
Thai Journal of Mathematics
Volume 11 (2013) Number 2 : 293–302

http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

Properties of (x(yz))z with

Opposite Loop and Reverse

Arc Graph Varieties of Type (2,0)1

Mittree Krapeedang and Tiang Poomsa-ard
2

Department of Mathematics, Faculty of Science
Mahasarakham University, Mahasarakham 44150, Thailand

e-mail : mitree.k@msu.ac.th (M. Krapeedang)

tiang@kku.ac.th (T. Poomsa-ard)

Abstract : Graph algebras establish a connection between directed graphs with-
out multiple edges and special universal algebras of type (2,0). We say that a
graph G satisfies a term equation s ≈ t if the corresponding graph algebra A(G)
satisfies s ≈ t. A class of graph algebras V is called a graph variety if V = ModgΣ

where Σ is a subset of T (X) × T (X). A graph variety V ′ = ModgΣ
′

is called an

(x(yz))z with opposite loop and reverse arc graph variety if Σ
′

is a set of (x(yz))z
with opposite loop and reverse arc term equations.

In this paper, we characterize all (x(yz))z with opposite loop and reverse arc
graph varieties.
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1 Introduction

Graph algebras have been invented in [1] to obtain examples of nonfinitely
based finite algebras. To recall this concept, let G = (V, E) be a (directed) graph
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with the vertex set V and the set of edges E ⊆ V × V . Define the graph algebra
A(G) corresponding to G with the underlying set V ∪ {∞}, where ∞ is a symbol
outside V , and with two basic operations, namely a nullary operation pointing to
∞ and a binary one denoted by juxtaposition, given for u, v ∈ V ∪ {∞} by

uv =

{

u, if (u, v) ∈ E,
∞, otherwise.

In [2] graph varieties had been investigated for finite undirected graphs in
order to get graph theoretic results (structure theorems) from universal algebra
via graph algebras. In [3] these investigations are extended to arbitrary (finite)
directed graphs where the authors ask for a graph theoretic characterization of
graph varieties, i.e., of classes of graphs which can be defined by term equations
for their corresponding graph algebras. The answer is a theorem of Birkhoff-
type, which uses graph theoretic closure operations. A class of finite directed
graphs is equational (i.e., a graph variety) if and only if it is closed with respect to
finite restricted pointed subproducts and isomorphic copies.

In [4] Krapeedaeng and Poomsa-ard characterized biregular graph varieties and
in [5] Anantpinitwatna and Poomsa-ard characterized (x(yz))z with loop graph
varieties.

A graph variety V ′ = ModgΣ
′

is called a (x(yz))z with opposite loop and

reverse arc graph variety if Σ
′

is a set of (x(yz))z with opposite loop and reverse
arc term equations. In this paper, we characterize all (x(yz))z with opposite loop
and reverse arc graph varieties.

2 Terms and Graph Varieties

In [6], Pöschel was introduced terms for graph algebras, the underlying formal
language has to contain a binary operation symbol (juxtaposition) and a symbol
for the constant ∞ (denoted by ∞, too).

Definition 2.1. The set T (X) of all terms over the alphabet

X = {x1, x2, x3, ...}

is defined inductively as follows:

(i) every variable xi, i = 1, 2, 3, ..., and ∞ are terms;

(ii) if t1 and t2 are terms, then t1t2 is a term.

T (X) is the set of all terms which can be obtained from (i) and (ii) in finitely
many steps. Terms built up from the two-element set X2 = {x1, x2} of variables
are thus binary terms. We denote the set of all binary terms by T (X2). The
leftmost variable of a term t is denoted by L(t). A term, in which the symbol ∞
occurs is called a trivial term.
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Definition 2.2. For each non-trivial term t of type τ = (2, 0) one can define
a directed graph G(t) = (V (t), E(t)), where the vertex set V (t) is the set of all
variables occurring in t and the edge set E(t) is defined inductively by

E(t) = φ if t is a variable and E(t1t2) = E(t1) ∪ E(t2) ∪ {(L(t1), L(t2))}

where t = t1t2 is a compound term.

L(t) is called the root of the graph G(t), and the pair (G(t), L(t)) is the rooted
graph corresponding to t. Formally, we assign the empty graph φ to every trivial
term t.

