Existence and Stability Properties of Positive Weak Solutions for a Class of Dirichlet Equations Involving Indefinite Weight Functions Driven by a $\left(p_{1}, \ldots, p_{n}\right)$-Laplacian Operator

G.A. Afrouzi ${ }^{1}$, S. Shakeri and A. Hadjian
Department of Mathematics, Faculty of Mathematical Sciences
University of Mazandaran, Babolsar, Iran
e-mail: afrouzi@umz.ac.ir (G.A. Afrouzi)
s.shakeri@umz.ac.ir (S. Shakeri)
a.hadjian@umz.ac.ir (A. Hadjian)

Abstract

In this note, we prove the existence and stability properties of positive weak solutions to a class of nonlinear equations driven by a (p_{1}, \ldots, p_{n})-Laplacian operator and indefinite weight functions. First by using the method of sub-super solution we study the existence of positive weak solution. Next we study the stability properties of positive weak solution.

Keywords : $\left(p_{1}, \ldots, p_{n}\right)$-Laplacian; sub-super solution; linearized stability. 2010 Mathematics Subject Classification : 35J60; 35B30; 35B35.

1 Introduction and Preliminaries

In this work, we study the existence and stability properties of positive weak solutions to the nonlinear elliptic system

$$
\begin{cases}-\Delta_{p_{i}} u_{i}=\lambda a_{i}(x) \prod_{j=1}^{n} u_{j}^{\alpha_{j}^{i}}-c_{i} & x \in \Omega \tag{1.1}\\ u_{i}(x)=0 & x \in \partial \Omega\end{cases}
$$

[^0]for $1 \leq i \leq n$, where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 1)$ with C^{2}-boundary $\partial \Omega$, $p_{i}>1, \Delta_{p_{i}} u_{i}:=\operatorname{div}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right)$ is the p_{i}-Laplacian operator, λ, c_{i} and α_{j}^{i} are positive parameters for $1 \leq i, j \leq n$, and the weight functions a_{i} satisfies $a_{i} \in C(\Omega)$ and $a_{i}(x)>a_{0}^{i}>0$ for all $x \in \Omega$ for $1 \leq i \leq n$. First by using the method of sub-super solution we study the existence of positive weak solution. Next we study the stability properties of positive weak solution directly by analyzing the linearized system.

Problems involving the p-Laplacian arise from many branches of pure mathematics as in the theory of quasiregular and quasiconformal mapping (see [1]) as well as from various problems in mathematical physics notably the flow of non-Newtonian fluids.

Systems of the form

$$
\left\{\begin{array}{cl}
-\Delta_{p} u=\lambda a(x) v^{\alpha} & x \in \Omega \tag{1.2}\\
-\Delta_{q} v=\lambda b(x) u^{\beta} & x \in \Omega \\
u(x)=0=v(x) & x \in \partial \Omega
\end{array}\right.
$$

and

$$
\begin{cases}-\Delta_{p} u=\lambda u^{\alpha} v^{\gamma} & x \in \Omega \tag{1.3}\\ -\Delta_{q} v=\lambda u^{\delta} v^{\beta} & x \in \Omega \\ u(x)=0=v(x) & x \in \partial \Omega\end{cases}
$$

arise in several context in biology and engineering (see [2, 3]). These systems provide simple models to describe, for instance, the interaction of three diffusing biological species. See [4] for details on the physical models involving more general reaction-diffusion system. Semipositone problems have been of great interest during the past two decades, and they continue to pose mathematically difficult problems in the study of positive solutions (see [5-10]). We refer to [11, 12] for additional results in nonlinear elliptic systems.

Throughout this paper, we let X be the Cartesian product of n spaces $W_{0}^{1, p_{i}}(\Omega)$ for $1 \leq i \leq n$, i.e., $X=W_{0}^{1, p_{1}}(\Omega) \times \cdots \times W_{0}^{1, p_{n}}(\Omega)$. We give the definition of weak solution and sub-super solution of (1.1) as follows.

