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Abstract : Butcher and Wright [1] used doubly companion matrices as a tool
to analyze numerical methods and some general linear methods property. In this
paper, we considered a lower doubly companion matrix and prove that any lower
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1 Introduction

Let C be the field of complex numbers. The set of all polynomials in x over C

is denoted by C[x]. For a positive integer n, let Mn be the set of all n×n matrices
over C. The set of all complex vectors, or n× 1 matrices over C is denoted by Cn.

A nonzero vector v ∈ Cn is called an eigenvector of A ∈ Mn corresponding to a
scalar λ ∈ C if Av = λv, and the scalar λ is an eigenvalue of the matrix A. The set
of eigenvalues of A is call the spectrum of A and is denoted by σ(A). Eigenvectors
and eigenvalues are used widely in science and engineering.
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Butcher and Wright [1, p. 363] defined a doubly companion matrix for the
pair of polynomials α(x) = xn − α1x

n−1 − α2x
n−2 − · · · − αn and β(x) = xn −

β1x
n−1 − β2x

n−2 − · · · − βn, as C ∈ Mn given by

C =





















−α1 −α2 −α3 . . . −αn−1 −αn − βn

1 0 0 . . . 0 −βn−1

0 1 0 . . . 0 −βn−2

...
...

. . .
...

...

0 0 0
. . . 0 −β2

0 0 0 . . . 1 −β1





















, (1.1)

that is, a n×n matrix C with n > 1 is called a doubly companion matrix if its entries
cij satisfy cij = 1 for all entries in the sub-maindiagonal of C and else cij = 0 for
i 6= 1 and j 6= n, which is a special case of unreduced upper Hessenberg matrix.
Butcher and Wright in [1, pp. 363–364] used the doubly companion matrices as
a tool for analyzing various extension of classical methods with inherent Runge-
Kutta stability. The doubly companion matrices is important for application in
some certain matrix equations, numerical and linear methods. The author in [2]
proved that the doubly companion matrix also the sum of two doubly companion
matrices are nonderogatory, and also obtained the explicit form of its minimal
polynomials.

In this papers, we obtain the eigenvectors formulas for the lower doubly com-
panion matrix, the sum of two lower doubly companion matrices, the upper doubly
companion matrix, and the sum of two upper doubly companion matrices, respec-
tively.

2 Preliminaries

Let α(x) = xn + an−1x
n−1 + an−2x

n−2 + · · · + a1x + a0 and β(x) = xn +
bn−1x

n−1 + bn−2x
n−2 + · · · + b1x + b0 be two monic polynomials over complex

numbers, we prefer to consider the corresponding lower doubly companion matrix
of α(x) and β(x) as,

L(α, β) =

















−bn−1 1 . . . 0 0

−bn−2 0
. . .

. . . 0
...

...
. . .

. . .
...

−b1 0 . . . 0 1
−b0 − a0 −a1 . . . −an−2 −an−1

















. (2.1)

Males̆ević, Todorić, Jovović, and Telebaković in [3, Lemma 3.3] studied the
sum of its principal minors of order k containing the first column (1 ≤ k ≤ n)
of the lower doubly companion matrix for using in the second step of reduction
process for linear system of first order operator equations.
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We define the corresponding upper doubly companion matrix of α(x) and β(x)
as,

U(α, β) =















−bn−1 −bn−2 . . . −b1 −a0 − b0

1 0 . . . 0 −a1

...
...

. . .
...

...

0 0 . . . 0 −an−2

0 0 . . . 1 −an−1















. (2.2)

From (2.1), if b0 = b1 = · · · = bn−2 = bn−1 = 0 then the lower doubly companion
matrix is become a companion matrix of the form,

L(α) =

















0 1 . . . 0 0

0 0
. . .

. . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
−a0 −a1 . . . −an−2 −an−1

















, (2.3)

and, if a0 = a1 = · · · = an−2 = an−1 = 0 then the matrix in (2.1) is become a
companion matrix of another form,

L(β) =

















−bn−1 1 . . . 0 0

−bn−2 0
. . .

. . . 0
...

...
. . .

. . .
...