Definition 2.3. A non-trivial term t of type τ = (2, 0) is called (x(yz))z with op-
posite loop and reverse arc term if and only if G(t) is a graph with V (t) = {x, y, z}
and E(t) = E ∪ (∪X∈E′X), where E = {(x, y), (x, z), (y, z)}, E′ ⊆ {U, V, W},
E′ 6= φ and U = {(x, x), (z, y)}, V = {(y, y), (z, x)}, W = {(z, z), (y, x)}. A term
equation s ≈ t is called (x(yz))z with opposite loop and reverse arc equation if s
and t are (x(yz))z with opposite loop and reverse arc terms

Definition 2.4. We say that a graph G = (V, E) satisfies a term equation s ≈ t
if the corresponding graph algebra A(G) satisfies s ≈ t (i.e., we have s = t for
every assignment V (s) ∪ V (t) → V ∪ {∞}), and in this case, we write G |= s ≈ t.
Given a class G of graphs and a set Σ of term equations (i.e., Σ ⊂ T (X) × T (X))
we introduce the following notation:

G |= Σ if G |= s ≈ t for all s ≈ t ∈ Σ,
G |= s ≈ t if G |= s ≈ t for all G ∈ G,
G |= Σ if G |= Σ for all G ∈ G,
IdG = {s ≈ t | s, t ∈ T (X), G |= s ≈ t},
ModgΣ = {G | G is a graph and G |= Σ},
Vg(G) = ModgIdG.

Vg(G) is called the graph variety generated by G and G is called graph variety if
Vg(G) = G. G is called equational if there exists a set Σ′ of term equations such
that G = ModgΣ

′. Obviously Vg(G) = G if and only if G is an equational class.

In [6], Pöschel showed that any non-trivial term t over the class of graph
algebras has a uniquely determined normal form term NF (t) and there is an
algorithm to construct the normal form term to a given term t. Now, we want to
describe how to construct the normal form term. Let t be a non-trivial term. The
normal form term of t is the term NF (t) constructed by the following algorithm:

(i) Construct G(t) = (V (t), E(t)).

(ii) Construct for every x ∈ V (t) the list lx = (xi1 , ..., xik(x)
) of all out-neighbors

(i.e., (x, xij
) ∈ E(t), 1 ≤ j ≤ k(x)) ordered by increasing indices i1 ≤ ... ≤

ik(x) and let sx be the term (...((xxi1 )xi2 )...xik(x)
).

(iii) Starting with x := L(t), Z := V (t), s := L(t), choose the variable xi ∈
Z ∩ V (s) with the least index i, substitute the first occurrence of xi by
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the term sxi
, denote the resulting term again by s and put Z := Z \ {xi}.

Continue this procedure while Z 6= φ. The resulting term is the normal
form NF (t).

The algorithm stops after a finite number of steps, since G(t) is a rooted graph.
Without difficulties one shows G(NF (t)) = G(t), L(NF (t)) = L(t).

Definition 2.5. Let G = (V, E) and G
′

= (V
′

, E
′

) be graphs. A homomorphism
h from G into G′ is a mapping h : V → V

′

carrying edges to edges ,that is, for
which (u, v) ∈ E implies (h(u), h(v)) ∈ E

′

.

In [7], Kiss et al. proved the following proposition:

Proposition 2.6. Let G = (V, E) be a graph and let h : X ∪ {∞} −→ V ∪ {∞}
be an evaluation of the variables such that h(∞) = ∞. Consider the canonical
extension of h to the set of all terms. Then there holds: if t is a trivial term
then h(t) = ∞. Otherwise, if h : G(t) −→ G is a homomorphism of graphs, then
h(t) = h(L(t)), and if h is not a homomorphism of graphs, then h(t) = ∞.

Further in [4] Krapeedang and Poomsa-ard proved the following proposition:

Proposition 2.7. Let G = (V, E) be a graph s and t be non-trivial terms. Then
G |= s ≈ t if and only if G |= NF (s) ≈ NF (t).