Definition 1.1. We say that $u=\left(u_{1}, \ldots, u_{n}\right) \in X$ is a weak solution of the system (1.1), if we have

$$
\int_{\Omega} \sum_{i=1}^{n}\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla w_{i}(x) d x-\int_{\Omega} \sum_{i=1}^{n}\left(\lambda a_{i}(x) \prod_{j=1}^{n} u_{j}^{\alpha_{j}^{i}}(x)-c_{i}\right) w_{i}(x) d x=0
$$

for all $w=\left(w_{1}, \ldots, w_{n}\right) \in X$.
Definition 1.2. We say that $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$ and $z=\left(z_{1}, \ldots, z_{n}\right)$ in X are a subsolution and a supersolution of the system (1.1), if we have

$$
\int_{\Omega} \sum_{i=1}^{n}\left|\nabla \psi_{i}(x)\right|^{p_{i}-2} \nabla \psi_{i}(x) \nabla w_{i}(x) d x \leq \int_{\Omega} \sum_{i=1}^{n}\left(\lambda a_{i}(x) \prod_{j=1}^{n} \psi_{j}^{\alpha_{j}^{i}}(x)-c_{i}\right) w_{i}(x) d x
$$

and

$$
\int_{\Omega} \sum_{i=1}^{n}\left|\nabla z_{i}(x)\right|^{p_{i}-2} \nabla z_{i}(x) \nabla w_{i}(x) d x \geq \int_{\Omega} \sum_{i=1}^{n}\left(\lambda a_{i}(x) \prod_{j=1}^{n} z_{j}^{\alpha_{j}^{i}}(x)-c_{i}\right) w_{i}(x) d x,
$$

respectively, for all $w=\left(w_{1}, \ldots, w_{n}\right) \in X$.
Now if there exist a subsolution $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$ and a supersolution $z=\left(z_{1}, \ldots, z_{n}\right)$ such that $0 \leq \psi_{i}(x) \leq z_{i}(x)$ for all $x \in \Omega$ for $1 \leq i \leq n$, then the system (1.1) has a positive solution $u=\left(u_{1}, \ldots, u_{n}\right) \in X$ such that $\psi_{i}(x) \leq u_{i}(x) \leq z_{i}(x)$ for all $x \in \Omega$ for $1 \leq i \leq n$ (see [12]).

2 Existence Results

In this section, we shall prove that if $0<\alpha_{j}^{i}<1$ for $1 \leq i, j \leq n$, then there exist positive constants c_{0} and λ^{*} such that the system (1.1) has a positive solution when $c_{i} \leq c_{0}$ for $1 \leq i \leq n$ and $\lambda \geq \lambda^{*}$. We will obtain the existence of positive weak solution to the system (1.1) by constructing a positive subsolution $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$ and a positive supersolution $z=\left(z_{1}, \ldots, z_{n}\right)$.

To precisely state our theorem, for $1 \leq i \leq n$ we first consider the eigenvalue problem

$$
\begin{cases}-\Delta_{p_{i}} \phi_{i}=\lambda_{i}\left|\phi_{i}\right|^{p_{i}-2} \phi_{i} & x \in \Omega, \tag{2.1}\\ \phi_{i}=0 & x \in \partial \Omega .\end{cases}
$$

Let $\lambda_{1, p_{i}}$ be the respective first eigenvalue of $\Delta_{p_{i}}$ with Dirichlet boundary condition and $\phi_{1, p_{i}}$ the corresponding eigenfunction with

$$
\phi_{1, p_{i}}>0, \quad\left\|\phi_{1, p_{i}}\right\|_{\infty}=1, \quad \text { for } 1 \leq i \leq n .
$$

It can be shown that $\left|\nabla \phi_{1, p_{i}}\right| \neq 0$ on $\partial \Omega$ for $1 \leq i \leq n$, and hence, depending on Ω, there exist positive constants k, η and μ such that

$$
\begin{cases}\left|\nabla \phi_{1, p_{i}}\right|^{p_{i}}-\lambda_{1, p_{i}} \phi_{1, p_{i}}^{p_{i}} \geq k & \text { in } \bar{\Omega}_{\eta}, \tag{2.2}\\ \phi_{1, p_{i}} \geq \mu & \text { in } \Omega \backslash \bar{\Omega}_{\eta}\end{cases}
$$

where $\bar{\Omega}_{\eta}=\{x \in \Omega \mid d(x, \partial \Omega) \leq \eta\}$.
For $1 \leq i \leq n$, we will also consider the unique solution, $\zeta_{i} \in C^{1}(\bar{\Omega})$ of the boundary value problem

$$
\begin{cases}-\Delta_{p_{i}} \zeta_{i}=1 & x \in \Omega, \\ \zeta_{i}=0 \text { for } 1 \leq i \leq n & x \in \partial \Omega .\end{cases}
$$

