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Abstract : This paper developed the c-Chart based on the Zero-Inflated Gen-
eralized Poisson (ZIGP) processes. We called the c-Chart based on ZIGP distri-
bution the cG − Chart. We first develop the control limits of the cG − Chart by
using the expected and variance of ZIGP distribution; namely cZG −Chart. We
then develop an approximated ZIGP distribution by a geometric distribution with
parameter p. The p estimated the fit for ZIGP distribution used in calculating
the expected skewness and variance of geometric distribution for constructing the
control limits of cG −Chart; namely cGg −Chart, cGk −Chart and also to study
the effects of the cumulative count of conforming items chart (CCC-Chart) which
is used for monitoring a ZIGP process we call CCCg − Chart. For cGg − Chart,
we developed cG − Chart by using the expected and variance of the geometric
distribution. For cGk −Chart, the skewness and variance were used for construct-
ing the control limits. The CCCg −Chart developed control limits of CCC-Chart
from the p estimation of geometric distribution. The performance considered the
Average Run Length and Average Coverage Probability. We found that for an
in-control process, the CCCg − Chart is superior for all levels of the mean (µ),
proportion zero(ω), mean shift(ρ) and over dispersion (ϕ). For an out-of-control
process, the cGg − Chart is the best for µ = 1 at low ω for all ρ and ϕ. The
cGk −Chart is the best for µ = 2 at all parameters and for µ = 3, 4 at high ω for
all ρ and ϕ. The cZG −Chart is the best for µ = 3 at low ω and µ = 4 at high ω
for all ρ and ϕ.
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1 Introduction

In manufacturing processes of industries, the traditional Shewhart control
chart of nonconformities (c-Chart) based on the Poisson distribution can be used
to monitor the number of nonconformities per unit of product, when the sample
sizes are constant. In a situation where there is an occurrence of a large number
of zeros nonconformities in the product processes, then the c-Chart is unsuitable
for processes control. That is the reason that the Poisson distribution is an inap-
propriate model to fit data. For an excess zeros nonconformities in processes, the
ratio of estimated variance to the estimated mean is greater than 1 (He et al. [1]),
this is called over dispersion and the c-Chart based on the Poisson distribution
has underestimated control limits, which directly leads to a large number of false
alarms rates (Xie and Goh [2], Sim and Lim [3]).

The generalized Poisson distribution (GPD) is one alternative to fit model
apart from the ZIP model (Lambert [4]) for excess zeros nonconformities in processes.
The GPD is a generalization of the discrete Poisson distribution which was devel-
oped by Consul and Jain [5]. The Poisson distribution is different from the GPD.
While the Poisson distribution has a single parameter (λ), a GPD has two para-
meters (λ, ϕ), which are as follows: λ is the mean of nonconformities in a sample
unit and ϕ is the ratio of the variance and means. He et al. [1] constructed the cu-
mulative count of conforming items chart (CCC-Chart) and the attributive chart
with exact probability (ACEP) for sensitive analysis of the two monitoring proce-
dures together with the GPD. The CCC-Chart for low defective rate processes is
used for the sensitive analysis of λ and the ACEP for the sensitive analysis of ϕ,
because using a single chart to monitor the processes for λ and ϕ make it difficult
to tell which parameter has the shift.

In this paper, we focus on another alternative of distribution to monitoring
for fit data, namely a zero-inflated generalized Poisson (ZIGP) distribution. The
ZIGP was introduced by Famoye and Singh [6] and authors (see Gupta et al. [7]).
The characteristic function of the ZIGP is a further extension of the GPD with
mixture of a distribution specifically at zeros. The ZIGP has three parameters λ,
ϕ and ω, where ω is a proportion of zero nonconformity. The ZIGP reduces to
Poisson distribution when ϕ = 1 and ω = 0, reduces to GPD when ω = 0 and
reduces to ZIP when ϕ = 1 (Khamkong [8]). Famoye and Singh [6] and Gupta
et al. [7] studied score tests for testing over-dispersion in ZIGP regression model.
Famoye and Singh [9] study applied a ZIGP regression model for domestic violence
data and investigated the maximum likelihood method of parameters. They found
that the ZIGP model sufficiently fit the domestic violence data for a large number
of zeros.

