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1 Introduction

In this paper we consider implicit diagonal systems of nonlinear parabolic
functional-differential inequalities of the form

F i(t, x, u(t, x), ui
t(t, x), ui

x(t, x), ui
xx(t, x), u)

≥ F i(t, x, v(t, x), vi
t(t, x), vi

x(t, x), vi
xx(t, x), v), (i = 1, . . . , m)

(1.1)

for (t, x) = (t, x1, . . . , xn) ∈ D, where D ⊂ (t0, t0 +T ]×Rn is one of five relatively
arbitrary sets more general than the cylindrical domain (t0, t0 + T ]×D0 ⊂ Rn+1.
The symbol w(= u or v) denotes the mapping

w : D̃ 3 (t, x) → w(t, x) = (w1(t, x), . . . , wm(t, x)) ∈ Rm,

where D̃ is an arbitrary set contained in (−∞, t0 + T ] × Rn such that D̄ ⊂
D̃; F i(i = 1, ..., m) are functionals of w;wi

x(t, x) = gradxwi(t, x)(i = 1, ..., m)
and wi

xx(t, x)(i = 1, . . . , m) denote the matrices of second order derivatives with
respect to x of wi(t, x) (i = 1, ..., m). We give a theorem on strong maximum



74 Thai J. Math. 4(2006)/ L. Byszewski

principles for problems with inequalities of types (1.1) and with the nonstandard
inequalities

[
uj(t0, x)−Kj

]
+

∑

i∈I∗

hi(x)

[
1

T2i − T2i−1

∫ T2i

T2i−1

uj(τ, x)dτ −Kj

]
≤ 0

for x ∈ St0(j = 1, . . . , m), where

St0 := int{x ∈ Rn : (t0, x) ∈ D̄},
Kj (j = 1, . . . ,m) are some constants, I∗ is a subset of a countable set I of natural
indices, t0 < T2i−1 < T2i ≤ t0 + T (i ∈ I) and hi : St0 → (−∞, 0] (i ∈ I∗) are some
functionals.

The results obtained are a generalization of some results given by J. Chabrowski
[6], R. Redheffer and W. Walter [7], J. Szarski [9], P. Besala [1], W. Walter[11], N.
Yoshida [12], the author [3], [4] and [5], and base on those results. To prove the
results of this paper we use the theorem on a strong maximum principle form [5].

Partial differential problems together with nonstandard (“nonlocal”) condi-
tions were also studied in paper [2]. Since, in the theory of differential equations,
the name “the nonlocal condition” is sometimes confusing then the name “the
nonlocal condition” (used for example in [6] and [4]) has been changed to the
name “the nonstandard condition” in paper [2] and next consequently used in the
changed terminology “nonstandard inequalities” in this paper.

2 Preliminaries

The notation and definitions given in the section are valid throughout this
paper. Some of them are similar to those applied by J. Szarski [8]-[10], R. Redheffer
and W. Walter [7], P. Besala [1], N. Yoshida [12], J. Chabrowski [6] and the author
[4], [5].

We use the following notation:

R = (−∞,∞), N = {1, 2, ...}, x = (x1, . . . , xn) (n ∈ N).

For vectors z = (z1, . . . , zm) ∈ Rm, z̃ = (z̃1, . . . , z̃m) ∈ Rm we write

z ≤ z̃ if zi ≤ z̃i (i = 1, . . . , m).

Let t0 be a real number and let 0 < T < ∞. A set D ⊂ {(t, x) : t > t0, x ∈
Rn} (bounded or unbounded) is called a set of type (P ) if

(i) The projection of the interior of D on the t-axis is the interval (t0, t0 + T ).

(ii) The projection of the interior of D on the t-axis is the interval (t0, t0 + T ).

{(t, x) : (t− t̃)2 +
n∑

i=1

(xi − x̃i)2 < r, t < t̃} ⊂ D.
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(iii) All the boundary points (t̃, x̃) of D for which there is a positive number r
such that

{(t, x) : (t− t̃)2 +
n∑

i=1

(xi − x̃i)2 < r, t ≤ t̃} ⊂ D

belong to D.