−b1 0 . . . 0 1
−b0 0 . . . 0 0

















. (2.4)

It is well known that the last two of these companion matrices are nonderogatory.
The matrix U(α, β) is also nonderogatory, that is the characteristic polynomial
cU(α,β) is equal to the minimal polynomial mU(α,β), see [2] for more details. We
shall abbreviate “the lower doubly companion matrix” into “LDCM,” and abbre-
viate “the upper doubly companion matrix” into “UDCM.”

We recall some well-known results from linear algebra.

Theorem 2.1 ([4, Theorem 7.12(1)]). Let α(x) ∈ F [x]. A companion matrix
A := L(α) is nonderogatory; in fact, cA(x) = mA(x) = α(x).

Theorem 2.2 ([5, Theorem 3.3.15]). A matrix A ∈ Mn is similar to the compan-
ion matrix of its characteristic polynomial if and only if the minimal and charac-
teristic polynomial of A are identical.

Theorem 2.3 ([5, Theorem 1.4.8]). Let A, B ∈ Mn, if x ∈ Cn is an eigenvector
corresponding to λ ∈ σ(B) and B is similar to A via S, then Sx is an eigenvector
of A corresponding to the eigenvalue λ.
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3 Main Results

According to any companion matrix C(α) is a nonderogatory with the charac-
teristic and minimal polynomial both equal to α(x), by Theorem 2.1. Firstly, we
shown that the LDCM as in (2.1) were similar to a companion matrix in the form
(2.3) and produced an explicit eigenvectors formula of the LDCM. Secondly, we
prove that the sum of two LDCM of the same size are also similar to a companion
matrix. We wish to find the explicit formula of eigenvector for the matrix in this
case. Finally we should able to apply the result of LDCM to find the explicit
eigenvectors formula of the UDCM, and find the explicit formula of eigenvector
for the sum of two UDCM, respectively.

Theorem 3.1. The LDCM L(α, β) in (2.1) is similar to a companion matrix.

Proof. Let

L(α, β) =

















−bn−1 1 . . . 0 0

−bn−2 0
. . .

. . . 0
...

...
. . .

. . .
...

−b1 0 . . . 0 1
−b0 − a0 −a1 . . . −an−2 −an−1

















.

To show that L := L(α, β) is similar to a companion matrix. We shall prove by
explicit construction the existence of an invertible matrix M such that M−1LM

is a companion matrix. Now, chosen an upper triangular matrix of size n × n,

M =



















1 0 0 . . . 0

bn−1 1 0
. . .

...

bn−2 bn−1 1
. . . 0

...
. . .

. . .
. . . 0

b1 . . . bn−2 bn−1 1



















.

The matrix M is an lower triangular Toeplitz matrix with diagonal-constant 1.
Then M is nonsingular matrix, it is obtained that

M−1 =
[

e1 Le1 L2e1 . . . Ln−1e1

]T
,

where e1 =
[

1 0 . . . 0
]T

∈ C
n is the unit column vector. Computation

shows that

M−1LM =

















0 1 . . . 0 0

0 0
. . .

. . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
−γ0 −γ1 . . . −γn−2 −γn−1

















,
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where

γ0 =
∑

i+j=n

aibj + a0 + b0,

γ1 =
∑

i+j=n+1

aibj + a1 + b1,

... (3.1)

γn−2 =
∑

i+j=n+n−2

aibj + an−2 + bn−2,

γn−1 = an−1 + bn−1.

The matrix L(σ) := M−1LM is the desired companion matrix, where

σ(x) = xn + γn−1x
n−1 + γn−2x

n−2 + · · · + γ1x + γ0

= xn + (an−1 + bn−1)x
n−1 + (an−1bn−1 + an−2 + bn−2)x

n−2 + · · ·

+





∑

i+j=n+1

aibj + a1 + b1



 x +





∑

i+j=n

aibj + a0 + b0



 .

Since the LDCM L(α, β) is similar to the companion matrix L(σ), therefore
Theorem 2.2 and Theorem 2.1, asserted that L(α, β) is a nonderogatory matrix,
and the characteristic polynomial also the minimal polynomial of L(α, β) is the
polynomial σ(x) appears above.

Corollary 3.2. The LDCM L(α, β) in (2.1) is a nonderogatory matrix.