The result of the Poisson distribution is an inopportune model for the c-Chart
when there are a large number of zeros nonconformities in processes. The perfor-
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mance of the c-Chart might perform well for the average run length (ARL), but
not well for the average coverage probability (ACP).

In this paper, we called the c-Chart based on the ZIGP distribution the
cG − Chart. The aims of the present study are to develop modified control limits
of a cG −Chart that executes satisfactorily for a range of parameters of the ZIGP
and also to study the influence of the CCC-Chart to monitoring the excess zeros
nonconformities in processes. The framework of the paper is as follows. We first
develop the cG − Chart by constructing the control limits based on the expected
and variances of ZIGP distribution which we called cZG − Chart. After that we
develop an approximation for the distribution of the ZIGP as a geometric distri-
bution with parameter p (pg), and we examine how the value of pg varies as the
parameter of the ZIGP is changed. We then use the pg estimated for calculat-
ing the expected skewness and variance of geometric distribution for modifying the
control limits of cG−Chart by two difference methods, which we called cGg−Chart
and cGk − Chart. In the cGg − Chart, the expected and variance of geometric
distribution are used in the control limits of the cG −Chart. In the cGk −Chart,
we constructed the control limits with the skewness and variance of geometric
distribution. We also use the pg estimated to replace the p for modified control
limits of the CCC-Chart ; namely CCCg-Chart. The performance of these control
charts is then compared with the performance of the cG-Chart and cZG − Chart.
We compare the performance of these charts for both the ARL and the ACP.

2 Materials and Methods

The Zero-Inflated Generalized Poisson (ZIGP) distribution
The probability function is given by: (Famoye and Singh [6])

P (Y = y) =

{

ω + (1 − ω)exp(−λϕ) , y = 0

(1 − ω)exp(− 1
ϕ
(λ + y(ϕ − 1)))λ(λ+y(ϕ−1))y−1

ϕyy! , y > 0,
(2.1)

where Y = the random variables of nonconformities in a sample unit,
λ = the mean of nonconformities in a sample unit based on the ZIGP

distribution,
ϕ = the ratios of variance and means of Y,
ω = is a measure of the extra proportion of zero nonconformity in a

sample unit, and

E(Y) = (1 − ω)λ and V(Y) = (1 − ω)λ(ϕ2 + λω). (2.2)

The Geometric distribution
The probability function is given by: (Krishnamoorthy [10])

P (Y = k) = (1 − p)kp , k = 0, 1, 2, ..., (2.3)

where Y = the random variables of the number of failures until the first success
to occur,
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p = the probability of success on each trial, (p = pg)

E(Y) =
1−pg

pg

,V(Y) =
1−pg

p2
g

, skewness =
2−pg
√

1−pg

and when the pg is unknown,

however p̂g is estimated as p̂g = (1 + 1
n

∑n

i=1 ki)
−1 . (2.4)

The Shewhart control chart of nonconformities (c-Chart)
The shewhart control chart based on Poisson distribution (c-Chart) is used

to monitoring the number of nonconformities in processes. The control limits are
given by: (Montgomery [11])

UCL = c + 3
√

c

CL = c

LCL = c − 3
√

c, (2.5)

where c = is assumed to be the mean number of nonconformities if the mean of
the probability distribution is known, otherwise c is estimated as the mean of the
number of nonconformities in a sample of observed product units (c̄).

The cumulative count of conforming items chart (CCC-Chart)

The CCC-Chart is constructed by the cumulative distribution function of k,
where k follows the geometric distribution with parameter p . The control limits
are given by: (Goh [12])

UCL =
ln(α/2)

ln(1 − p)
− 1

LCL =
ln(1 − α/2)

ln(1 − p)
− 1, (2.6)

where p = the probability of success on each trial, and
α = the probability of false alarm, meaning the processes is an out of control

when in fact the process is still in control.

Development of the control charts of nonconformities based on ZIGP
distribution

1. The cG−Chart is a modified control limits of a one-sided of c-Chart for the
number of nonconformities based on ZIGP distribution that we called cG−Chart.
The control limits are given by:

UCL = cG + 3
√

cG

LCL = 0, (2.7)

where cG = is the population mean of the number of nonconformities based on
ZIGP distribution if cG unknown, cG is estimated as the sample mean of noncon-
formities in a sample of observed product units (c̄G).