For any t ∈ [t0, t0 + T ] we define the following sets:

St =

{
int{x ∈ Rn : (t0, x) ∈ D̄}, for t = t0,

{x ∈ Rn : (t, x) ∈ D}, for t 6= t0,

and

σt =

{
int[D̄ ∩ ({t0} × Rn)], for t = t0,

D ∩ ({t} × Rn), for t 6= t0.

Let D̃ be a set contained in (−∞, t0 +T ]×Rn such that D̄ ⊂ D̃. We introduce
the following sets:

∂pD := D̃\D and Γ := ∂pD\σt0 .

For an arbitrary fixed point (t̃, x̃) ∈ D, we denote by S−(t̃, x̃) the set of points
(t, x) ∈ D that can be joined to (t̃, x̃) by a polygonal line contained in D along
which the t-coordinate is weakly increasing from (t, x) to (t̃, x̃).

Let Zm(D̃) denote the space of mappings

w : D̃ 3 (t, x) → w(t, x) = (w1(t, x), . . . , wm(t, x)) ∈ Rm

continuous in D̄.
In the set of mappings bounded from above in D̃ and belonging to Zm(D̃) we

define the functional

[w]t = max
i=1,...,m

sup{0, wi(t̃, x) : (t̃, x) ∈ D̃, t̃ ≤ t}, where t ≤ t0 + T.

By Mn×n(R) we denote the space of real square symmetric matrices r =[
rjk]n×n.

A mapping w ∈ Zm(D̃) is called regular in D if wi
t, w

i
x = gradxwi, wi

xx =[
wi

xjxk
]n×n (i = 1, . . . , m) are continuous in D.

Let the mappings

F i : D × Rm × R× Rn ×Mn×n(R)× Zm(D̃) 3 (t, x, z, p, q, r, w)

→ F i(t, x, z, p, q, r, w) ∈ R (i = 1, . . . , m)

be given and let for an arbitrary regular in D function w ∈ Zm(D̃)

F i
[
t, x, w

]
:= F i(t, x, w(t, x), wi

t(t, x), wi
x(t, x), wi

xx(t, x), w),
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(t, x) ∈ D (i = 1, . . . , m).

Each two regular in D mappings u, v ∈ Zm(D̃) are said to be solutions of the
system

F i
[
t, x, u

] ≥ F i
[
t, x, v

]
(i = 1, . . . , m) (2.1)

in D if they satisfy (2.1) for all (t, x) ∈ D.

For a set A ⊂ D̃ and for a function w ∈ Zm(D̃) we apply the notation:

max
(t,x)∈A

w(t, x) :=

(
max

(t,x)∈A
w1(t, x), . . . , max

(t,x)∈A
wm(t, x)

)
.

Let I = N or I be a finite set of mutually different natural numbers.
Define the set

S =
⋃

i∈I

(
σT2i−1 ∪ σT2i

)
,

where, in the case if I = N, the following conditions are satisfied:

(i) t0 < T2i−1 < T2i ≤ t0 + T for i ∈ I and T2i−1 6= T2j−1, T2i 6=
T2j for i, j ∈ I, i 6= j,

(ii) T0 := inf{T2i−1 : i ∈ I} > t0,

(iii) St ⊃ St0 for every t ∈ ⋃
i∈I

[
T2i−1, T2i

]
,

(iv) St ⊃ St0 for every t ∈ [
T0, t0 + T

]
,

and, in the case if I is a finite set of mutually different natural numbers, conditions
(i), (iii) are satisfied.

An unbounded set D of type (P ) is called a set of type (PSΓ) if :

(a) S 6= φ,

(b) Γ ∩ σ̄t0 6= φ.

Let S∗ denote a non-empty subset od S. We define the following set

I∗ = {i ∈ I : σTi ⊂ S∗}.

A bounded set D of type (P ) satisfying condition (a) of the definition of a set
of type (PSΓ) is called a set of type (PSB).

It is easy to see that if D is a set of type (PSB) then D satisfies condition (b) of
the definition of a set of type (PSΓ). Moreover, it is obvious that if D0 is a bounded
subset [D0 is an unbounded proper subset ] of Rn then D = (t0, t0 + T ]×D0 is a
set of type (PSB)[(PSΓ), respectively].
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3 Strong Maximum Principles Together with Non-
standard Inequalities with Integrals in Sets of
Types (PSΓ) or (PSB).

