋃
(f−1(G

⋂
Aλ) ∈ SβO(X), and

f−1(G) =
⋃

λ∈∆(f−1(G
⋂

Aλ)) ∈ SβO(X), then f−1(G) ∈ SβO(X). Thus by
Theorem 4.8, f is Sβ-continuous.

Theorem 4.12. Let f : X → Y be a function. Let ℑ be any basis for σ in Y .
Then f is Sβ-continuous if and only if for each B ∈ ℑ, f−1(B) is Sβ-open subset
of X.

Proof. Suppose that f is Sβ-continuous, since each B ∈ ℑ is open subset of Y
and f is Sβ-continuous. Then by Proposition 4.2, f−1(B) is Sβ-open subset of
X . Conversely; Let for each B ∈ ℑ, is Sβ-open subset of X . Let V be any open
set in Y , then V =

⋃
Bi : i ∈ ∆ where Bi is a member of ℑ and ℑ is a suitable

index set. It follows that f−1(V ) = f−1
⋃

Bi : i ∈ ∆} =
⋃

f−1(Bi : {i ∈ ∆}. But
f−1(Bi) is an Sβ-open subset in X for each i ∈ ∆. Therefore f−1(V ) is the union
of a family of Sβ-open sets of X and hence is a Sβ-open set of X . Therefore, by
Proposition 4.2, f is Sβ-continuous function.

References

[1] N. Levine, Semi open sets and semi-continuity in topological spaces, Amer.
Math. Monthly 70 (1963) 36–41.

[2] M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-open sets and β-
continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983) 77–90.

[3] A.H. Shareef, Spre-open sets, Spre-continuity and Spre-compactness in topo-
logical spaces, M.Sc. Thesis, College of Science, Sulaimani Univ., 2007.

[4] A.S. Mashhour, M.E. Abd El-monsef, S.N. El.Deeb, On pre-continuous and
week pre-continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982) 47–
53.

[5] O. Njstad, On some classes of nearly open sets, Pacific J. Math. 15 (3) (1965)
961–970.

[6] L.A. Steen, J.A. Seebach Jr., Counterexamples in topology, Holt, Rinehart
and Winston, Inc., New York, 1970.

[7] R.H. Yunis, Regular β-open sets, Zonco J. Pure and Applied Science 16 (3)
(2004) 79–83.

[8] N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (2)
(1992) 103–118.



Sβ-Open Sets and Sβ-Continuity in Topological Spaces 335

[9] J.E. Joseph, M.H. Kwach, On S-closed spaces, Proc. Amer. Math Soc. 80 (2)
(1980) 341–348.

[10] G. Dimaio, T. Noiri, On S-closed spaces, Indian J. Pure Apple .Math. 18 (3)
(1987) 226–233.

[11] B.A. Asaad, Utilization of some types of pre-open sets in topological space,
M.Sc. Thesis, College of Science, Dohuk Univ., 2007.

[12] K. Dlaska, M. Ganster, S-sets and Co-S-closed topologies, Indian J. Pure
Apple. Math. 23 (10) (1992) 731–737.

[13] D.E. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc. 72
(1978) 581–586.

[14] T. Noiri, On semi continuous mapping, Accad. Naz. Lincei. Rend. CLSci. Fis.
Mat. Natur. 54 (8) (1973) 210–214.

[15] N.K. Ahmed, On some types of separation axioms, M.Sc. Thesis, College of
Science, Salahaddin Univ., 1990.

[16] S.G. Crossely, S.K. Hildebrand, Semi closure, Texas. J. Sci. 22 (1971) 99–112.

[17] Z.A. Ameen, A new class of semi-open sets in topological spaces, M.Sc. Thesis,
College of Science, Dohuk Univ., 2009.

[18] J. Dontchev, Survey on pre-open sets, The proceedings of Yatsushiro topo-
logical conference, (1998) 1–18.

(Received 16 November 2011)
(Accepted 14 June 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th