2. The cZG − Chart is a modified control limits of cG − Chart obtained by
using the expected and variance of ZIGP distribution that we called cZG −Chart,
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the control limits are given by:

UCL = E(Y ) + 3
√

V (Y )

LCL = 0, (2.8)

where E(Y ) = (1− ω̂)c̄G, V (Y ) = (1− ω̂)c̄G(ϕ̂2 + c̄Gω̂) and (2.9)
c̄G = the sample mean of the number of nonconformities in a sample units,
ω̂= the mean of the number zeros of nonconformities in a sample units,
ϕ̂= the ratios of the variance and mean in a sample units.

For a given ZIGP distribution and Y are geometric distribution, we first ob-
tain an approximate geometric distribution with parameter p (pg) by using the
Kolmogorov-Smirnov test [13]. The charts for a ZIGP distribution are then de-
fined as follows.

3. The cGg − Chart is a modified control limits of the cG − Chart obtained
by using the p̂g of the geometric distribution that fit for ZIGP distribution for
calculated the expected and variance of geometric distribution for constructed the
control limits of a one-sided cG−Chart. Therefore the control limit of cGg−Chart
is given by:

UCL = E(Y ) + 3
√

V (Y )

LCL = 0, (2.10)

where E(Y ), V (Y ) and p̂g caculated from (2.4).

4. The cGk − Chart is a modified control limits of the cG − Chart obtained
by using the p̂g of the geometric distribution that fit for ZIGP distribution for
calculated the skewness (K ) and variance, after that replacing the sample mean
of nonconformities in control limits with K and variance of geometric distribution
for constructed the control limits of a one-sided cG −Chart. Therefore the control
limit of cGk − Chart is given by:

UCL = K + 3
√

V (Y )

LCL = 0, (2.11)

where K, V (Y ) and p̂g caculated from (2.4).

5. The CCCg − Chart is a developed control limits of the CCC-Chart ob-
tained by replacing p value with p̂g of the geometric distribution that fit for ZIGP.
Therefore the control limit of CCCg − Chart is given by:

UCL =
ln(α/2)

ln(1 − p̂g)
− 1

LCL =
ln(1 − α/2)

ln(1 − p̂g)
− 1, (2.12)

where p̂g caculated from (2.4).



242 Thai J. Math. 11 (2013)/ N. Katemee and T. Mayureesawan

3 Simulation Results

In this section we have shown the results of tests of the charts from a simulation
study. For the simulations, we assume the following ranges of parameter values.
The means for the in-control process are: (µ0) = 1.0(1.0)4.0. The means for
the out-of-control process are: (µ1 = µ0 + ρ) where the mean shifts are: (ρ)
= 0.00, 0.40, 0.80 and 1.20. The proportions of zero nonconformity are: (ω) =
0.30(0.10)0.90. Finally, the value for the over-dispersion (ϕ) = 1.2 and 1.4.

The evaluation of the performance of the control charts was conducted as
follows:

1. The R program was used to simulate the number of nonconforming items
for a ZIGP with values for the parameters (n, µ0, ϕ, ω) chosen from the set of
values given above.

2. The value of the parameter pg which gives a best fit between the ZIGP
from step 1 and geometric distribution.

3. The Kolmogorov-Smirnov test was used to test the hypothesis that a geo-
metric distribution with the pg value from step 2 could give a reasonable fit to the
distribution of data obtained in step 1. Based on simulations with 20,000 replica-
tions, the results of the test showed that the hypothesis was satisfied for at least
95% of the replications. For the pg fit values with a ZIGP, we used the number of
failures until the first success to occur of a geometric distribution for calculating
the p̂g from (2.4).

4. The values of the average p̂g in step 3 based on 100,000 replications were
then used for calculating the expected, skewness and variance of geometric distri-
bution for constructing the control limits of the cGg −Chart, cGk −Chart and for
calculating the control limits of the CCCg − Chart.

5. The number of nonconforming of ZIGP in step 1 based on 100,000 repli-
cations were then used for calculating the c̄G, expected and variance of ZIGP
distribution for constructing the control limits of the cG−Chart and cZG−Chart.

6. Based on a new set of 100,000 replications, the control limits calculated in
steps 4 and 5 were then used to compute the average run length (ARL) and the
average coverage probability (ACP) for each chart.