To discuss our existence result, it is known that $\zeta_{i}>0$ in Ω and $\partial \zeta_{i} / \partial n<0$ on $\partial \Omega$ where n denotes the outward unit normal to $\partial \Omega$ for $1 \leq i \leq n$ (see [13]). Now we state our main result as follows.

Theorem 2.1. Let $0<\alpha_{j}^{i}<1$ for $1 \leq i, j \leq n$. Then there exist positive constants c_{0} and λ^{*} such that the system (1.1) has a positive solution for $c_{i} \leq c_{0}(1 \leq i \leq n)$ and $\lambda \geq \lambda^{*}$.
Proof. To obtain the existence of positive weak solution to the system (1.1), we shall construct a positive subsolution $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$ and a supersolution $z=\left(z_{1}, \ldots, z_{n}\right)$ of the system (1.1). First, we construct a positive subsolution. For this, we shall verify that $\left(\psi_{1}, \ldots, \psi_{n}\right)$ with $\psi_{i}=\frac{p_{i}-1}{p_{i}} \phi_{1, p_{i}}^{\frac{p_{i}}{p_{i}-1}}$ for $1 \leq i \leq n$ is a subsolution of the system (1.1). Let the test function $w=\left(w_{1}, \ldots, w_{n}\right) \in X$. Then

$$
\begin{aligned}
\int_{\Omega}\left|\nabla \psi_{i}\right|^{p_{i}-2} \nabla \psi_{i} \nabla w_{i} d x= & \int_{\Omega} \phi_{1, p_{i}}\left|\nabla \phi_{1, p_{i}}\right|^{p_{i}-2} \nabla \phi_{1, p_{i}} \nabla w_{i} d x \\
= & \int_{\Omega}\left|\nabla \phi_{1, p_{i}}\right|^{p_{i}-2} \nabla \phi_{1, p_{i}} \nabla\left(\phi_{1, p_{i}} w_{i}\right) d x \\
& -\int_{\Omega}\left|\nabla \phi_{1, p_{i}}\right|^{p_{i}} w_{i} d x \\
= & \int_{\Omega} \lambda_{1, p_{i}}\left|\phi_{1, p_{i}}\right|^{p_{i}-2} \phi_{1, p_{i}}\left(\phi_{1, p_{i}} w_{i}\right) d x \\
& -\int_{\Omega}\left|\nabla \phi_{1, p_{i}}\right|^{p_{i}} w_{i} d x . \\
= & \int_{\Omega}\left(\lambda_{1, p_{i}}\left|\phi_{1, p_{i}}\right|^{p_{i}}-\left|\nabla \phi_{1, p_{i}}\right|^{\mid p_{i}}\right) w_{i} d x .
\end{aligned}
$$

Thus $\left(\psi_{1}, \ldots, \psi_{n}\right)$ is a subsolution if

$$
\lambda_{1, p_{i}} \phi_{1, p_{i}}^{p_{i}}-\left|\nabla \phi_{1, p_{i}}\right|^{p_{i}} \leq \lambda a_{i}(x) \prod_{j=1}^{n} \psi_{j}^{\alpha_{j}^{i}}-c_{i}, \text { for } 1 \leq i \leq n .
$$

This inequality holds, because we have from (2.2)

$$
\lambda_{1, p_{i}} \phi_{1, p_{i}}^{p_{i}}-\left|\nabla \phi_{1, p_{i}}\right|^{p_{i}} \leq-k, \quad \text { in } \bar{\Omega}_{\eta} \text { for } 1 \leq i \leq n,
$$

and therefore if $c_{i} \leq c_{0}:=k$ for $1 \leq i \leq n$, then

$$
\lambda_{1, p_{i}} \phi_{1, p_{i}}^{p_{i}}-\left|\nabla \phi_{1, p_{i}}\right|^{p_{i}} \leq-k=-c_{0} \leq \lambda a_{i}(x) \prod_{j=1}^{n} \psi_{j}^{\alpha_{j}^{i}}-c_{i}
$$

