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Abstract : In this note, we prove the existence and stability properties of positive
weak solutions to a class of nonlinear equations driven by a (p1, . . . , pn)-Laplacian
operator and indefinite weight functions. First by using the method of sub-super
solution we study the existence of positive weak solution. Next we study the
stability properties of positive weak solution.

Keywords : (p1, . . . , pn)-Laplacian; sub-super solution; linearized stability.
2010 Mathematics Subject Classification : 35J60; 35B30; 35B35.

1 Introduction and Preliminaries

In this work, we study the existence and stability properties of positive weak
solutions to the nonlinear elliptic system

{

−∆pi
ui = λai(x)

∏n
j=1

u
αi

j

j − ci x ∈ Ω,

ui(x) = 0 x ∈ ∂Ω
(1.1)
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for 1 ≤ i ≤ n, where Ω is a bounded domain in R
N (N ≥ 1) with C2-boundary ∂Ω,

pi > 1, ∆pi
ui := div(|∇ui|

pi−2∇ui) is the pi-Laplacian operator, λ, ci and αi
j are

positive parameters for 1 ≤ i, j ≤ n, and the weight functions ai satisfies ai ∈ C(Ω)
and ai(x) > ai

0 > 0 for all x ∈ Ω for 1 ≤ i ≤ n. First by using the method of
sub-super solution we study the existence of positive weak solution. Next we
study the stability properties of positive weak solution directly by analyzing the
linearized system.

Problems involving the p-Laplacian arise from many branches of pure
mathematics as in the theory of quasiregular and quasiconformal mapping (see
[1]) as well as from various problems in mathematical physics notably the flow of
non-Newtonian fluids.

Systems of the form







−∆pu = λa(x)vα x ∈ Ω,
−∆qv = λb(x)uβ x ∈ Ω,
u(x) = 0 = v(x) x ∈ ∂Ω,

(1.2)

and






−∆pu = λuαvγ x ∈ Ω,
−∆qv = λuδvβ x ∈ Ω,
u(x) = 0 = v(x) x ∈ ∂Ω

(1.3)

arise in several context in biology and engineering (see [2, 3]). These systems
provide simple models to describe, for instance, the interaction of three diffusing
biological species. See [4] for details on the physical models involving more gen-
eral reaction-diffusion system. Semipositone problems have been of great interest
during the past two decades, and they continue to pose mathematically difficult
problems in the study of positive solutions (see [5–10]). We refer to [11, 12] for
additional results in nonlinear elliptic systems.

Throughout this paper, we letX be the Cartesian product of n spacesW 1,pi

0
(Ω)

for 1 ≤ i ≤ n, i.e., X = W 1,p1

0
(Ω)× · · ·×W 1,pn

0
(Ω). We give the definition of weak

solution and sub-super solution of (1.1) as follows.

Definition 1.1. We say that u = (u1, . . . , un) ∈ X is a weak solution of the
system (1.1), if we have

∫

Ω

n
∑

i=1

|∇ui(x)|
pi−2∇ui(x)∇wi(x)dx−

∫

Ω

n
∑

i=1

(

λai(x)

n
∏

j=1

u
αi

j

j (x)− ci

)

wi(x)dx = 0

for all w = (w1, . . . , wn) ∈ X .

Definition 1.2. We say that ψ = (ψ1, . . . , ψn) and z = (z1, . . . , zn) in X are a
subsolution and a supersolution of the system (1.1), if we have

∫

Ω

n
∑

i=1

|∇ψi(x)|
pi−2∇ψi(x)∇wi(x)dx ≤

∫

Ω

n
∑

i=1

(

λai(x)
n

∏

j=1

ψ
αi

j

j (x) − ci

)

wi(x)dx
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and

∫

Ω

n
∑

i=1

|∇zi(x)|
pi−2∇zi(x)∇wi(x)dx ≥

∫

Ω

n
∑

i=1

(

λai(x)

n
∏

j=1

z
αi

j

j (x) − ci

)

wi(x)dx,

respectively, for all w = (w1, . . . , wn) ∈ X .

Now if there exist a subsolution ψ = (ψ1, . . . , ψn) and a supersolution
z = (z1, . . . , zn) such that 0 ≤ ψi(x) ≤ zi(x) for all x ∈ Ω for 1 ≤ i ≤ n,
then the system (1.1) has a positive solution u = (u1, . . . , un) ∈ X such that
ψi(x) ≤ ui(x) ≤ zi(x) for all x ∈ Ω for 1 ≤ i ≤ n (see [12]).