7. Steps 1 to 6 were then repeated for a new set of values for parameters
(n, µ0, ϕ, ω).

4 Results

In this section a summary is given of some of the results that were obtained
from the simulations.

Table 1 shows the values of p̂g for the geometric distribution that gives the
best fit between the geometric and the ZIGP distribution for the range of ω, ϕ
and µ values. It can be seen that as the values of µ = 1.0, the values of p̂g for all
of ω, ϕ are a constant value (0.53) and when the values of µ = 2.0 − 4.0, as the
values of ω are increased, the values of p̂g vary depending on the ϕ and µ values.
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The process in the in-control state (ρ = 0.00)

The results for the in-control case are shown in table 2. Table 2 shows a
comparison of the average run length (ARL0) and the average coverage probability
(ACP) values for the cG −Chart(cG), cZG −Chart(cZG), cGk −Chart(cGk), cGg −

Chart(cGg) and CCCg − Chart(CCCg). Also a comparison of ARL0 values for
the charts is given in Fig. 1. It can be seen that for all levels of µ0, ω and ϕ, the
CCCg − Chart returns the highest ARL0 values. Therefore, for ARL0 criteria
the CCCg − Chart is accepted as the preferred control chart.

Fig. 2 shows the absolute values of the differences between the ACP values
and the confidence level of 0.9973, which we call the ACP-DIFF value. It can
be seen that for levels of µ0 = 1.0, at all levels of ω and ϕ, the cGk − Chart,
cGg − Chart and CCCg − Chart have similar low ACP-DIFF values. That is,
these charts give ACP values close to the target level of 0.9973. However, when
µ0 = 2.0 − 4.0, only the CCCg − Chart gives ACP values close to the target.

When both ARL0 and ACP values are considered, the CCCg−Chart will be
the preferred control chart for all levels of µ0, ω and ϕ.

The process in an out-of-control state (ρ > 0.00)

Results for this case are shown in Figs. 3 and 4. Fig. 3 gives a comparison of
ARL1 values for a range of values of µ1 = µ0 + ρ, ϕ and ω. It can be seen that
when µ0 = 1.0, ρ = 0.4 and ϕ = 1.2 for ω = 0.3−0.6, the cG−Chart, cZG−Chart
and cGg − Chart return similar low values of ARL1 (as ρ = 0.8, 1.2 and ϕ = 1.4
return similar results). That is, these three charts are able to detect shifts faster
than the other charts. However, only the cG − Chart and cZG − Chart return
low values of ARL1 for ω = 0.7-0.9. When µ0 = 2.0, ρ = 0.4 and ϕ = 1.4, the
cG −Chart, cZG −Chart, cGk −Chart and cGg −Chart return similar low values
of ARL1 for all levels of ω with the same results as ρ = 0.8, 1.2 and ϕ = 1.2. When
µ0 = 3.0,ρ = 1.2 and ϕ = 1.2, the cG − Chart, cZG − Chart, cGk − Chart and
cGg − Chart return similar low values of ARL1 for all levels of ω (similar results
as ρ = 0.4, 0.8 and ϕ = 1.4). When µ0 = 4.0, ρ = 1.2 and ϕ = 1.4 for all levels of
ω, the cG − Chart, cGk −Chart and cGg −Chart give the lowest values of ARL1

(the same results as the other values of ρ and ϕ). However, for ω = 0.7− 0.9, the
cZG −Chart gives the ARL1 values close to these three charts. Fig. 3 also shows
that all control charts can detect a shift more decrease for values of ω increase
from 0.8-0.9.

Fig. 4 gives a comparison of the ACP-DIFF values only for the preferred
charts that considered the ARL1 values. It show that for µ0 = 1.0, ρ = 0.4 and
ϕ = 1.2, the cGk−Chart and cGg−Chart returns the lowest ACP-DIFF values for
all values of ω with the same results as ρ = 0.8, 1.2 and ϕ = 1.4. When µ0 = 2.0,
ρ = 0.4 and ϕ = 1.4, the cGk − Chart returns the lowest ACP-DIFF values for
all levels of ω (similar results as ρ = 0.8, 1.2 and ϕ = 1.2). For µ0 = 3.0, ρ = 1.2
and ϕ = 1.2 when ω = 0.3− 0.5, the cZG −Chart gives the minimum ACP-DIFF
values (the same results as other values of ρ and ϕ). However, for ω = 0.6 − 0.9,
the cGk − Chart returns the lowest ACP-DIFF value. When µ0 = 4.0, ρ = 1.2
and ϕ = 1.4 for ω = 0.3 − 0.6, the cZG − Chart returns the lowest ACP-DIFF
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values (as ρ = 0.4, 0.8 and ϕ = 1.2 return similar results). For ω = 0.7, 0.8, the
cGk −Chart and cZG −Chart return the lowest ACP-DIFF values. However, for
ω = 0.9, only the cGk − Chart gives the minimum values of ACP-DIFF.

