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Abstract : In this note, we prove the existence and stability properties of positive

weak solutions to a class of nonlinear equations driven by a (p1, ..., p,)-Laplacian
operator and indefinite weight functions. First by using the method of sub-super
solution we study the existence of positive weak solution. Next we study the
stability properties of positive weak solution.
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1 Introduction and Preliminaries

In this work, we study the existence and stability properties of positive weak
solutions to the nonlinear elliptic system

—Ap,u; = Aai(z) [T, u;lj —¢ x €, (1.1)
ui(z) =0 x € 082
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for 1 < i < n, where Q is a bounded domain in RY (N > 1) with C2-boundary 052,
pi > 1, Ap,u; i= div(|Vu;|P~*Vu,) is the pi-Laplacian operator, A, ¢; and o are
positive parameters for 1 < 4,7 < n, and the weight functions a; satisfies a; € C(Q)
and a;(z) > af) > 0 forall z € Q for 1 < i < n. First by using the method of
sub-super solution we study the existence of positive weak solution. Next we
study the stability properties of positive weak solution directly by analyzing the
linearized system.

Problems involving the p-Laplacian arise from many branches of pure
mathematics as in the theory of quasiregular and quasiconformal mapping (see
[1]) as well as from various problems in mathematical physics notably the flow of
non-Newtonian fluids.

Systems of the form

—Apu = da(z)v® € Q,
—Agv = N(2)u?  z€Q, (1.2)
u(z) =0=v(z) €N,

and
—Apu= " e,
—Agv = reQ, (1.3)
u(z)=0=v(z) ze€d

arise in several context in biology and engineering (see [2, 3]). These systems
provide simple models to describe, for instance, the interaction of three diffusing
biological species. See [4] for details on the physical models involving more gen-
eral reaction-diffusion system. Semipositone problems have been of great interest
during the past two decades, and they continue to pose mathematically difficult
problems in the study of positive solutions (see [5-10]). We refer to [11, 12] for
additional results in nonlinear elliptic systems.

Throughout this paper, we let X be the Cartesian product of n spaces VVO1 Pi(Q)
for 1 <i<n,ie, X = WP (Q)x---x WyP"(Q). We give the definition of weak
solution and sub-super solution of (1.1) as follows.

Definition 1.1. We say that u = (u1,...,u,) € X is a weak solution of the
system (1.1), if we have

/Qimi(x)

for all w = (w1,...,w,) € X.

n

P2y, (2) Vw; (x)dx — /Q i (/\ai(a:) H u?; (x)— ci)wi (x)dz =0

j=1

Definition 1.2. We say that ¥ = (¢¥1,...,%,) and z = (z1,...,2,) in X are a
subsolution and a supersolution of the system (1.1), if we have

/le: Vi () [P 2V () Ve (@) da < /sz: (Aai(:v) ﬁ w;‘? () — Ci)wi($)dx

Jj=1
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and
/ Z |V 2i () [P =2V 23 (2) Vw; (x)dz > / Z (/\ai(a:) H z?} (x) — ci)wi(x)d:c,
Qi Q= j=1
respectively, for all w = (wq,...,w,) € X.
Now if there exist a subsolution v = (¢1,...,%,) and a supersolution

z = (z1,...,%n) such that 0 < ¢;(x) < zi(z) for all x € Q for 1 < i < n,
then the system (1.1) has a positive solution u = (u1,...,u,) € X such that
Yi(z) < wi(z) < zi(z) for all z € N for 1 <i<n (see [12]).

2 Existence Results

In this section, we shall prove that if 0 < aé- < 1for 1 < i,5 < n, then
there exist positive constants ¢g and A* such that the system (1.1) has a positive
solution when ¢; < ¢g for 1 < i <n and XA > A\*. We will obtain the existence of
positive weak solution to the system (1.1) by constructing a positive subsolution
¥ = (¢1,...,1,) and a positive supersolution z = (z1,...,2p).

To precisely state our theorem, for 1 < i < n we first consider the eigenvalue
problem

{ _Apz(bz = AZ|¢’L pi72¢i MRS Qv (21)

¢; =0 x € 0N.

Let A1, be the respective first eigenvalue of A,, with Dirichlet boundary
condition and ¢; ,, the corresponding eigenfunction with

le,pi > 07 ||¢LP¢

o =1, forl <i<n.