for $1 \leq i \leq n$, since

$$
\lambda a_{i}(x) \prod_{j=1}^{n} \psi_{j}^{\alpha_{j}^{i}} \geq 0
$$

On the other hand, in $\Omega \backslash \bar{\Omega}_{\eta}$ we have $\phi_{1, p_{i}} \geq \mu>0$ for $1 \leq i \leq n$. Thus in $\Omega \backslash \bar{\Omega}_{\eta}$ we have

$$
\lambda_{1, p_{i}} \phi_{1, p_{i}}^{p_{i}}-\left|\nabla \phi_{1, p_{i}}\right|^{p_{i}} \leq \lambda_{1, p_{i}} \leq \lambda a_{i}(x) \prod_{j=1}^{n} \psi_{j}^{\alpha_{j}^{i}}-c_{i} \text { for } 1 \leq i \leq n,
$$

if

$$
\lambda \geq \hat{\lambda}_{i}:=\frac{\left(\lambda_{1, p_{i}}+k\right) \prod_{j=1}^{n}\left(\frac{p_{j}}{p_{j}-1}\right)^{\alpha_{j}^{i}}}{a_{0}^{i} \prod_{j=1}^{n} \mu^{\frac{\alpha_{j}^{j} p_{j}}{p_{j}-1}}} \text { for } 1 \leq i \leq n .
$$

Therefore, $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$ is a subsolution of the system (1.1) for $c_{i} \leq c_{0}$ $(1 \leq i \leq n)$ and

$$
\lambda \geq \lambda^{*}:=\max \left\{\hat{\lambda_{1}}, \ldots, \hat{\lambda_{n}}\right\} .
$$

Next we construct a supersolution $z=\left(z_{1}, \ldots, z_{n}\right)$ of the system (1.1) such that $0<\psi_{i}(x) \leq z_{i}(x)$ for $x \in \Omega$ and $1 \leq i \leq n$. We denote

$$
\left(z_{1}, \ldots, z_{n}\right)=\left(A_{1} \zeta_{1}, \ldots, A_{n} \zeta_{n}\right),
$$

where the constants $A_{1}, \ldots, A_{n}>0$ are large and to be chosen later. We shall verify that $z=\left(z_{1}, \ldots, z_{n}\right)$ is a supersolution of the system (1.1). To this end, letting $w=\left(w_{1}, \ldots, w_{n}\right) \in X$, we have

$$
\begin{aligned}
\int_{\Omega}\left|\nabla z_{i}(x)\right|^{p_{i}-2} \nabla z_{i}(x) \nabla w_{i}(x) d x & =A_{i}^{p_{i}-1} \int_{\Omega}\left|\nabla \zeta_{i}(x)\right|^{p_{i}-2} \nabla \zeta_{i}(x) \nabla w_{i}(x) d x \\
& =A_{i}^{p_{i}-1} \int w_{i}(x) d x .
\end{aligned}
$$

Let $l_{i}=\left\|\zeta_{i}\right\|_{\infty}$ for $1 \leq i \leq n$. Bearing in mind that $0<\alpha_{j}^{i}<1$ for $1 \leq i, j \leq n$, it is easy to prove that there exist positive large constants A_{1}, \ldots, A_{n} such that

$$
A_{i} \geq\left[\lambda\left\|a_{i}\right\|_{\infty} \prod_{j=1}^{n}\left(A_{j} l_{j}\right) \alpha_{j}^{i}\right]^{\frac{1}{p_{i}-1}}
$$

for $1 \leq i \leq n$, and then

$$
\begin{aligned}
A_{i}^{p_{i}-1} \geq \lambda\left\|a_{i}\right\|_{\infty} \prod_{j=1}^{n}\left(A_{j} l_{j}\right)^{\alpha_{j}^{i}} & \geq \lambda a_{i}(x) \prod_{j=1}^{n}\left(A_{j} l_{j}\right)^{\alpha_{j}^{i}}-c_{i} \\
& \geq \lambda a_{i}(x) \prod_{j=1}^{n}\left(A_{j} \zeta_{j}\right)^{\alpha_{j}^{i}}-c_{i} \\
& =\lambda a_{i}(x) \prod_{j=1}^{n} z_{j}^{\alpha_{j}^{i}}-c_{i}
\end{aligned}
$$