Now we shall prove the following theorem on strong maximum principles to-
gether with nonstandard inequalities in sets of types (PSΓ) and (PSB) :

Theorem 3.1 Assume that:
(1) D is a set of type (PSΓ) or (PSB).
(2)1 The mappings F i (i = 1, . . . , m) are weakly increasing with respect to

z1, . . . , zi−1, zi+1, . . . , zm (i = 1, . . . ,m). Moreover, there is a constant L > 0 such
that

F i(t, x, z, p, q, r, w)− F i(t, x, z̃, p, q̃, r̃, w̃)

≤ L

(
max

k=1,...,m
|zk − z̃k|+ |x|

n∑

j=1

|qj − q̃j |+ |x|2
n∑

j,k=1

|rjk − r̃jk|+
[
w − w̃

]
t

)

for all (t, x) ∈ D, z, z̃ ∈ Rm, p ∈ R, q, q̃ ∈ Rn, r, r̃ ∈ Mn×n(R), w, w̃ ∈ Zm(D̃),
where sup

(t,x)∈D̃

(w(t, x)− w̃(t, x)) < ∞ (i = 1, . . . , m).

(2)2 There are constants Ci > 0 (i = 1, 2) such that

F i(t, x, z, p, q, r, w)− F i(t, x, z, p̃, q, r, w) < C1(p̃− p) (i = 1, . . . ,m)

for all (t, x) ∈ D, z ∈ Rm, p > p̃, q ∈ Rn, r ∈ Mn×n(R), w ∈ Zm(D̃)
and

F i(t, x, z, p, q, r, w)− F i(t, x, z, p̃, q, r, w) < C2(p̃− p) (i = 1, . . . ,m)

for all (t, x) ∈ D, z ∈ Rm, p < p̃, q ∈ Rn, r ∈ Mn×n(R), w ∈ Zm(D̃).
(3) The mapping u belongs to Zm(D̃) and the maximum of u on Γ is attained.

Moreover,
K = (K1, . . . , Km) := max

(t,x)∈Γ
u(t, x). (3.1)

(4) The inequalities

[
uj(t0, x)−Kj

]
+

∑

i∈I∗

hi(x)

[
1

T2i − T2i−1

∫ T2i

T2i−1

uj(τ, x)dτ −Kj

]
≤ 0 (3.2)

for x ∈ St0 (j = 1, .., m)

are satisfied, where hi : St0 → (−∞, 0) (i ∈ I∗) are given functions such that
−1 ≤ ∑

i∈I∗
hi(x) ≤ 0 for x ∈ St0 , and, additionally, if card I∗ = ℵ0, then the series

∑
i∈I∗

hi(x)
T2i−T2i−1

∫ T2i

T2i−1
uj(τ, x)dτ (j = 1, . . . ,m) are convergent for x ∈ St0 .
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(5) The maximum of u in D̃ is attained. Moreover,

M = (M1, . . . , Mm) := max
(t,x)∈D̃

u(t, x). (3.3)

(6) The mappings u and v = M are solutions of the system

F i
[
t, x, u

] ≥ F i
[
t, x, v

]
(i = 1, .., m)

in D.

(7) The mappings F i (i = 1, . . . , m) are parabolic with respect to u in D and
uniformly parabolic with respect to M in any compact subset of D (see [3] or [5]).

Then
max

(t,x)∈D̃
u(t, x) = max

(t,x)∈Γ
u(t, x). (3.4)

Moreover, if there is a point (t̃, x̃) ∈ D such that u(t̃, x̃) = max
(t,x)∈D̃

u(t, x) then

u(t, x) = max
(t,x)∈Γ

u(t, x) for (t, x) ∈ S−(t̃, x̃).

Proof. We shall prove Theorem 3.1 for a set of type (PSΓ) only since the proof
of this theorem for a set of type (PSB) is analogous.