3 (x(yz))z with Opposite Loop and Reverse Arc

Graph Varieties

We see that if s and t are terms such that V (s) 6= V (t) or L(s) 6= L(t),
then there exists a complete graph (a complete graph with more than one ver-
tices) which does not belong to the graph variety Modg{s ≈ t}. In this study,
we will investigate only the graph varieties which contain all complete graphs.
By Proposition 2.7, we see that for any Σ ⊆ T (X) × T (X) and Σ′ is the set
of term equations NF (s) ≈ NF (t), if s ≈ t ∈ Σ. Then, ModgΣ and ModgΣ

′

are the same graph variety. Hence, if we want to find properties of all (x(yz))z
with opposite loop and reverse arc graph varieties, then it is enough to find
the properties of all graph varieties ModgΣ

′

with Σ
′

is any subset of T ′ × T ′,
where T ′ = {s1, s2, s3, s4, s5, s6, s7} and s1 = (x((yx)(zz)))z, s2 = ((xx)(y(zy)))z,
s3 = (x((yy)(zx)))z, s4 = ((xx)((yx)((zy)z)))z, s5 = (x(((yx)y)((zx)z)))z, s6 =
((xx)((yy)((zx)y)))z, s7 = ((xx)(((yx)y)(((zx)y)z)))z. Clearly, for each i =
1, 2, 3, ..., 7, K0 = Modg{si ≈ si} is the set of all graph algebras.

In [7], Kiss et al. proved:

Proposition 3.1. Let s and t be non-trivial terms from T (X) with variables
V (s) = V (t) = {x0, x1, ..., xn} and L(s) = L(t). Then a graph G = (V, E) satisfies
s ≈ t if and only if the graph algebra A(G) has the following property:

A mapping h : V (s) −→ V is a homomorphism from G(s) into G iff it is a
homomorphism from G(t) into G.
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For convenient to referent, we collect the following graphs:
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Next, we will find all (x(yz))z with opposite loop and reverse arc graph vari-
eties. At first we will find all (x(yz))z with opposite loop and reverse arc graph
varieties of the form Modg{si ≈ sj}, i 6= j. Since T

′

has 7 elements, so there are
at most 21 (x(yz))z with opposite loop and reverse arc graph varieties of these
forms.

Let

K1 = Modg{((xx)(y(zy)))z ≈ (x((yy)(zx)))z},

K2 = Modg{((xx)(y(zy)))z ≈ (x((yx)(zz)))z},

K3 = Modg{(x((yy)(zx)))z ≈ (x((yx)(zz)))z}.

Theorem 3.2. Let G = (V, E) be a graph. Then we have the following:

(i) G ∈ K1 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,
then (a, a), (c, b) ∈ E if and only if (b, b), (c, a) ∈ E.

(ii) G ∈ K2 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,
then (a, a), (c, b) ∈ E if and only if (c, c), (b, a) ∈ E.

(iii) G ∈ K3 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈ E,
then (b, b), (c, a) ∈ E if and only if (c, c), (b, a) ∈ E.

Proof. Let G = (V, E) be a graph. Suppose that G ∈ K1 and for any a, b, c ∈ V ,
(a, b), (b, c), (a, c), (a, a), (c, b) ∈ E. Let s and t be non-trivial terms such that
s = ((xx)(y(zy)))z and t = (x((yy)(zx)))z and let h : V (s) → V be a function such
that h(x) = a, h(y) = b and h(z) = c. We see that h is a homomorphism from G(s)
into G. By Proposition 3.1, we have h is a homomorphism from G(t) into G. Since
(y, y), (z, x) ∈ E(t), we have (h(y), h(y)) = (b, b) ∈ E and (h(z), h(x)) = (c, a) ∈ E.
In the same way, we can prove that if (a, b), (b, c), (a, c), (b, b), (c, a) ∈ E, then
(a, a), (c, b) ∈ E.

Conversely, suppose that G = (V, E) be a graph which has property that,
for any a, b, c ∈ V if (a, b), (b, c), (a, c) ∈ E, then (a, a), (c, b) ∈ E if and only if
(b, b), (c, a) ∈ E. Let s and t be non-trivial terms such that s = ((xx)(y(zy)))z
and t = (x((yy)(zx)))z and let h : V (s) → V be a function. Suppose that h is
a homomorphism from G(s) into G. Since (x, y), (y, z), (x, z), (x, x), (z, y) ∈ E(s),
we have (h(x), h(y)), (h(y), h(z)), (h(x), h(z)), (h(x), h(x)), (h(z), h(y)) ∈ E. By
assumption, we get (h(y), h(y)), (h(z), h(x)) ∈ E. Hence, h is a homomorphism
from G(t) into G. In the same way, we can prove that if h is a homomorphism from
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G(t) into G, then it is a homomorphism from G(s) into G. Then, by Proposition
3.1 we get A(G) satisfies s ≈ t.