for $1 \leq i \leq n$. Therefore

$$
\begin{aligned}
\int_{\Omega}\left|\nabla z_{i}(x)\right|^{p_{i}-2} \nabla z_{i}(x) \nabla w_{i}(x) d x & =A_{i}^{p_{i}-1} \int_{\Omega} w_{i}(x) d x \\
& \geq \int_{\Omega}\left(\lambda a_{i}(x) \prod_{j=1}^{n} z_{j}^{\alpha_{j}^{i}}(x)-c_{i}\right) w_{i}(x) d x,
\end{aligned}
$$

i.e., $z=\left(z_{1}, \ldots, z_{n}\right)$ is a supersolution of the system (1.1) with $z_{i} \geq \psi_{i}$ in Ω for large A_{i} for $1 \leq i \leq n$. Then the system (1.1) has a positive solution $u=\left(u_{1}, \ldots, u_{n}\right) \in X$ such that $\psi_{i} \leq u_{i} \leq z_{i}$ for $1 \leq i \leq n$. Hence, Theorem 2.1 is proven.

3 Stability Results

Here, we would establish stability of positive solution $u=\left(u_{1}, \ldots, u_{n}\right) \in X$ to the system (1.1) directly by showing that the principle eigenvalue η_{1} of its linearization is positive.

We recall that, if $u=\left(u_{1}, \ldots, u_{n}\right)$ be any positive solution to the system

$$
\begin{cases}-\Delta_{p_{i}} u_{i}=\lambda f^{i}\left(x, u_{1}, \ldots, u_{n}\right) & x \in \Omega, \\ u_{i}(x)=0 & x \in \partial \Omega\end{cases}
$$

for $1 \leq i \leq n$, then the linearized equation about $u=\left(u_{1}, \ldots, u_{n}\right)$ is

$$
\left\{\begin{array}{lll}
-\left(p_{i}-1\right) \operatorname{div}\left(\mid \nabla u_{i} i^{p_{i}-2} \nabla w_{i}\right) \tag{3.1}\\
w_{i}(x)=0 & -\lambda \sum_{j=1}^{n} f_{u_{j}}^{u}\left(x, u_{1}, \ldots, u_{n}\right) w_{j}=\eta \omega_{i} & x \in \Omega, \\
x \in \partial \Omega
\end{array}\right.
$$

for $1 \leq i \leq n$, where $f_{u_{j}}^{i}\left(x, u_{1}, \ldots, u_{n}\right)$ denotes the partial derivative of $f^{i}\left(x, u_{1}, \ldots, u_{n}\right)$ with respect to u_{j} for $1 \leq i \leq n$. Equation (3.1) obtained from the formal derivative of the operator $\Delta_{p_{i}}$ (see [13]).

Definition 3.1. Let η_{1} denote the first eigenvalue of (3.1). We say that $u=$ $\left(u_{1}, \ldots, u_{n}\right)$ is linearly stable, if all eigenvalues of (3.1) are strictly positive, which can be inferred if the principal eigenvalue $\eta_{1}>0$. Otherwise $u=\left(u_{1}, \ldots, u_{n}\right)$ is linearly unstable.

Let $u=\left(u_{1}, \ldots, u_{n}\right)$ be any positive solution of the system (1.1). Then from (3.1) the linearized equation about $u=\left(u_{1}, \ldots, u_{n}\right)$ is

$$
\left\{\begin{array}{ccc}
-\left(p_{i}-1\right) \operatorname{div}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla w_{i}\right)-\lambda a_{i}(x) \alpha_{1}^{i} u_{1}^{\alpha_{1}^{i}-1} u_{2}^{\alpha_{2}^{i}} \ldots u_{n}^{\alpha_{n}^{i}} w_{1} & \tag{3.2}\\
& -\cdots-\lambda a_{i}(x) \alpha_{n}^{i} u_{1}^{\alpha_{1}^{i}} u_{2}^{\alpha_{2}^{i}} \cdots u_{n}^{\alpha_{n}^{i}-1} w_{n}=\eta \omega_{i} & x \in \Omega, \\
w_{i}(x)=0 & & x \in \partial \Omega
\end{array}\right.
$$

for $1 \leq i \leq n$.
Let η_{1} be the principal eigenvalue and $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$ be the corresponding eigenfunction. We make take ψ_{i} such that $\psi_{i}>0$ in Ω and $\left\|\psi_{i}\right\|_{\infty}=1$ for $1 \leq i \leq n$ (see [14]). Finally, we state our stability result as follows.