Since each set of type (PSΓ) is a set of type (PΓ) from [5], it follows that in the
case where

∑
i∈I∗

hi(x) = 0 for x ∈ St0 , Theorem 3.1 is a consequence of Theorem

4.1 of [5]. Therefore, we shall prove Theorem 3.1 only in the case if

−1 ≤
∑

i∈I∗

hi(x) < 0 for x ∈ St0 . (3.5)

Assume that (3.5) holds and, since we shall argue by contradiction, suppose

M 6= K. (3.6)

Form (3.1) and (3.3) we have
K ≤ M. (3.7)

Consequently,
K < M. (3.8)

Observe that from assumption (5)

There is (t∗, x∗) ∈ D̃ such that u(t∗, x∗) = M := max
(t,x)∈D̃

u(t, x). (3.9)

By (3.9), by assumption (3) and by (3.8), we have

(t∗, x∗) ∈ D̃ \ Γ = D ∪ σt0 . (3.10)
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An argument analogous to the proof of Theorem 4.1 from [5] yields

(t∗, x∗) /∈ D. (3.11)

Conditions (3.10) and (3.11) give

(t∗, x∗) ∈ σt0 . (3.12)

On the other hand, because of the definitions of sets I and I∗, we must consider
the following cases:

(A) I∗ is a finite set, i.e., without loss of generality there is a number p ∈ N
such that I∗ = {1, .., p}.

(B) card I∗ = ℵ0.
First we shall consider case (A). And so, by (3.2) and by the inequality

u(t, x∗) < u(t0, x∗) for t ∈
p⋃

i=1

[
T2i−1, T2i

]
,

being a consequence of (3.9), (3.12), and of (a)(i), (a)(iii) of the definition of a set
of type (PSΓ), we have

0 ≥ [
uj(t0, x∗)−Kj

]
+

p∑

i=1

hi(x∗)

[
1

T2i − T2i−1

∫ T2i

T2i−1

uj(τ, x∗)dτ −Kj

]

≥ [
uj(t0, x∗)−Kj

]
+

p∑

i=1

hi(x∗)

[
1

T2i − T2i−1

∫ T2i

T2i−1

uj(t0, x∗)−Kj

]

=
[
uj(t0, x∗)−Kj

] ·
[
1 +

p∑

i=1

hi(x∗)
]

(j = 1, . . . ,m).

Hence

u(t0, x∗) ≤ K if 1 +
p∑

i=1

hi(x∗) > 0. (3.13)

Then, from (3.8) and (3.12), we obtain a contradiction of (3.13) with (3.9). Assume
now

p∑

i=1

hi(x∗) = −1. (3.14)

By the mean-value integral theorem we have that for every j ∈ {1, . . . ,m} and
i ∈ {1, . . . , p} there is T̃ j

i ∈
[
T2i−1, T2i

]
such that

uj
(
T̃ j

i , x∗
)

=
1

T2i − T2i−1

∫ T2i

T2i−1

uj(τ, x∗)dτ. (3.15)

Simultaneously, for every j ∈ {1, . . . ,m} there is a number lj ∈ {1, . . . , p} such
that

uj
(
T̃ j

lj
, x∗

)
= max

i=1,...,p
uj

(
T̃ j

i , x∗
)
. (3.16)
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Consequently, by (3.14), (3.16), (3.15) and (3.2), we obtain

uj(t0, x∗)− uj
(
T̃ j

lj
, x∗

)
=

[
uj(t0, x∗)−Kj

]− [
uj

(
T̃ j

lj
, x∗

)−Kj
]

=
[
uj(t0, x∗)−Kj

]
+

p∑

i=1

hi(x∗)
[
uj

(
T̃ j

lj
, x∗

)−Kj
]

≤ [
uj(t0, x∗)−Kj

]
+

p∑

i=1

hi(x∗)
[
uj

(
T̃ j

i , x∗
)−Kj

]

=
[
uj(t0, x∗)−Kj

]

+
p∑

i=1

hi(x∗)
[ 1
T2i − T2i−1

∫ T2i

T2i−1

uj(τ, x∗)dτ −Kj
]

≤ 0 (j = 1, . . . ,m).

Hence

uj(t0, x∗) ≤ uj
(
T̃ j

lj
, x∗

)
(j = 1, . . . ,m) if

p∑

i=1

hi(x∗) = −1. (3.17)

Since, by (a)(i) of the definition of a set of type (PSΓ), T̃ j
lj

> t0 (j = 1, . . . , m),
we get from (3.12) that (3.17) is at a contradiction with (3.9). This completes the
proof of (3.4) if I∗ is a finite set.