Now analogous as eigenvector of a companion matrix in [6, pp. 630–631] and
in [7, p. 6], we obtain.

Theorem 3.3 (Eigenvector for LDCM). Let λ be an eigenvalue of a lower doubly
companion matrix L(α, β) ∈ Mn defined in (2.1). Then

v =















1
bn−1 + λ

bn−2 + bn−1λ + λ2

...

b1 + b2λ + · · · + bn−1λ
n−2 + λn−1















is an eigenvector of L(α, β) corresponding to the eigenvalue λ.

Proof. Let cL(σ)(t) = det(tIn − L(σ)) be the characteristic polynomial of the
companion matrix L(σ), where In be the identity matrix, we have cL(σ)(x) = σ(x).
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From Theorem 3.1, L(α, β) is similar to the companion matrix L(σ). Then they
have the same eigenvalues in common. Let λ be an eigenvalue of L(α, β), then
λ also an eigenvalue of L(σ). Since λ is a root of the characteristic polynomial
cL(σ)(x), we have

cL(σ)(λ) = σ(λ)

= λn + (an−1 + bn−1)λ
n−1 + (an−1bn−1 + an−2 + bn−2)λ

n−2

+ · · · +





∑

i+j=n+1

aibj + a1 + b1



λ +





∑

i+j=n

aibj + a0 + b0



 = 0,

that is,

cL(σ)(λ) = λn + γn−1λ
n−1 + γn−2λ

n−2 + · · · + γ1λ + γ0 = 0,

where γi, i = 0, 1, . . . , n − 1, as in (3.1). Then, we obtain

L(σ)u =

















0 1 . . . 0 0

0 0
. . .

. . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
−γ0 −γ1 . . . −γn−2 −γn−1































1
λ
...

λn−2

λn−1















=















λ

λ2

...

λn−1

−γ0 − γ1λ − · · · − γn−2λ
n−2 − γn−1λ

n−1















=















λ

λ2

...

λn−1

λn















= λu.

Since M−1L(α, β)M = L(σ) by Theorem 3.1, implies L(α, β)M = ML(σ). Anal-
ogous as in Theorem 2.3, we obtain Mu is an eigenvector corresponding to λ of
the LDCM L(α, β). Hence, the explicit form of an eigenvector corresponding to
an eigenvalue λ of the matrix L(α, β) is

v := Mu =



















1 0 0 . . . 0

bn−1 1 0
. . .

...

bn−2 bn−1 1
. . . 0

...
...

. . .
. . . 0

b1 b2 . . . bn−1 1

































1
λ

λ2

...

λn−1















=















1
bn−1 + λ

bn−2 + bn−1λ + λ2

...

b1 + b2λ + · · · + bn−1λ
n−2 + λn−1















,
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such that
L(α, β)v = λv,

it is easy to see that the first component in the vector v cannot be zero, which
proves the assertion.

The following corollary is a particular case of Theorem 3.3, when a0 = a1 =
· · · = an−1 = 0. But there is a direct proof as follows.

Corollary 3.4. Let λ be an eigenvalue of the companion matrix L(β) defined in
(2.4). Then

v =















1
bn−1 + λ

bn−2 + bn−1λ + λ2

...

b1 + b2λ + · · · + bn−1λ
n−2 + λn−1















is an eigenvector of L(β) corresponding to the eigenvalue λ.

Proof. Let M be the lower triangular Toeplitz matrix with diagonal-constant 1 in
Theorem 3.1. A calculation shows that

L(β)′ := M−1L(β)M =

















0 1 . . . 0 0

0 0
. . .

. . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
−b0 −b1 . . . −bn−2 −bn−1

















.

Let λ be an eigenvalue of L(β), then λ also an eigenvalue of L(β)′. Now, we have

cL(β)′(λ) = λn + bn−1λ
n−1 + bn−2λ

n−2 + · · · + b1λ + b0 = 0,

and

L(β)′u =

















0 1 . . . 0 0

0 0
. . .

. . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
−b0 −b1 . . . −bn−2 −bn−1































1
λ

λ2

...

λn−1















= λ















1
λ

λ2

...

λn−1















= λu.

