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1 Introduction

The notion of probabilistic metric spaces (briefly, PM-spaces), as a generaliza-
tion of metric spaces, with non-deterministic distance, was introduced by Professor
Karl Menger [1] in 1942. The study of these spaces received much attention after
the pioneering work of Schweizer and Sklar [2, 3]. One of the simplest and most
useful results in the fixed point theory is the Banach-Caccioppoli contraction map-
ping principle. This theorem provides a technique for solving a variety of applied
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problems in mathematical sciences and engineering. Banach contraction princi-
ple has been generalized in different spaces by mathematicians over the years. In
1972, Sehgal and Bharucha-Reid [4] initiated the study of contraction mappings
in PM-spaces. For other related fixed point results in Menger spaces and their
applications, we refer to [5].

Many mathematicians weakened the notion of commutativity by introducing
the notions of weak commutativity [6], compatibility [7] and weak compatibility
[8] in metric spaces and proved a number of fixed point theorems using these
notions. In 2008, Al-Thagafi and Shahzad [9] gave a definition which is proper
generalization of nontrivial weakly compatible mappings which have coincidence
points. Jungck and Rhoades [10] studied fixed point results for occasionally weakly
compatible mappings. Many authors exploited these concepts (see for example,
[11–14] in framework of PM-spaces to obtain a number of common fixed point
results.

In an interesting note, Dorić et al. [15] have shown that in respect of single-
valued mappings, the condition of occasionally weak compatibility reduces to weak
compatibility in the presence of a unique point of coincidence (or a unique common
fixed point) of the given pair of mappings. Thus, no generalization can be obtained
by replacing weak compatibility with occasionally weak compatibility.

In 1976, Caristi [16] proved a fixed point theorem. Since the Caristi’s fixed
point theorem does not require the continuity of the mappings, it has applications
in many fields. In 1993, Zhang et al. [17] proved set-valued Caristi’s theorem in
probabilistic metric spaces. Chuan [18] brought forward the concept of Caristi
type hybrid fixed point in Menger spaces. In 2006, Chen and Chang [19] proved a
common fixed point theorem for four single-valued and two set-valued mappings
in a complete Menger spaces by using the notion of compatibility. Further, Pant
et al. [20] proved common fixed point theorems for single-valued and set-valued
mappings in Menger spaces using implicit relation. More recently, Pant et al. [21]
improved the results of Chen and Chang [19] by using the notion of occasionally
weak compatible mappings. Several interesting results for multi-valued mappings
are also appeared in [22–24].

In the present paper, we prove a common fixed point theorem for single-valued
and set-valued occasionally weakly compatible mappings in Menger spaces. An
example is furnished which demonstrates the validity of the hypotheses and degree
of generality of our main result.

2 Preliminaries

Definition 2.1 ([3]). A triangular norm △ (shortly t-norm) is a binary opera-
tion on the unit interval [0, 1] such that for all a, b, c, d ∈ [0, 1] and the following
conditions are satisfied

1. △(a, 1) = a;

2. △(a, b) = △(b, a);
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3. △(a, b) ≤ △(c, d) whenever a ≤ c and b ≤ d;

4. △ (a,△(b, c)) = △ (△(a, b), c).

Examples of t-norms are △(a, b) = min{a, b}, △(a, b) = ab and △(a, b) =
max{a + b − 1, 0}.

Definition 2.2 ([3]). A mapping F : R → R
+ is said to be a distribution function

if it is non-decreasing and left continuous with inf{F (t) : t ∈ R} = 0 and sup{F (t) :
t ∈ R} = 1.

We shall denote by ℑ the set of all distribution functions while H will always
denote the specific distribution function defined by

H(t) =

{

0, if t ≤ 0;
1, if t > 0.

If X is a non-empty set, F : X × X → ℑ is called a probabilistic distance on X

and F(x, y) is usually denoted by Fx,y.