The proof of (ii) and (iii) are similar as the proof of (i).

Let
K4 = Modg{((xx)(y(zy)))z ≈ ((xx)((yy)((zx)y)))z},

K5 = Modg{(x((yy)(zx)))z ≈ ((xx)((yy)((zx)y)))z},

K6 = Modg{(x((yx)(zz)))z ≈ ((xx)((yx)((zy)z)))z}.

Theorem 3.3. Let G = (V, E) be a graph. Then we have the following:

(i) G ∈ K4 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c), (a, a), (c, b)
∈ E, then (b, b), (c, a) ∈ E.

(ii) G ∈ K5 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c), (b, b), (c, a)
∈ E, then (a, a), (c, b) ∈ E.

(iii) G ∈ K6 if and only if for any a, b, c ∈ V if (a, b), (b, c), (a, c), (c, c), (b, a)
∈ E, then (a, a), (c, b) ∈ E.

Proof. Let G = (V, E) be a graph. Suppose that G ∈ K4 and for any a, b, c ∈ V
(a, b), (b, c), (a, c), (a, a), (c, b) ∈ E. Let s and t be non-trivial terms such that s =
((xx)(y(zy)))z and t = ((xx)((yy)((zx)y)))z and let h : V (s) → V be a function
such that h(x) = a, h(y) = b and h(z) = c. We see that h is a homomorphism from
G(s) into G. By Proposition 3.1, we have h is a homomorphism from G(t) into
G. Since (y, y), (z, x) ∈ E(t), we have (h(y), h(y)) = (b, b) ∈ E and (h(z), h(x)) =
(c, a) ∈ E.

Conversely, suppose that G = (V, E) be a graph which has property that, for
any a, b, c ∈ V if (a, b), (b, c), (a, c), (a, a), (c, b) ∈ E, then (b, b), (c, a) ∈ E. Let s
and t be non-trivial terms such that s = ((xx)(y(zy)))z and t = ((xx)((yy)((zx)y)))z
and let h : V (s) → V be a function. Suppose that h is a homomorphism from G(s)
into G. Since (x, y), (y, z), (x, z), (x, x), (z, y) ∈ E(s), we have (h(x), h(y)), (h(y),
h(z)), (h(x), h(z)), (h(x), h(x)), (h(z), h(y)) ∈ E. By assumption, we get (h(y),
h(y)), (h(z), h(x)) ∈ E. Hence, h is a homomorphism from G(t)) into G. Clearly,
if h is a homomorphism from G(t) into G, then it is a homomorphism from G(s)
into G. Then, by Proposition 3.1 we get A(G) satisfies s ≈ t.

The proof of (ii) and (iii) are similar as the proof of (i).

Theorem 3.4. Let G = (V, E) be a graph and K7 = Modg{((xx)((yy)((zx)y)))z ≈
((xx)(((yx)y)(((zx)y)z)))z}. Then G ∈ K7 if and only if for any a, b, c ∈ V if
(a, b), (b, c), (a, c), (a, a), (c, b), (b, b), (c, a) ∈ E, then (c, c), (b, a) ∈ E.

Proof. Let G = (V, E) be a graph. Suppose that G ∈ K7 and for any a, b, c ∈ V ,
(a, b), (b, c), (a, c), (a, a), (c, b), (b, b), (c, a) ∈ E. Let s and t be non-trivial terms
such that s = ((xx)((yy)((zx)y)))z and t = ((xx)(((yx)y)(((zx)y)z)))z and let
h : V (s) → V be a function such that h(x) = a, h(y) = b and h(z) = c. We
see that h is a homomorphism from G(s) into G. By Proposition 3.1, we have
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h is a homomorphism from G(t) into G. Since (z, z), (y, x) ∈ E(t), we have
(h(z), h(z)) = (c, c) ∈ E and (h(y), h(x)) = (b, a) ∈ E.