Theorem 3.2. Suppose $c_{i} \leq c_{0}$ for $1 \leq i \leq n$, and $\lambda \geq \lambda^{*}$. Let $u=\left(u_{1}, \ldots, u_{n}\right)$ be the solution of the system (1.1) obtained in Theorem 1. Moreover, let α_{j}^{i}, c_{i}
for $1 \leq i, j \leq n$, and λ be such that

$$
\begin{array}{r}
\sum_{i=1}^{n} c_{i}\left(p_{i}-1\right) \psi_{i}(x)+\lambda \sum_{i=1}^{n} a_{i}(x) u_{i}\left(\alpha_{1}^{i} u_{1}^{\alpha_{1}^{i}-1} u_{2}^{\alpha_{2}^{i}} \cdots u_{n}^{\alpha_{n}^{i}} \psi_{1}+\cdots+\alpha_{n}^{i} u_{1}^{\alpha_{1}^{i}} u_{2}^{\alpha_{2}^{i}} \cdots u_{n}^{\alpha_{n}^{i}-1} \psi_{n}\right) \\
<\lambda \sum_{i=1}^{n}\left(p_{i}-1\right) a_{i}(x) u_{1}^{\alpha_{1}^{i}} u_{2}^{\alpha_{2}^{i}} \cdots u_{n}^{\alpha_{n}^{i}} \psi_{i}
\end{array}
$$

for all $x \in \Omega$. Then $u=\left(u_{1}, \ldots, u_{n}\right)$ is linearly stable.

Proof. We give from equations (1.1) and (3.2) that

$$
\begin{align*}
& \int_{\Omega} \sum_{i=1}^{n}\left(p_{i}-1\right)\left(u_{i}(x) \operatorname{div}\left(\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla \psi_{i}(x)\right)-\psi_{i}(x) \operatorname{div}\left(\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x)\right)\right) d x \\
& \quad+\lambda \int_{\Omega} \sum_{i=1}^{n} a_{i}(x) u_{i}(x)\left(\alpha_{1}^{i} u_{1}^{\alpha_{1}^{i}-1} u_{2}^{\alpha_{2}^{i}} \cdots u_{n}^{\alpha_{n}^{i}} \psi_{i}+\cdots+\alpha_{n}^{i} u_{1}^{\alpha_{1}^{i}} u_{2}^{\alpha_{2}^{i}} \cdots u_{n}^{\alpha_{n}^{i}-1} \psi_{n}\right) d x \\
& \quad-\lambda \int_{\Omega} \sum_{i=1}^{n}\left(p_{i}-1\right) \psi_{i}(x)\left(a_{i}(x) u_{1}^{\alpha_{1}^{i}} \cdots u_{n}^{\alpha_{n}^{i}}\right) d x+\int_{\Omega} \sum_{i=1}^{n} c_{i}\left(p_{i}-1\right) \psi_{i}(x) d x \\
& \quad=-\eta_{1} \int_{\Omega} \sum_{i=1}^{n} u_{i}(x) \psi_{i}(x) d x \tag{3.3}
\end{align*}
$$

But by using the Green's first identity, for $1 \leq i \leq n$ we obtain

$$
\begin{align*}
\int_{\Omega} u_{i}(x) \operatorname{div}\left(\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla \psi_{i}(x)\right) d x=- & \int_{\Omega}\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla \psi_{i}(x) d x \\
& +\int_{\partial \Omega} u_{i}(x)\left|\nabla u_{i}(x)\right|^{p_{i}-2}\left(\frac{\partial \psi_{i}}{\partial n}\right) d S \\
=- & \int_{\Omega}\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla \psi_{i}(x) d x \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
\int_{\Omega} \psi_{i}(x) \operatorname{div}\left(\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x)\right) d x= & -\int_{\Omega}\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla \psi_{i}(x) d x \\
& +\int_{\partial \Omega} \psi_{i}(x)\left|\nabla u_{i}(x)\right|^{p_{i}-2}\left(\frac{\partial u_{i}}{\partial n}\right) d S \\
= & -\int_{\Omega}\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla \psi_{i}(x) d x . \tag{3.5}
\end{align*}
$$