When both ARL1 and ACP values are considered, in the case of µ0 = 1.0,
for all levels of ρ and ϕ when ω = 0.3 − 0.6, the cGg − Chart will be the pre-
ferred control chart. However, no control charts are preferred for ω = 0.7 − 0.9.
When µ0 = 2.0, for all levels of ρ, ϕ and ω, the cGk −Chart will be the preferred
control chart. When µ0 = 3.0, for all levels of ρ and ϕ when ω = 0.3 − 0.5, the
cZG − Chart will be the preferred control chart. However, for ω = 0.6 − 0.9, the
cGk −Chart will be the superior control chart. At µ0 = 4.0, for all levels of ρ and
ϕ when ω = 0.3− 0.6, there is no suitable control chart, but for ω = 0.7− 0.8, the
cGk −Chart and cZG −Chart are the optimal charts. However, for ω = 0.9, only
the cGk − Chart is the superior chart.

Table 1: The p̂g values for the geometric that give the best fit to the distribution
of the ZIGP model for a range of ω, ϕ and µ.

ω ϕ µ
1.0 2.0 3.0 4.0

0.30 1.2 0.53 0.48 0.38 0.36
1.4 0.53 0.40 0.34 0.30

0.40 1.2 0.53 0.50 0.40 0.38
1.4 0.53 0.44 0.38 0.32

0.50 1.2 0.53 0.53 0.44 0.40
1.4 0.53 0.46 0.40 0.34

0.60 1.2 0.53 0.53 0.46 0.44
1.4 0.53 0.49 0.44 0.36

0.70 1.2 0.53 0.53 0.50 0.48
1.4 0.53 0.53 0.46 0.38

0.80 1.2 0.53 0.53 0.52 0.51
1.4 0.53 0.53 0.51 0.52

0.90 1.2 0.53 0.53 0.52 0.51
1.4 0.53 0.53 0.51 0.52
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Table 2: Comparison of ARL0 and ACP values of the cG − Chart, cZG − Chart,
cGk − Chart, cGg − Chart and CCCg − Chart for a range of µ0, ω and ϕ values.