Conversely, suppose that G = (V, E) be a graph which has property that, for
any a, b, c ∈ V if ((a, b), (b, c), (a, c), (a, a), (c, b), (b, b), (c, a) ∈ E, then (c, c), (b, a) ∈
E. Let s and t be non-trivial terms such that s = ((xx)((yy)((zx)y)))z and
t = ((xx)(((yx)y)(((zx)y)z)))z and let h : V (s) → V be a function. Suppose that h
is a homomorphism from G(s) into G. Since (x, y), (y, z), (x, z), (x, x), (z, y), (y, y),
(z, x) ∈ E(s), we have (h(x), h(y)), (h(y), h(z)), (h(x), h(z)), (h(x), h(x)), (h(z),
h(y)), (h(y), h(y)), (h(z), h(x)) ∈ E. By assumption, we get (h(z), h(z)), (h(y),
h(x)) ∈ E. Hence, h is a homomorphism from G(t)) into G. Clearly, if h is a
homomorphism from G(t) into G, then it is a homomorphism from G(s) into G.
Then by Proposition 3.1, we get A(G) satisfies s ≈ t.

Let
K

′

= Modg{((xx)(y(zy)))z ≈ ((xx)((yx)((zy)z)))z},

K
′′

= Modg{((xx)(y(zy)))z ≈ (x(((yx)y)((zx)z)))z},

K
′′′

= Modg{((xx)(y(zy)))z ≈ ((xx)(((yx)y)(((zx)y)z)))z}.

By using the Proposition 3.1 to check the graphs in K4 and the graphs in
Modg{((xx)(y(zy)))z ≈ ((xx)((yx)((zy)z)))z}, we found that they are the same
graph variety. After that we use the Proposition 3.1 recheck again as the following
theorem:

Theorem 3.5. Let K
′

= Modg{((xx)(y(zy)))z ≈ ((xx)((yx)((zy)z)))z}. Then,

K4 = K
′

.

Proof. Let G = (V, E) be a graph. Suppose that G ∈ K4. Let s = ((xx)(y(zy)))z,
t = ((xx)((yy)((zx)y)))z, t

′

= ((xx)((yx)((zy)z)))z and let h : V (s) −→ V
be a function. Suppose that h is a homomorphism from G(s) into G. Since
(x, y), (y, z), (x, z), (x, x), (z, y) ∈ E(s), we have (h(x), h(y)), (h(y), h(z)), (h(x),
h(z)), (h(x), h(x)), (h(z), h(y)) ∈ E. Since G ∈ K4, by Theorem 3.3(1), we have
(h(y), h(y)), (h(z), h(x)) ∈ E. Consider for (h(x), h(z)), (h(z), h(y)), (h(x), h(y)),
(h(x), h(x)), (h(y), h(z)) ∈ E. Since G ∈ K4, we have (h(z), h(z)), (h(y), h(x)) ∈
E. So, h is a homomorphism from G(t

′

) into G. Clearly, if h is a homomorphism
from G(t

′

) into G, then it is a homomorphism from G(s) into G. By Proposition
3.1, we have G ∈ K

′

.
Let G ∈ K

′

. Suppose that h is a homomorphism from G(s) into G. Since
(x, y), (y, z), (x, z), (x, x), (z, y) ∈ E(s), we have (h(x), h(y)), (h(y), h(z)), (h(x),
h(z)), (h(x), h(x)), (h(z), h(y)) ∈ E. Since G ∈ K

′

, by Proposition 3.1, we get
h is a homomorphism from G(t

′

) into G. Since (z, z), (y, x) ∈ E(t
′

), we have
(h(z), h(z)), (h(y), h(x)) ∈ E. Let h

′

: V (s) → V such that h
′

(x) = h(x),
h

′

(y) = h(z) and h
′

(z) = h(y). We have h
′

is a homomorphism from G(s) into
G. By Proposition 3.1, we get h

′

is a homomorphism from G(t
′

) into G. Hence,
(h

′

(z), h
′

(z)) = (h(y), h(y)) ∈ E and (h
′

(y), h
′

(x)) = (h(z), h(x)) ∈ E. Therefore,
h is a homomorphism from G(t) into G. Clearly, if h is a homomorphism from
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G(t) into G, then it is a homomorphism from G(s) into G. By Proposition 3.1, we
have G ∈ K4. We get K′ = K4.