By using (3.4) and (3.5) in (3.3) and from the hypotheses we get

$$
\begin{aligned}
& -\eta_{1} \int_{\Omega} \sum_{i=1}^{n} u_{i}(x) \psi_{i}(x) \\
& =\lambda \int_{\Omega} \sum_{i=1}^{n} a_{i}(x) u_{i}(x)\left(\alpha_{1}^{i} u_{1}^{\alpha_{1}^{i}-1} u_{2}^{\alpha_{2}^{i}} \cdots u_{n}^{\alpha_{n}^{i}} \psi_{i}+\cdots+\alpha_{n}^{i} u_{1}^{\alpha_{1}^{i}} u_{2}^{\alpha_{2}^{i}} \cdots u_{n}^{\alpha_{n}^{i}-1} \psi_{n}\right) d x \\
& \quad-\lambda \int_{\Omega} \sum_{i=1}^{n}\left(\left(p_{i}-1\right) \psi_{i}(x)\left(a_{i}(x) u_{1}^{\alpha_{1}^{i}} \cdots u_{n}^{\alpha_{n}^{i}}\right) d x+\int_{\Omega} \sum_{i=1}^{n} c_{i}\left(p_{i}-1\right) \psi_{i}(x) d x<0 .\right.
\end{aligned}
$$

But $\psi_{1}, \ldots, \psi_{n}>0$ and $u_{1}, \ldots, u_{n}>0$ in Ω, and hence $\eta_{1}>0$. This completes the proof.

Acknowledgement : The authors would like to thank the referee for his/her comments and suggestions on the manuscript.

References

[1] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126-150.
[2] C. Chen, On positive weak solutions for a class of quasilinear elliptic systems, Nonlinear Anal. 62 (2005) 751-756.
[3] A. Leung, Systems of nonlinear partial differential equations, applications to biology and engineering, Math. Appl., Kluwer Academic Publishers, Dordrecht, 1989.
[4] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
[5] G.A. Afrouzi, M. Baghery, S.H. Rasouli, On positive weak solutions for a class of semipositone equations, World J. Mod. Sim. 3 (4) (2007) 286-288.
[6] G.A. Afrouzi, S.H. Rasouli, On positive solutions for some nonlinear semipositone elliptic boundary value problems, Nonlinear Anal. : Model. Cont. 4 (11) (2006) 323-329.
[7] G.A. Afrouzi, J. Vahidi, S.H. Rasouli, On critical exponent for exsistence of positive solutions for some semipositone problems involving the weight function, Int. J. Math. Anal. 2 (20) (2008) 987-991.
[8] V. Anuradha, D.D. Hai, R. Shivaji, Existence results for superlinear semipositone boundary value problems, Proc. Amer. Math. Soc. 124 (3) (1996) 757-763.
[9] A. Castro, S. Gadam, R. Shivaji, Evolution of Positive Solution Curves in Semipositone Problems with Concave Nonlinearities, J. Math. Anal. Appl. 245 (2000) 282-293.
[10] S. Oruganti, R. Shivaji, Existence results for classes of p-Laplacian semipositone equations, Boundary Value Problems (2006) 1-7.
[11] G.A. Afrouzi, S.H. Rasouli, A remark on the existence of multiple solutions to a multiparameter nonlinear elliptic system, Nonlinear Anal. 71 (2009) 445455.
[12] P. Drábek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem, Nonlinear Anal. 44 (2001) 189-204.
[13] P. Drábek, P. Kerjci, P. Takac, Nonlinear Differential Equations, Chapman and Hall, London, 1999.
[14] C.V. Coffman, M.M. Marcus, V.J. Mizel, On Green's function and eigenvalues of nonuniformly elliptic boundary value problems, Math. Z. 182 (1983) 321326.
(Received 24 July 2011)
(Accepted 11 April 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2013 by the Mathematical Association of Thailand. All rights reserved.