It can be shown that |V¢q p,| # 0 on 9 for 1 <4 < n, and hence, depending on
Q, there exist positive constants k,n and p such that

1,p;

{ |V¢Lpi|pi - A1,;0,; i > k in 5777
PLps 2 B in 0\ Q,

(2.2)

where Q,, = {z € Q|d(x,0Q) < n}.
For 1 <4 < n, we will also consider the unique solution, (; € C! (ﬁ) of the
boundary value problem

_APZClzl CEEQ,
(=0 for1<i<n x€df.

To discuss our existence result, it is known that ¢; > 0 in Q and 9¢;/dn < 0
on 99 where n denotes the outward unit normal to 9 for 1 < i < n (see [13]).
Now we state our main result as follows.
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Theorem 2.1. Let0 < oz; <1 forl <i,5 <n. Then there exist positive constants
co and A* such that the system (1.1) has a positive solution for ¢; < co (1 <i<n)
and A > \*.

Proof. To obtain the existence of positive weak solution to the system (1.1),
we shall construct a positive subsolution ¥ = (¢1,...,%,) and a supersolution
z = (#21,...,2n) of the system (1.1). First, we construct a positive subsolution.

For this, we shall verify that (¢1,...,%,) with ¢; = P;—_lgbff for1 <i<mnis
a subsolution of the system (1.1). Let the test function w = (w1,...,w,) € X.

Then
/ | Vs
Q

P2 ¢y . Vwda

”*QV%Vwide/¢1,pi|V¢1,m
Q

= / |v¢1710i
Q

= [ V6i P wids
Q

= / )‘Lpi
Q

—/ |V¢11pi|pi’wid$.
Q

= / (/\17101'
Q

Thus (1, ...,%,) is a subsolution if

p172v¢11pi v(¢17pi wl)dx

P21, ($1,p,wi)de

¢11Pi

pi)wid:r.

¢17Pi

b — |v¢1710i

i
/\Lpi 1,1p7_» - |V¢1,pi

n .
Pi < ha; () Hd)?j —¢, for1<i<n.
j=1

This inequality holds, because we have from (2.2)

M.p; ffpi — Vo1, /PP <=k, inQ, forl<i<n,

and therefore if ¢; < ¢g := k for 1 <7 < n, then
Pi< —k = —co < Aay(x) HUJ?j — ¢

j=1

i
)‘Lpi 1jpi - |V¢Lpi

for 1 <i < n, since
Aa;(x) H 1/)? > 0.
j=1

On the other hand, in Q\ﬁn we have ¢1 ,, > p > 0 for 1 <4 <n. Thus in §2 \ﬁn
we have

AL, ;iipi — V1,57 < A, < Aai(x) H d]j’ —¢ for1<i<n,

Jj=1



Existence and Stability Properties of Positive Weak Solutions ... 279

if

O R T GBS
A> N = — 2 J=1pi—1 for 1<i<n.

K] pi—1
) Hj:l pr

Therefore, ¥ = (¢1,...,%,) is a subsolution of the system (1.1) for ¢; < ¢p
(1<i<n)and

A>T = maX{Xl, cee )\An}.

Next we construct a supersolution z = (z1,...,2,) of the system (1.1) such
that 0 < 9;(z) < z;i(z) for x € Q and 1 <14 < n. We denote

(Zl, .. .,Zn) = (A1<1; e ;AnCH);

where the constants Aq,..., A, > 0 are large and to be chosen later. We shall
verify that z = (z1,...,2,) is a supersolution of the system (1.1). To this end,
letting w = (w1, ..., w,) € X, we have

/|Vzi(:v)|pi_2Vzi(:C)Vwi(:v)dac:A’Z—”_l/ V¢ ()P 2V () Vs () d
Q Q
= A’i’i_l/wi(ac)dac.

Let I; = ||| for 1 <7 < n. Bearing in mind that 0 < ozé- <lforl1<i,j<m,it
is easy to prove that there exist positive large constants Aq,..., A, such that

1

A; > [)‘”ai”oo f[(Ajzj)aﬂ et

j=1
for 1 <i < n, and then

AP 2 Mailloo JT(A51)% 2 Aai(e) [T(451)% =i

j=1 j=1
> Mai(x) [[(4;6)% - e

j=1

= Aa;(z) H z?; —¢
j=1

for 1 < ¢ < n. Therefore

1w

Pi=2% i (2) Vw; (2)dx = AfFl/ w; (z)dx
Q
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ie, z = (z1,...,2,) is a supersolution of the system (1.1) with z; > ¢; in Q
for large A; for 1 < i@ < n. Then the system (1.1) has a positive solution
u = (uy,...,u,) € X such that ¢, < wu; < z; for 1 <4 < n. Hence, Theorem 2.1
is proven. O

3 Stability Results

Here, we would establish stability of positive solution v = (u1,...,u,) € X
to the system (1.1) directly by showing that the principle eigenvalue 77 of its
linearization is positive.