In the similar way, we have the following:

K4 = Modg{((xx)(y(zy)))z ≈ ((xx)((yy)((zx)y)))z}

= Modg{((xx)(y(zy)))z ≈ ((xx)((yx)((zy)z)))z}}

= Modg{((xx)(y(zy)))z ≈ ((xx)((yx)y)(((zx)y)z)))z}

= Modg{((xx)(y(zy)))z ≈ (x(((yx)y)((zx)z)))z}.

K5 = Modg{(x((yy)(zx)))z ≈ ((xx)((yy)((zx)y)))z}

= Modg{(x((yy)(zx)))z ≈ (x(((yx)y)((zx)z)))z}

= Modg{(x((yy)(zx)))z ≈ ((xx)((yx)y)(((zx)y)z)))z}

= Modg{(x((yy)(zx)))z ≈ ((xx)((yx)((zx)z)))z}.

K6 = Modg{(x((yx)(zz)))z ≈ ((xx)((yx)((zy)z)))z}

= Modg{(x((yx)(zz)))z ≈ (x(((yx)y)((zx)z)))z}

= Modg{(x((yx)(zz)))z ≈ ((xx)((yx)y)(((zx)y)z)))z}

= Modg{(x((yx)(zz)))z ≈ ((xx)((yy)((zx)y)))z}.

K7 = Modg{((xx)((yy)((zx)y)))z ≈ ((xx)(((yx)y)(((zx)y)z)))z}

= Modg{((xx)((yx)((zy)z)))z ≈ ((xx)(((yx)y)(((zx)y)z)))z}

= Modg{(x(((yx)y)((zx)z)))z ≈ ((xx)(((yx)y)(((zx)y)z)))z}

= Modg{((xx)((yy)((zx)y)))z ≈ ((xx)((yx)(((zy)z)))z}

= Modg{((xx)((yy)((zx)y)))z ≈ (x(((yx)y)((zx)z)))z}

= Modg{((xx)((yx)((zy)z)))z ≈ (x(((yx)y)((zx)z)))z}.

Hence, there are only seven (x(yz))z with opposite loop and reverse arc graph
varieties Modg{si ≈ sj} with i 6= j for all i = 1, 2, 3, ..., 7, j = 1, 2, 3, ..., 7. Since
for any Σ ⊆ T ′×T ′ the (x(yz))z with opposite loop and reverse arc graph varieties
ModgΣ =

⋂

s≈t∈Σ Modg{s ≈ t}. Therefore, we can find all (x(yz))z with opposite
loop and reverse arc graph varieties in the following way:

At first let A = {K0,K1, ...,K7}. Find the intersection between two elements
of A. If there are some of them do not belong to A, then add them into A to get
the set A1. Do the same manner for A1 to get A2. Continue this process until
to get the set An such that all intersection between two elements of An belong to
itself. Then, An close under inclusion.

Let K8 = K1 ∩ K2. By Theorem 3.2, we have G1 ∈ K8, G4 ∈ K1,G3 ∈ K2,
G2 ∈ K3, G2, G3 /∈ K1, G2, G4 /∈ K2 and G3, G4 /∈ K3. Hence, K8 6= φ, K1 6= K2,
K2 6= K3 and K3 6= K1. By Theorem 3.3, we have G3, G4 ∈ K4, G2, G4 ∈ K5,
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G2, G3 ∈ K6, G2 /∈ K4, G3 /∈ K5 and G4 /∈ K6. Hence, K4 6= K5, K5 6= K6 and
K6 6= K4.

Further, we have the following theorems:

Theorem 3.6. K2 ∩ K3 = K3 ∩ K1 = K8.