Therefore, the explicit form of an eigenvector corresponding to an eigenvalue λ of
the matrix L(β) is

v := Mu =















1
bn−1 + λ

bn−2 + bn−1λ + λ2

...

b1 + b2λ + · · · + bn−1λ
n−2 + λn−1















,
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yield the required eigenvector.

We would like to prove that the sum of two LDCMs is similar to a LDCM,
and construct the explicit eigenvector formula of the sum of two LDCMs.

Theorem 3.5. Let L(α, β) and L(γ, δ) be two lower doubly companion matrices
as the same type of (2.1) and of the same size. Then L(α, β) + L(γ, δ) is similar
to a lower doubly companion matrix.

Proof. Let α(x) = xn +an−1x
n−1 + · · ·+a2x

2 +a1x+a0, β(x) = xn + bn−1x
n−1 +

· · · + b2x
2 + b1x + b0, γ(x) = xn + cn−1x

n−1 + · · · + c2x
2 + c1x + c0, and δ(x) =

xn + dn−1x
n−1 + · · · + d2x

2 + d1x + d0 are in C[x]. Then

Z := L(α, β) + L(γ, δ)

=

















−bn−1 − dn−1 2 . . . 0 0

−bn−2 − dn−2 0
. . .

. . . 0
...

...
. . .

. . .
...

−b1 − d1 0 . . . 0 2
−b0 − a0 −a1 − c1 . . . −an−2 − cn−2 −an−1 − cn−1

















.

Let D = Diag(1, 1
2 , 1

22 , . . . , 1
2n−1 ). Then D−1 = Diag(1, 2, 22, . . . , 2n−1). A calcu-

lation shows that

D−1ZD

=















1 0 0 . . . 0
0 2 0 . . . 0
0 0 22 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2n−1















×

















−bn−1 − dn−1 2 . . . 0 0

−bn−2 − dn−2 0
. . .

. . . 0
...

...
. . .

. . .
...

−b1 − d1 0 . . . 0 2
−b0 − a0 −a1 − c1 . . . −an−2 − cn−2 −an−1 − cn−1

















×















1 0 0 . . . 0
0 1

2 0 . . . 0
0 0 1

22 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
2n−1
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=













−(bn−1 + dn−1) 1 . . . 0 0

−2(bn−2 + dn−2) 0
. . .

. . . 0
.
.
.

.

.

.
. . .

. . .
.
.
.

−2n−2(b1 + d1) 0 . . . 0 1
−2n−1(a0 + b0 + c0 + d0) −2n−2(a1 + c1) . . . −2(an−2 + cn−2) −(an−1 + cn−1)













.

Therefore, Z = L(α, β) + L(γ, δ) is similar to a LDCM.

Let L(α+γ, β+δ) := D−1ZD, Theorem 3.5 shows that the sum of two LDCMs
L(α, β) and L(γ, δ) is similar to the LDCM, L(α + γ, β + δ). Then we have the
following corollary.

Corollary 3.6. Let L(α, β) and L(γ, δ) be two lower doubly companion matrices
as in Theorem 3.5 and let µ be an eigenvalue of the matrix L(α, β)+L(γ, δ). Then

w =















1
1
2 [(bn−1 + dn−1) + µ]

1
22 [2(bn−2 + dn−2) + (bn−1 + dn−1)µ + µ2]

...
1

2n−1 [2n−2(b1 + d1) + 2n−3(b2 + d2)µ + · · · + (bn−1 + dn−1)µ
n−2 + µn−1]















is an eigenvector of L(α, β) + L(γ, δ) corresponding to the eigenvalue µ.

Proof. Since the matrix L(α, β) + L(γ, δ) is similar to the LDCM L(α + γ, β + δ),
then by hypothesis µ is also the eigenvalue of L(α + γ, β + δ). Apply Theorem 3.3
to the LDCM L(α + γ, β + δ), then we have

u′ :=















1
(bn−1 + dn−1) + µ

2(bn−2 + dn−2) + (bn−1 + dn−1)µ + µ2

...