µ0 ω ϕ ARL0 ACP

cG cZG cGk cGg CCCg cG cZG cGk cGg CCCg

0.30 1.2 15.8 78.3 79.1 34.6 633.2 0.9405 0.9902 0.9874 0.9727 0.9989

1.4 12.5 74.0 72.4 40.3 558.9 0.9257 0.9878 0.9864 0.9764 0.9987

0.40 1.2 18.9 40.9 91.4 18.8 424.8 0.9501 0.9807 0.9895 0.9513 0.9982

1.4 14.8 47.4 48.5 48.1 431.5 0.9364 0.9781 0.9791 0.9802 0.9979

0.5 1.2 10.7 49.1 49.3 22.8 248.0 0.9194 0.9691 0.9792 0.9576 0.9958

1.4 9.9 32.2 57.3 31.9 316.1 0.9108 0.9661 0.9841 0.9685 0.9972

2.0 0.60 1.2 13.7 28.5 62.2 28.3 301.4 0.9352 0.9523 0.9836 0.9671 0.9966

1.4 12.5 22.4 72.1 40.1 229.5 0.9272 0.9509 0.9869 0.9778 0.9951

0.70 1.2 9.4 18.8 82.4 38.5 381.9 0.9058 0.9391 0.9875 0.9741 0.9976

1.4 9.7 31.0 54.2 30.3 172.4 0.9073 0.9414 0.9827 0.9693 0.9954

0.80 1.2 14.6 14.5 123.4 58.6 500.4 0.9353 0.9386 0.9921 0.9832 0.9985

1.4 18.8 26.4 81.7 46.0 255.0 0.9338 0.9427 0.9881 0.9782 0.9963

0.90 1.2 17.5 30.1 246.7 118.0 693.9 0.9452 0.9538 0.9959 0.9915 0.9992

1.4 18.9 31.2 163.4 93.5 444.1 0.9497 0.9568 0.9935 0.9890 0.9979

µ0 ω ϕ ARL0 ACP

cG cZG cGk cGg CCCg cG cZG cGk cGg CCCg

0.30 1.2 15.8 391.2 29.5 15.9 604.7 0.9421 0.9975 0.9666 0.9396 0.9990

1.4 12.0 344.9 30.7 49.3 758.8 0.9199 0.9974 0.9690 0.9805 0.9996

0.40 1.2 10.5 246.4 18.7 18.8 434.3 0.9149 0.9968 0.9485 0.9502 0.9982

1.4 9.0 253.9 36.2 35.7 676.8 0.8998 0.9965 0.9724 0.9717 0.9990

0.50 1.2 7.4 151.3 22.6 12.8 293.5 0.8955 0.9937 0.9573 0.9266 0.9962

1.4 7.0 113.5 27.4 27.1 438.3 0.8903 0.9929 0.9647 0.9648 0.9980

4.0 0.60 1.2 9.5 98.4 16.1 16.3 189.4 0.8931 0.9847 0.9413 0.9426 0.9942

1.4 9.0 88.4 34.1 21.4 358.7 0.8905 0.9929 0.9711 0.9552 0.9980

0.70 1.2 8.0 38.3 22.1 12.9 132.5 0.8887 0.9672 0.9571 0.9281 0.9929

1.4 8.3 45.9 29.0 29.4 303.0 0.8901 0.9814 0.9672 0.9662 0.9970

0.80 1.2 8.3 19.9 20.0 12.5 105.7 0.8913 0.9499 0.9524 0.9272 0.9905

1.4 8.9 29.0 18.7 12.8 100.6 0.8972 0.9691 0.9504 0.9278 0.9873

0.90 1.2 13.2 26.2 40.9 26.5 210.4 0.9293 0.9530 0.9769 0.9631 0.9953

1.4 14.1 26.5 39.1 26.6 140.2 0.9316 0.9515 0.9758 0.9633 0.9927
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Figure 1: Comparison of ARL0 values of the Charts for a range of µ0, ϕ
and ω values in the case of in-control state.

Figure 2: Comparison of ACP-DIFF values of the Charts for a range of µ0,
ϕ and ω values in the case of in-control state.
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Figure 3: Comparison of ARL1 values of the Charts for a range of µ1 =
µ0 + ρ, ϕ and ω values in the case of out-of-control state.

Figure 4: Comparison of ACP-DIFF values of the Charts for a range of
µ1 = µ0 + ρ, ϕ and ω values in the case of out-of-control state.
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Table 3: Summary of preferred control charts.

5 Conclusion

The purpose of this paper is to develop the c-Chart based on a ZIGP processes.
We called the control limits of c-Chart based on a ZIGP distribution the cG −

Chart. In developing these charts, we first develop the control limits of cG−Chart
by using the expected and variance of ZIGP distribution for constructing the
control limits namely cZG−Chart. We then develop the number of nonconformities
based on a geometric distribution with parameter pg, where pg estimated gives
the best fit between the geometric and ZIGP distributions used in calculating the
expected, skewness and variance of geometric distribution for modifying the cG −

Chart and moreover the CCC −Chart is used in monitoring the ZIGP processes
as well. The three different methods for the charts are called the cGk − Chart,
cGg − Chart and CCCg − Chart. In the cGg − Chart, the control limits of the
chart are constructed by expected and variance of geometric distribution to be
used in the control limits of the cG−Chart. In the cGk −Chart, the skewness and
variance of geometric distribution are calculated for constructing the control limits
of the cG −Chart. In the CCCg −Chart, we replace the p with pg estimated for
use in the control limits of CCC − Chart.

Furthermore, simulations have been carried out to compare the performances
of the three control charts with the performances of cG −Chart and cZG −Chart.
We compared these charts by using the average run length (ARL) and average
coverage probability (ACP). The results of the comparisons are summarized in
table 3 which gives a list of preferred control charts for both in-control and out-of
control states for a range of values of ZIGP parameters.
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