Proof. To show that K2 ∩ K3 = K8. Let G = (V, E) be a graph. Suppose
that G ∈ K2 ∩ K3. We have G ∈ K2. For any a, b, c ∈ V , suppose that
(a, b), (b, c), (a, c), (a, a), (c, b) ∈ E. Since G ∈ K2 and G ∈ K3, we have (c, c), (b, a)
∈ E and (b, b), (c, a) ∈ E. For any a, b, c ∈ V , suppose that (a, b), (b, c), (a, c), (b, b),
(c, a) ∈ E. Since G ∈ K3 and G ∈ K2, we have (c, c), (b, a) ∈ E and (a, a), (c, b) ∈
E. Hence, G ∈ K1 and thus G ∈ K8. Suppose that G ∈ K1 ∩ K2 = K8. We
have G ∈ K2. For any a, b, c ∈ V , suppose that (a, b), (b, c), (a, c), (b, b), (c, a) ∈ E.
Since G ∈ K1 and G ∈ K2, we have (a, a), (c, b) ∈ E and (c, c), (b, a) ∈ E. For
any a, b, c ∈ V , suppose that (a, b), (b, c), (a, c), (c, c), (b, a) ∈ E. Since G ∈ K2 and
G ∈ K1, we have (a, a), (c, b) ∈ E and (b, b), (c, a) ∈ E. Hence, G ∈ K3 and thus
G ∈ K2 ∩ K3. Therefore, K2 ∩ K3 = K8.

The proof of K3 ∩ K1 = K8 is similar as the proof of K2 ∩ K3 = K8.

Theorem 3.7. (i) K4 ∩ K5 = K1. (ii) K5 ∩ K6 = K3. (iii) K6 ∩K4 = K2.

Proof. Let G = (V, E) be a graph. Suppose that G ∈ K1 and for any a, b, c ∈ V ,
(a, b), (b, c), (a, c), (a, a), (c, b) ∈ E. Since G ∈ K1, we have (b, b), (c, a) ∈ E. Hence,
G ∈ K4. For any a, b, c ∈ V , suppose that (a, b), (b, c), (a, c), (b, b), (c, a) ∈ E. Since
G ∈ K1, we have (a, a), (c, b) ∈ E. Hence, G ∈ K5. Then, we get G ∈ K4 ∩ K5.

Suppose that G ∈ K4∩K5 and for any a, b, c ∈ V , (a, b), (b, c), (a, c), (a, a), (c, b)
∈ E. Since G ∈ K4, we have (b, b), (c, a) ∈ E. For any a, b, c ∈ V , suppose that
(a, b), (b, c), (a, c), (b, b), (c, a) ∈ E. Since G ∈ K5, we have (a, a), (c, b) ∈ E. Hence,
G ∈ K1. Then, we get G ∈ K4 ∩ K5 = K1.

The proof of (ii) and (iii) are similar as the proof of (i).

Theorem 3.8. (i) K4 ⊆ K7. (ii) K5 ⊆ K7. (iii) K6 ⊆ K7.

Proof. Let G = (V, E) be a graph. Suppose that G ∈ K4. For any a, b, c ∈ V ,
suppose that (a, b), (b, c), (a, c), (a, a), (c, b), (b, b), (c, a) ∈ E. Since (a, c), (c, b),
(a, b), (a, a), (b, c) ∈ E and G ∈ K4, we have (c, c), (b, a) ∈ E. Hence, G ∈ K7.

The proof of (ii) and (iii) are similar as the proof of (i),

From our results, we found that the set K = {K0,K1,K2, ...,K8} close under
inclusion. Hence, K is the set of all (x(yz))z with opposite loop and reverse arc
graph varieties. Since the intersection of any family of (x(yz))z with opposite
loop and reverse arc graph varieties is again an (x(yz))z with opposite loop and
reverse arc graph variety, we get K forms a poset under inclusion, in which two
elements have a greatest lower bound (their intersection) and least upper bound
(the intersection of all (x(yz))z with opposite loop and reverse arc graph varieties
which contain both of them), Thus we have a lattice (K;∧,∨), which we call the
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(x(yz))z with opposite loop and reverse arc lattice of graph varieties. The following
is the Hasse diagram of this lattice.

q������

HHHHHH

K8

q������

K1
qHHHHHH

������

K2
qHHHHHH

K3

q������

K4
qK5

qHHHHHH

K6

qK7

qK0
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[2] R. Pöschel, W. Wessel, Classes of graphs definable by graph algebras identities
or quasiidentities, Comment. Math. Univ. Carolonae 28 (1987) 581–592.
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