2n−2(b1 + d1) + 2n−3(b2 + d2)µ + · · · + (bn−1 + dn−1)µ
n−2 + µn−1















,

is an eigenvector corresponding to µ of the matrix L(α+γ, β + δ). But D−1ZD =
L(α + γ, β + δ); hence by Theorem 2.3 we have

w := Du′

=















1 0 0 . . . 0
0 1

2 0 . . . 0
0 0 1

22 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
2n−1















×















1
(bn−1 + dn−1) + µ

2(bn−2 + dn−2) + (bn−1 + dn−1)µ + µ2

...

2n−2(b1 + d1) + 2n−3(b2 + d2)µ + · · · + (bn−1 + dn−1)µ
n−2 + µn−1
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=















1
1
2 [(bn−1 + dn−1) + µ]

1
22 [2(bn−2 + dn−2) + (bn−1 + dn−1)µ + µ2]

...
1

2n−1 [2n−2(b1 + d1) + 2n−3(b2 + d2)µ + · · · + (bn−1 + dn−1)µ
n−2 + µn−1]















is an eigenvector corresponding to µ of the matrix L(α, β) + L(γ, δ). It is easy
to see that the first component in the vector w cannot be zero, which proves the
assertion.

4 Some Applications

Consider, each UDCM is similar to a LDCM via the backward identity matrix
of order n× n (or reversal matrix of order n×n), J (= J−1), which showing that
the UDCM is similar to its transpose [5, pp. 207–208], as follows,

J−1U(α, β)J

=















0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...

0 1 . . . 0 0
1 0 . . . 0 0





























−bn−1 −bn−2 . . . −b1 −a0 − b0

1 0 . . . 0 −a1

...
...

. . .
...

...

0 0 . . . 0 −an−2

0 0 . . . 1 −an−1















×















0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...

0 1 . . . 0 0
1 0 . . . 0 0















=

















−bn−1 1 . . . 0 0

−bn−2 0
. . .

. . . 0
...

...
. . .

. . .
...

−b1 0 . . . 0 1
−a0 − b0 −a1 . . . −an−2 −an−1

















=: L(α, β).

According to Theorem 3.3 and Theorem 2.3 we have the following results:

Theorem 4.1 (Eigenvector of UDCM). Let λ be an eigenvalue of a upper doubly
companion matrix U(α, β) ∈ Mn defined in (2.2). Then

v :=















b1 + b2λ + · · · + bn−1λ
n−2 + λn−1

...

bn−2 + bn−1λ + λ2

bn−1 + λ

1
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is an eigenvector of U(α, β) corresponding to the eigenvalue λ.

Proof. Form the previous matrix equation we see that U(α, β) is similar to L(β, α),
if λ is an eigenvalue of the UDCM

U(α, β) =















−bn−1 −bn−2 . . . −b1 −a0 − b0

1 0 . . . 0 −a1

...
...

. . .
...

...

0 0 . . . 0 −an−2

0 0 . . . 1 −an−1















then λ is also an eigenvalue of the LDCM,

L(α, β) =

















−bn−1 1 . . . 0 0

−bn−2 0
. . .

. . . 0
...

...
. . .

. . .
...

−b1 0 . . . 0 1
−a0 − b0 −a1 . . . −an−2 −an−1

















.

Form Theorem 3.3 we known that the formula of a eigenvector for L(α, β) is

u =















1
bn−1 + λ

bn−2 + bn−1λ + λ2

...

b1 + b2λ + · · · + bn−1λ
n−2 + λn−1















.

Since J−1U(α, β)J = L(α, β), by Theorem 3.1, implies U(α, β)J = JL(α, β).
Analogous as in Theorem 2.3, we obtain Ju is an eigenvector corresponding to λ

of the UDCM U(α, β). Hence, the explicit form of an eigenvector corresponding
to an eigenvalue λ for the matrix U(α, β) is

v := Ju =















0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...

0 1 . . . 0 0
1 0 . . . 0 0





























1
bn−1 + λ

bn−2 + bn−1λ + λ2

...

b1 + b2λ + · · · + bn−1λ
n−2 + λn−1















=















b1 + b2λ + · · · + bn−1λ
n−2 + λn−1

...

bn−2 + bn−1λ + λ2

bn−1 + λ

1















,
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such that

U(α, β)v = λv,

it is easy to see that the last component in the vector v cannot be zero, which
proves the assertion.