It remains to investigate case (B). Analogously to the proof of (3.4) in case
(A), by assumption (4) and by the inequality

u(t, x∗) < u(t0, x∗) for t ∈
⋃

i∈I∗

[
T2i−1, T2i

]
,

being a consequence od (3.9), (3.12), and of (a)(i), (a)(iii) of the definition of a set
of type (PSΓ), we have

0 ≥ [
uj(t0, x∗)−Kj

]
+

∑

i∈I∗

hi(x∗)
[ 1
T2i − T2i−1

∫ T2i

T2i−1

uj(τ, x∗)dτ −Kj
]

≥ [
uj(t0, x∗)−Kj

]
+

∑

i∈I∗

hi(x∗)
[ 1
T2i − T2i−1

∫ T2i

T2i−1

uj(t0, x∗)dτ −Kj
]

=
[
uj(t0, x∗)−Kj

] · [1 +
∑

i∈I∗

hi(x∗)
]

(j = 1, . . . ,m).

Hence
u(t0, x∗) ≤ K if 1 +

∑

i∈I∗

hi(x∗) > 0. (3.18)

Then, from (3.8) and (3.12), we obtain a contradiction of (3.18) with (3.9). Assume
now ∑

i∈I∗

hi(x∗) = −1. (3.19)
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By the mean-value integral theorem we have that for every j ∈ {1, . . . ,m} and
i ∈ I∗ there is T̃ j

i ∈
[
T2i−1, T2i

]
such that

uj
(
T̃ j

i , x∗
)

=
1

T2i − T2i−1

∫ T2i

T2i−1

uj(τ, x∗)dτ. (3.20)

Let
T̃ j
∗ = inf

i∈I∗
T̃ j

i (j = 1, . . . ,m). (3.21)

Since u ∈ C(D̄) and since, by (3.12) and by (a)(iv), (a)(ii) of the definition of a
set of type (PSΓ), x∗ ∈ St for every t ∈ [

T0, t0 + T
]

if I = N, it follows from (3.21)
that for every j ∈ {1, . . . ,m} there is a number t̂j ∈

[
T̃ j
∗ , t0 + T

]
such that

uj
(
t̂j , x

∗) = max
t∈[T̃ j

∗ ,t0+T ]
uj(t, x∗). (3.22)

Consequently, by (3.19), (3.22), (3.20) and by assumption (4), we obtain

uj(t0, x∗)− uj(t̂j , x∗) =
[
uj(t0, x∗)−Kj

]− [
uj(t̂j , x∗)−Kj ]

=
[
uj(t0, x∗)−Kj

]
+

∑

i∈I∗

hi(x∗)
[
uj(t̂j , x∗)−Kj ]

≤ [
uj(t0, x∗)−Kj

]
+

∑

i∈I∗

hi(x∗)
[
uj(T̃ j

i , x∗)−Kj ]

=
[
uj(t0, x∗)−Kj

]

+
∑

i∈I∗

hi(x∗)
[ 1
T2i − T2i−1

∫ T2i

T2i−1

uj(τ, x∗)dτ −Kj
]

≤ 0 (j = 1, . . . , m).

Hence

uj(t0, x∗) ≤ uj(t̂j , x∗)(j = 1, . . . , m) if
∑

i∈I∗

hi(x∗) = −1. (3.23)

Since, by (a)(ii) of the definition of a set type (PSΓ), t̂j > t0 (j = 1, . . . ,m), we get
from(3.12) that (3.23) is at a contradiction with (3.9). This completes the proof
of equality (3.4).

The second part of Theorem 3.1 is a consequence of (3.4) and Lemma 3.1 from
[5]. Therefore, the proof of Theorem 3.1 is complete. ¤