2 Existence Results

In this section, we shall prove that if 0 < αi
j < 1 for 1 ≤ i, j ≤ n, then

there exist positive constants c0 and λ∗ such that the system (1.1) has a positive
solution when ci ≤ c0 for 1 ≤ i ≤ n and λ ≥ λ∗. We will obtain the existence of
positive weak solution to the system (1.1) by constructing a positive subsolution
ψ = (ψ1, . . . , ψn) and a positive supersolution z = (z1, . . . , zn).

To precisely state our theorem, for 1 ≤ i ≤ n we first consider the eigenvalue
problem

{

−∆pi
φi = λi|φi|

pi−2φi x ∈ Ω,
φi = 0 x ∈ ∂Ω.

(2.1)

Let λ1,pi
be the respective first eigenvalue of ∆pi

with Dirichlet boundary
condition and φ1,pi

the corresponding eigenfunction with

φ1,pi
> 0, ‖φ1,pi

‖∞ = 1, for1 ≤ i ≤ n.

It can be shown that |∇φ1,pi
| 6= 0 on ∂Ω for 1 ≤ i ≤ n, and hence, depending on

Ω, there exist positive constants k, η and µ such that

{

|∇φ1,pi
|pi − λ1,pi

φpi

1,pi
≥ k in Ωη,

φ1,pi
≥ µ in Ω \ Ωη

(2.2)

where Ωη = {x ∈ Ω|d(x, ∂Ω) ≤ η}.
For 1 ≤ i ≤ n, we will also consider the unique solution, ζi ∈ C1(Ω) of the

boundary value problem

{

−∆pi
ζi = 1 x ∈ Ω,

ζi = 0 for 1 ≤ i ≤ n x ∈ ∂Ω.

To discuss our existence result, it is known that ζi > 0 in Ω and ∂ζi/∂n < 0
on ∂Ω where n denotes the outward unit normal to ∂Ω for 1 ≤ i ≤ n (see [13]).
Now we state our main result as follows.
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Theorem 2.1. Let 0 < αi
j < 1 for 1 ≤ i, j ≤ n. Then there exist positive constants

c0 and λ∗ such that the system (1.1) has a positive solution for ci ≤ c0 (1 ≤ i ≤ n)
and λ ≥ λ∗.

Proof. To obtain the existence of positive weak solution to the system (1.1),
we shall construct a positive subsolution ψ = (ψ1, . . . , ψn) and a supersolution
z = (z1, . . . , zn) of the system (1.1). First, we construct a positive subsolution.

For this, we shall verify that (ψ1, . . . , ψn) with ψi = pi−1

pi
φ

pi
pi−1

1,pi
for 1 ≤ i ≤ n is

a subsolution of the system (1.1). Let the test function w = (w1, . . . , wn) ∈ X.
Then

∫

Ω

|∇ψi|
pi−2∇ψi∇widx =

∫

Ω

φ1,pi
|∇φ1,pi

|pi−2∇φ1,pi
∇widx

=

∫

Ω

|∇φ1,pi
|pi−2∇φ1,pi

∇(φ1,pi
wi)dx

−

∫

Ω

|∇φ1,pi
|piwidx

=

∫

Ω

λ1,pi
|φ1,pi

|pi−2φ1,pi
(φ1,pi

wi)dx

−

∫

Ω

|∇φ1,pi
|piwidx.

=

∫

Ω

(λ1,pi
|φ1,pi

|pi − |∇φ1,pi
|pi)widx.

Thus (ψ1, . . . , ψn) is a subsolution if

λ1,pi
φpi

1,pi
− |∇φ1,pi

|pi ≤ λai(x)

n
∏

j=1

ψ
αi

j

j − ci, for 1 ≤ i ≤ n.

This inequality holds, because we have from (2.2)

λ1,pi
φpi

1,pi
− |∇φ1,pi

|pi ≤ −k, in Ωη for 1 ≤ i ≤ n,

and therefore if ci ≤ c0 := k for 1 ≤ i ≤ n, then

λ1,pi
φpi

1,pi
− |∇φ1,pi

|pi ≤ −k = −c0 ≤ λai(x)
n

∏

j=1

ψ
αi

j

j − ci

for 1 ≤ i ≤ n, since

λai(x)

n
∏

j=1

ψ
αi

j

j ≥ 0.