The sum of two UDCMs is similar via D = Diag(1, 2, 22, . . . , 2n−1) to a UDCM
can be found in [2, Theorem 3.4]. Let

Z ′ := U(α, β) + U(γ, δ)

=





















−bn−1 − dn−1 −bn−2 − dn−2 . . . −b1 − d1 −a0 − b0 − c0 − d0

2 0 . . . 0 −a1 − c1

0 2 . . . 0 −a2 − c2

...
. . .

. . .
...

...

0
. . .

. . . 0 −an−2 − cn−2

0 0 . . . 2 −an−1 − cn−1





















,

we have

D−1Z ′D

=















−(bn−1 + dn−1) −2(bn−2 + dn−2) . . . −2n−2(b1 + d1) −2n−1(a0 + b0 + c0 + d0)
1 0 . . . 0 −2n−2(a1 + c1)
0 1 . . . 0 −2n−3(a2 + c2)
.
.
.

. . .
. . .

.

.

.
.
.
.

0
. . .

. . . 0 −2(an−2 + cn−2)
0 0 . . . 1 −(an−1 + cn−1)















.

Then by Theorem 4.1 above we obtain the following corollary.

Corollary 4.2. Let U(α, β) and U(γ, δ) be two UDCMs and let µ be an eigenvalue
of the above matrix U(α, β) + U(γ, δ). Then

w =















1[2n−2(b1 + d1) + 2n−3(b2 + d2)µ + · · · + (bn−1 + dn−1)µ
n−2 + µn−1]

...

2n−3[2(bn−2 + dn−2) + (bn−1 + dn−1)µ + µ2]
2n−2[(bn−1 + dn−1) + µ]

2n−1















is an eigenvector of U(α, β) + U(γ, δ) corresponding to the eigenvalue µ.

Proof. Since the matrix U(α, β)+U(γ, δ) = Z ′ is similar to the UDCM D−1Z ′D=:
U(α + γ, β + δ) where D = Diag(1, 2, 22, . . . , 2n−1), by hypothesis µ be an eigen-
value of the matrix U(α, β)+U(γ, δ), then µ is also the eigenvalue of U(α+γ, β+δ).
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Applying Theorem 4.1 to the UDCM U(α + γ, β + δ), then we have

v′ :=















2n−2(b1 + d1) + 2n−3(b2 + d2)µ + · · · + (bn−1 + dn−1)µ
n−2 + µn−1

...

2(bn−2 + dn−2) + (bn−1 + dn−1)µ + µ2

(bn−1 + dn−1) + µ

1















is an eigenvector corresponding to µ of the matrix L(α+γ, β+δ). But D−1Z ′D =
U(α + γ, β + δ); hence by Theorem 2.3 we have

w := Dv′

=















1 0 0 . . . 0
0 2 0 . . . 0
0 0 22 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2n−1















×















2n−2(b1 + d1) + 2n−3(b2 + d2)µ + · · · + (bn−1 + dn−1)µ
n−2 + µn−1

...

2(bn−2 + dn−2) + (bn−1 + dn−1)µ + µ2

(bn−1 + dn−1) + µ

1















=















1[2n−2(b1 + d1) + 2n−3(b2 + d2)µ + · · · + (bn−1 + dn−1)µ
n−2 + µn−1]

...

2n−3[2(bn−2 + dn−2) + (bn−1 + dn−1)µ + µ2]
2n−2[(bn−1 + dn−1) + µ]

2n−1















is an eigenvector corresponding to µ of the matrix U(α, β) + U(γ, δ). It is easy
to see that the last component in the vector w cannot be zero, which proves the
assertion.
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reduction for linear systems of first order operator equations, Applied
Mathematics Letters 23 (2010) 1367–1371.

[4] S. Roman, Advanced Linear Algebra, Third Edition, Springer, New York,
2008.

[5] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press,
Cambridge, UK, 1996.

[6] L. Brand, The companion matrix and its properties, The American
Mathematical Monthly 71 (6) (1964) 629–634.

[7] S. Moritsugu, K. Kuriyama, A linear algebra method for solving systems of
algebraic equations, J. Jap. Soc. Symb. Alg. Comp. (J. JSSAC) 7 (2000) 2–22.

(Received 5 March 2012)
(Accepted 22 April 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th