4 Remarks

Remark 4.1 Observe, by the proof of Theorem 3.1 from this paper and by the
proof of Theorem 4.1 from [5], that if the functions hi(i ∈ I∗) from assumption
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(4) of Theorem 3.1 satisfy the condition
[ ∑

i∈I∗

hi(x) = 0

]
− 1 <

∑

i∈I∗

hi(x) ≤ 0 for x ∈ St0

then it is sufficient to assume in this theorem that [D is only an unbounded set of
type (P ) satisfying condition (b) of the definition of a set of type (PSΓ) or D is only
a bounded set of type (P ), i.e., according to the terminology of [5], D is a set of type
(PΓ) or (PB), respectively] D is an unbounded set of type (P ) satisfying conditions
(a)(i), (a)(iii) and (b) of the definition of a set of type (PSΓ) or D is a bounded
set of type (P ) satisfying conditions (a)(i) and (a)(iii) of the definition of a set of
type (PSΓ). Moreover, if I∗ is a finite set and −1 ≤ ∑

i∈I∗
hi(x) ≤ 0 for x ∈ St0 ,

then it is sufficient to assume in Theorem 3.1 that D is an unbounded set of type
(P ) satisfying conditions (a)(i), (a)(iii) and (b), or D is a bounded set of type (P )
satisfying conditions (a)(i) and (a)(iii).

Remark 4.2 If D is a set of type (PSB) and if D̃ = D̄ then the first part of
assumption (3) of Theorem 3.1 relative to the maximum of u and the first part of
assumption (5) of this theorem are trivially satisfied since u ∈ C(D̄) and Γ is the
bounded and closed set in this case.

Remark 4.3 If the mappings F i (i = 1, . . . , m) do not depend on the func-
tional argument w then Theorem 3.1 reduces to the theorem on strong maximum
principles for implicit parabolic differential problems together with nonstandard
inequalities with integrals and in this case we can put D̃ = D̄.

Remark 4.4 The results obtained can be applied in the theory of diffusion and
in the theory of heat conduction. For this purpose see [4].

5 Physical Interpretations of Problems Consid-
ered

Theorem 3.1 can be applied to descriptions of physical phenomena in which we
can measure sums of mean temperatures of substances or sums of mean amounts
of substances according to the following formulae :

uj(t0, x) +
∑

i∈I∗

hi(x)
T2i − T2i−1

∫ T2i

T2i−1

uj(τ, x)dτ for x ∈ St0 (j = 1, . . . , m)

(hi (i ∈ I∗) are known function). For example, Theorem 3.1 can be applied to the
description of a diffusion phenomenon of a little amount of a gas in a transparent
tube, under the assumption that the diffusion is observed by the surface of this
tube. The measurement u(t0, x) (m = 1) of small amount of the gas at the initial
instant t0 is usually less precise than the following measurement:
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u(t0, x) +
∑

i∈I∗

hi(x)
T2i − T2i−1

∫ T2i

T2i−1

u(τ, x)dτ for x ∈ St0 (m = 1),

where

1
T2i − T2i−1

∫ T2i

T2i−1

u(τ, x)dτ for x ∈ St0 (i ∈ I∗, m = 1)

are the mean amounts of this gas on the intervals [T2i−1, T2i] (i ∈ I∗), respectively.
Therefore, Theorem 3.1 seems to be more useful in some physical applications
than Theorem 4.1 from [5] on strong maximum principles with initial inequalities
of the form

u(t0, x) ≤ K for x ∈ St0 .

If I∗ = 1, T1 = t0 + T −∆t, 0 < ∆t < T, T2 = t0 + T,−1 ≤ hi(x) = −h(x) ≤
0 for x ∈ St0 and m = 1, then the nonstandard conditions

uj(t0, x) +
∑

i∈I∗

hi(x)
T2i − T2i−1

∫ T2i

T2i−1

uj(τ, x)dτ = 0 for x ∈ St0 (j = 1, . . . , m)

are reduced to the following condition:

u(t0, x) =
h(x)
∆t

∫ t0+T

t0+T−∆t

u(τ, x)dτ for x ∈ St0 (m = 1) (5.1)

and this condition can be used to the description of heat effects in atomic reactors.
It is easy to see, by (5.1), that if u(t0, x) is interpreted as the given temperature
in an atomic reactor at the initial instant t0, then the atomic reaction is the safest
for 1 ' h(x) ≤ 1 and this reaction in the most dangerous for 0 < h(x) ' 0. In the
case if h(x) = 1 for x ∈ St0 , formula (5.1) is reduced to the condition

u(t0, x) =
1

∆t

∫ t0+T

t0+T−∆t

u(τ, x)dτ for x ∈ St0 (m = 1)

which is the modification of the periodic condition

u(t0, x) = u(t0 + T, x) for x ∈ St0 (m = 1).
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