On the other hand, in Ω \Ωη we have φ1,pi
≥ µ > 0 for 1 ≤ i ≤ n. Thus in Ω \Ωη

we have

λ1,pi
φpi

1,pi
− |∇φ1,pi

|pi ≤ λ1,pi
≤ λai(x)

n
∏

j=1

ψ
αi

j

j − ci for 1 ≤ i ≤ n,
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if

λ ≥ λ̂i :=
(λ1,pi

+ k)
∏n

j=1
(

pj

pj−1
)αi

j

ai
0

∏n
j=1

µ
αi

j
pj

pj−1

for 1 ≤ i ≤ n.

Therefore, ψ = (ψ1, . . . , ψn) is a subsolution of the system (1.1) for ci ≤ c0
(1 ≤ i ≤ n) and

λ ≥ λ∗ := max{λ̂1, . . . , λ̂n}.

Next we construct a supersolution z = (z1, . . . , zn) of the system (1.1) such
that 0 < ψi(x) ≤ zi(x) for x ∈ Ω and 1 ≤ i ≤ n. We denote

(z1, . . . , zn) = (A1ζ1, . . . , Anζn),

where the constants A1, . . . , An > 0 are large and to be chosen later. We shall
verify that z = (z1, . . . , zn) is a supersolution of the system (1.1). To this end,
letting w = (w1, . . . , wn) ∈ X , we have

∫

Ω

|∇zi(x)|
pi−2∇zi(x)∇wi(x)dx = Api−1

i

∫

Ω

|∇ζi(x)|
pi−2∇ζi(x)∇wi(x)dx

= Api−1

i

∫

wi(x)dx.

Let li = ‖ζi‖∞ for 1 ≤ i ≤ n. Bearing in mind that 0 < αi
j < 1 for 1 ≤ i, j ≤ n, it

is easy to prove that there exist positive large constants A1, . . . , An such that

Ai ≥
[

λ‖ai‖∞

n
∏

j=1

(Aj lj)α
i
j

]
1

pi−1

for 1 ≤ i ≤ n, and then

Api−1

i ≥ λ‖ai‖∞

n
∏

j=1

(Aj lj)
αi

j ≥ λai(x)

n
∏

j=1

(Aj lj)
αi

j − ci

≥ λai(x)

n
∏

j=1

(Ajζj)
αi

j − ci

= λai(x)

n
∏

j=1

z
αi

j

j − ci

for 1 ≤ i ≤ n. Therefore
∫

Ω

|∇zi(x)|
pi−2∇zi(x)∇wi(x)dx = Api−1

i

∫

Ω

wi(x)dx

≥

∫

Ω

(

λai(x)

n
∏

j=1

z
αi

j

j (x) − ci
)

wi(x)dx,
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i.e., z = (z1, . . . , zn) is a supersolution of the system (1.1) with zi ≥ ψi in Ω
for large Ai for 1 ≤ i ≤ n. Then the system (1.1) has a positive solution
u = (u1, . . . , un) ∈ X such that ψi ≤ ui ≤ zi for 1 ≤ i ≤ n. Hence, Theorem 2.1
is proven.

3 Stability Results

Here, we would establish stability of positive solution u = (u1, . . . , un) ∈ X
to the system (1.1) directly by showing that the principle eigenvalue η1 of its
linearization is positive.

We recall that, if u = (u1, . . . , un) be any positive solution to the system

{

−∆pi
ui = λf i(x, u1, . . . , un) x ∈ Ω,

ui(x) = 0 x ∈ ∂Ω

for 1 ≤ i ≤ n, then the linearized equation about u = (u1, . . . , un) is







−(pi − 1) div(|∇ui|
pi−2∇wi)

−λ
∑n

j=1
f i

uj
(x, u1, . . . , un)wj = ηωi x ∈ Ω,

wi(x) = 0 x ∈ ∂Ω
(3.1)

for 1 ≤ i ≤ n, where f i
uj

(x, u1, . . . , un) denotes the partial derivative of

f i(x, u1, . . . , un) with respect to uj for 1 ≤ i ≤ n. Equation (3.1) obtained from
the formal derivative of the operator ∆pi

(see [13]).

Definition 3.1. Let η1 denote the first eigenvalue of (3.1). We say that u =
(u1, . . . , un) is linearly stable, if all eigenvalues of (3.1) are strictly positive, which
can be inferred if the principal eigenvalue η1 > 0. Otherwise u = (u1, . . . , un) is
linearly unstable.