We recall that, if u = (uq,...,u,) be any positive solution to the system

{ —Apu; = AN (zu, .. un) T €L,

ui(x) =0 x € 0N
for 1 < i < n, then the linearized equation about v = (u1,...,uy,) is
—(p; — 1) div(|Vu, pi’QVwi_)
A fo; (@yun, o up)wy = nw; - w € 9Q, (3.1)
wi(x) =0 x €0
for 1 < i < n, where fqij (x,uq,...,u,) denotes the partial derivative of
fi(z,u1, ..., u,) with respect to uj for 1 <i < n. Equation (3.1) obtained from

the formal derivative of the operator A,, (see [13]).

Definition 3.1. Let 1; denote the first eigenvalue of (3.1). We say that u =
(u1,...,uy) is linearly stable, if all eigenvalues of (3.1) are strictly positive, which
can be inferred if the principal eigenvalue 1; > 0. Otherwise u = (u1,...,u,) is
linearly unstable.

Let u = (u1,...,u,) be any positive solution of the system (1.1). Then from
(3.1) the linearized equation about u = (uq,...,uy) is
—(pi — 1) div(|Vu;|Pi —2Vw;) — )\_ai(qc)aziuﬁilug; Ut
— = dai(m)ad utug? o w, = nw; z €, (32)
wi(z) =0 x € 09

for 1 <i<n.

Let 71 be the principal eigenvalue and ¢ = (v1,...,%y,) be the corresponding
eigenfunction. We make take ¢; such that ¢; > 0 in Q and ||¢i]lcc = 1 for
1 <4 < n(see [14]). Finally, we state our stability result as follows.

Theorem 3.2. Suppose ¢; < co for 1 <i <n, and X > X*. Let u = (u1,...,uy)

be the solution of the system (1.1) obtained in Theorem 1. Moreover, let of , ¢;
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for1<4,5 <mn, and X\ be such that

n

71 ol ot i L at —1
E ci(pi — D) (x —&—)\E ai(x)u; alul Up? U WY1+ - F AUy UG UR" wn)
i=1
<)\E i — Dai(x u1u2- uni,bz

for all x € Q. Then u = (u,...,uy) is linearly stable.

Proof. We give from equations (1.1) and (3.2) that

/QZ(pi = 1) (ui(2)div(|Vu (2) [ 72 Vi (2)) = ti(@)div(|Vus (2) [P~ Vui(2)) ) da

n . .
+/\/Zaz($)uz( )(aiu?l 1ug2 Supm -+ ol ul u2 . ~uf{"_11/)n)d:1:

Q=1
- )‘/Q;( i — Di(x) (ai(x)uy™ - - up™)de + /Q ;a(m — 1) (z)dx
=M /Q Zuz(l')@/h(l')dx (3 3)
i=1

But by using the Green’s first identity, for 1 < i < n we obtain

[ ) (Vs V@) de = = [ (V@) @) Voo
Q
+/aszui(x)|vuz( )pﬁQ(awl

on
*—/Q|Vui(:1:) Pim27 0 (2) Vs (z)dx (3.4)

)dS

and

/%(I) div(|Vu; (2) [P 2V (z))de = _/ Vi (2) [P =2 Vi (2) Vi () dae
Q
/ 1/)1 |VU1 3%

—/Q|Vu1-(3:)|pi_2Vui(:1:)V7,/)i(3:)d:c. (3.5)

pﬁZ(

) ds
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By using (3.4) and (3.5) in (3.3) and from the hypotheses we get

-m /Q ; ui ()i (z)

=A

But

/ Zai(x)ui(ac) (aiufl_lu? coeun A b ul g uf{"_lz/Jn)d:v
Qi

n

Y /Q > (0= D) o o+ /Q > el (el <0

Y1,..., 0y > 0 and uy,...,u, > 0in Q, and hence 7; > 0. This completes

the proof. O
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