Definition 2.3 ([3]). The ordered pair (X,F) is called a PM-space if X is a non-
empty set and F is a probabilistic distance satisfying the following conditions: for
all x, y, z ∈ X and t, s > 0,

1. Fx,y(t) = H(t) ⇔ x = y;

2. Fx,y(t) = Fy,x(t);

3. Fx,z(t) = 1, Fz,y(s) = 1 ⇒ Fx,y(t + s) = 1.

The ordered triple (X,F ,△) is called a Menger space if (X,F) is a PM-space,
△ is a t-norm and the following inequality holds:

Fx,y(t + s) ≥ △ (Fx,z(t), Fz,y(s)) ,

for all x, y, z ∈ X and t, s > 0.

Every metric space (X, d) can always be realized as a PM-space by considering
F : X×X → ℑ defined by Fx,y(t) = H(t−d(x, y)) for all x, y ∈ X . So PM-spaces
offer a wider framework than that of metric spaces and are better suited to cover
even wider statistical situations.

Throughout this paper, B(X) will denote the family of non-empty bounded
subsets of a Menger space (X,F ,△). For all A, B ∈ B(X) and for every t > 0, we
define

DFA,B(t) = sup{Fa,b(t); a ∈ A, b ∈ B} (2.1)

and

δFA,B(t) = inf{Fa,b(t); a ∈ A, b ∈ B}. (2.2)
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If the set A consists of a single point a, we write

δFA,B(t) = δFa,B(t).

If the set B also consists of a single point b, we write

δFA,B(t) = Fa,b(t).

It follows immediately from the definition that

δFA,B(t) = δFB,A(t) ≥ 0,

δFA,B(t) = 1 ⇔ A = B = {a},

for all A, B ∈ B(X).

Recall that x ∈ X is called a coincidence point (respectively, common fixed

point) of S : X → X and A : X → B(X) if Sx ∈ Ax (respectively, x = Sx ∈ Ax).

Definition 2.4 ([8]). Mappings S : X → X and A : X → B(X) are said to be
weakly compatible if SAx = ASx whenever Sx ∈ Ax.

Example 2.5. Let X = [0,∞) with usual metric. Define the mappings S : X → X

and A : X → B(X) as: S(x) = x2 for all x ∈ X and

A(x) =

{

{x}, if 0 ≤ x ≤ 1;
(1, x), if 1 < x < ∞.

Then the mappings S and A are weakly compatible at their coincidence points.

Definition 2.6 ([25]). Mappings S : X → X and A : X → B(X) are said to
be occasionally weakly compatible if and only if there exists some point x in X

Sx ∈ Ax and SAx ⊆ ASx.

From the following example, it is clear that the notion of occasionally weakly
compatible mappings is more general than weak compatibility.

Example 2.7. In the setting of Example 2.5, replace the mappings S and A by

the following, besides retaining the rest:

S(x) =

{

0, if 0 ≤ x < 2;
x + 2, if 2 ≤ x < ∞.

A(x) =

{

x, if 0 ≤ x < 2;
[2, x + 3], if 2 ≤ x < ∞.

Here, it can be easily verified that x = 0, 2 are the coincidence points of S and A,

but S and A are not weakly compatible at x = 2 that is AS(2) = [2, 7] 6= SA(2) =
[4, 7]. Hence S and A are not compatible. However, the pair (S, A) is occasionally

weakly compatible, since the pair (S, A) is weakly compatible at x = 0.
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3 Main Result

Theorem 3.1. Let (X,F ,△) be a Menger space with continuous t-norm. Further,

let S, T : X → X be single-valued and A, B : X → B(X) be two set-valued map-

pings such that the pairs (S, A) and (T, B) are each occasionally weakly compatible

satisfying

δFAx,By(t) ≥ φ (FSx,Ty(t)) (3.1)

for all x, y ∈ X, where φ : [0, 1] → [0, 1] is a continuous function such that φ(t) > t

for each 0 < t < 1, φ(0) = 0 and φ(1) = 1. Then A, B, S and T have a unique

common fixed point.