Let u = (u1, . . . , un) be any positive solution of the system (1.1). Then from
(3.1) the linearized equation about u = (u1, . . . , un) is











−(pi − 1) div(|∇ui|
pi−2∇wi) − λai(x)α

i
1u

αi
1
−1

1
u

αi
2

2
. . . u

αi
n

n w1

− · · · − λai(x)α
i
nu

αi
1

1
u

αi
2

2
. . . u

αi
n−1

n wn = ηωi x ∈ Ω,
wi(x) = 0 x ∈ ∂Ω

(3.2)

for 1 ≤ i ≤ n.

Let η1 be the principal eigenvalue and ψ = (ψ1, . . . , ψn) be the corresponding
eigenfunction. We make take ψi such that ψi > 0 in Ω and ‖ψi‖∞ = 1 for
1 ≤ i ≤ n (see [14]). Finally, we state our stability result as follows.

Theorem 3.2. Suppose ci ≤ c0 for 1 ≤ i ≤ n, and λ ≥ λ∗. Let u = (u1, . . . , un)
be the solution of the system (1.1) obtained in Theorem 1. Moreover, let αi

j , ci
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for 1 ≤ i, j ≤ n, and λ be such that

nX
i=1

ci(pi − 1)ψi(x) + λ

nX
i=1

ai(x)ui

�
α

i

1u
α

i
1
−1

1
u

α
i
2

2
· · ·u

α
i
n

n ψ1 + · · · + α
i

nu
α

i
1

1
u

α
i
2

2
· · · u

α
i
n−1

n ψn

�
< λ

nX
i=1

(pi − 1)ai(x)u
α

i
1

1
u

α
i
2

2
· · ·u

α
i
n

n ψi

for all x ∈ Ω. Then u = (u1, . . . , un) is linearly stable.

Proof. We give from equations (1.1) and (3.2) that

∫

Ω

n
∑

i=1

(pi − 1)
(

ui(x)div(|∇ui(x)|
pi−2∇ψi(x)) − ψi(x)div(|∇ui(x)|

pi−2∇ui(x))
)

dx

+ λ

∫

Ω

n
∑

i=1

ai(x)ui(x)
(

αi
1u

αi
1
−1

1
u

αi
2

2
. . . u

αi
n

n ψi + · · · + αi
nu

αi
1

1
u

αi
2

2
· · ·u

αi
n−1

n ψn

)

dx

− λ

∫

Ω

n
∑

i=1

(pi − 1)ψi(x)
(

ai(x)u
αi

1

1
· · ·u

αi
n

n

)

dx+

∫

Ω

n
∑

i=1

ci(pi − 1)ψi(x)dx

= −η1

∫

Ω

n
∑

i=1

ui(x)ψi(x)dx. (3.3)

But by using the Green’s first identity, for 1 ≤ i ≤ n we obtain

∫

Ω

ui(x) div(|∇ui(x)|
pi−2∇ψi(x))dx = −

∫

Ω

|∇ui(x)|
pi−2∇ui(x)∇ψi(x)dx

+

∫

∂Ω

ui(x)|∇ui(x)|
pi−2(

∂ψi

∂n
) dS

= −

∫

Ω

|∇ui(x)|
pi−2∇ui(x)∇ψi(x)dx (3.4)

and

∫

Ω

ψi(x) div(|∇ui(x)|
pi−2∇ui(x))dx = −

∫

Ω

|∇ui(x)|
pi−2∇ui(x)∇ψi(x)dx

+

∫

∂Ω

ψi(x)|∇ui(x)|
pi−2(

∂ui

∂n
) dS

= −

∫

Ω

|∇ui(x)|
pi−2∇ui(x)∇ψi(x)dx. (3.5)
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By using (3.4) and (3.5) in (3.3) and from the hypotheses we get

− η1

∫

Ω

n
∑

i=1

ui(x)ψi(x)

= λ

∫

Ω

n
∑

i=1

ai(x)ui(x)
(

αi
1u

αi
1
−1

1
u

αi
2

2
· · ·u

αi
n

n ψi + · · · + αi
nu

αi
1

1
u

αi
2

2
· · ·u

αi
n−1

n ψn

)

dx

− λ

∫

Ω

n
∑

i=1

(

(pi − 1)ψi(x)
(

ai(x)u
αi

1

1
· · ·u

αi
n

n

)

dx+

∫

Ω

n
∑

i=1

ci(pi − 1)ψi(x)dx < 0.

But ψ1, . . . , ψn > 0 and u1, . . . , un > 0 in Ω, and hence η1 > 0. This completes
the proof.
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