Proof. Since the pairs (S, A) and (T, B) are each occasionally weakly compatible,
there exist points x, y ∈ X such that Sx ∈ Ax, SAx ⊆ ASx and Ty ∈ By,
TBy ⊆ BTy. Now we claim that Sx = Ty. For if Sx 6= Ty, then there exists
a positive real number t such that FSx,Ty(t) < 1. Using inequality (3.1) and
condition (2.2), we get

FSx,Ty(t) ≥ δFAx,By(t)

≥ φ (FSx,Ty(t)) > FSx,Ty(t),

a contradiction. Hence, Sx = Ty. Since Sx ∈ Ax, therefore SSx ∈ SAx ⊆ ASx.
Also, from condition (2.2), we get FSSx,Sx(t) ≥ δFASx,By(t). Next we claim that
Sx = SSx. For if Sx 6= SSx, then there exists a positive real number t such that
FSx,SSx(t) < 1. Using inequality (3.1) and condition (2.2), we have

FSSx,Sx(t) ≥ δFASx,By(t)

≥ φ (FSSx,Ty(t))

= φ (FSSx,Ty(t))

> FSSx,Sx(t),

which contradicts. Hence the claim follows. Similarly, it can be shown that
Ty = TTy which proves that Sx is a common fixed point of A, B, S and T . The
uniqueness of common fixed point is an easy consequence of inequality (3.1).

The following example illustrates Theorem 3.1.

Example 3.2. Let X = [0,∞) with the metric d defined by d(x, y) = |x − y| and

for each t ∈ [0, 1], define

Fx,y(t) =

{

t
t+|x−y| , if t > 0;

0, if t = 0,

for all x, y ∈ X. Clearly (X,F ,△) be a Menger space, with t-norm △ is defined

by △(a, b) = min{a, b} for all a, b ∈ [0, 1]. Define the mappings S, T : X → X and

A, B : X → B(X) by
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A(x) =

{

{x}, if 0 ≤ x < 1;
[1, x + 2], if 1 ≤ x < ∞.

B(x) =

{

{0}, if 0 ≤ x < 1;
[1, x + 1], if 1 ≤ x < ∞.

S(x) =

{

0, if 0 ≤ x < 1;
x + 1, if 1 ≤ x < ∞.

T (x) =

{

x
2
, if 0 ≤ x < 1;

2x + 3, if 1 ≤ x < ∞.

Let φ : [0, 1] → [0, 1] be defined by φ(t) =
√

t for 0 < t ≤ 1. Then φ(t) > t

for each 0 < t < 1 and δFAx,By(t) ≥ φ (FSx,Ty(t)) for all x, y ∈ X. Then

A, B, S and T satisfy all the conditions of Theorem 3.1, i.e., 0 = S(0) ∈ A(0),
SA(0) = {0} = AS(0) and 0 = T (0) ∈ B(0), TB(0) = {0} = BT (0). Also S and

A as well as T and B are occasionally weakly compatible mappings. Hence, 0 is

the unique common fixed point of A, B, S and T . On the other hand, it is clear to

see that the mappings A, B, S and T are discontinuous at 0.

On taking A = B and S = T in Theorem 3.1, we get the following natural
result.

Corollary 3.3. Let (X,F ,△) be a Menger space with continuous t-norm. Further,

let S : X → X be a single-valued and A : X → B(X) be a set-valued mappings

such that the pair (S, A) is occasionally weakly compatible satisfying condition

δFAx,Ay(t) ≥ φ (FSx,Sy(t)) (3.2)

for all x, y ∈ X, where φ : [0, 1] → [0, 1] is a continuous function such that φ(t) > t

for each 0 < t < 1, φ(0) = 0 and φ(1) = 1. Then A and S have a unique common

fixed point.
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