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Abstract : It is well known that the option price of stock can be obtained from
the Black-scholes equation. Such option price is the solution of the Black-scholes
equation. In this paper we studied the spectrum which contains such option price
and also found the interesting properties of the kernel of such option price which
is related to the spectrum. However, the results of this paper may not be useful
in the real world application, but at least it may create the new knowledges in
Financial Mathematics.
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1 Introduction

In financial mathematics, the well known equation named the Black-scholes
equation plays an important role in solving the option price of stock.

Such Black-scholes equation is given by

∂u(s, t)

∂t
+

σ2s2

2

∂2u(s, t)

∂s2
+ rs

∂u(s, t)

∂s
− ru(s, t) = 0 (1.1)

with the terminal condition

u(s, t) = (sT − p)+ (1.2)
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for 0 ≤ t ≤ T where u(s, t) is the option price at time t, r is the interest rate, s is
the price of stock at time t, sT is the price of stock at the expiration time T , σ is
the volatility of stock and p is the strike price.

They obtain the solution u(s, t) of (1.1) that satisfies (1.2) of the from

u(s, t) = sΦ
( ln( s

p
) + (r + 1

2σ2)(T − t)

σ
√

T − t

)
− pe−r(T−t)Φ

( ln( s
p
) + (r − 1

2σ2)(T − t)

σ
√

T − t

)

(1.3)
where

Φ(x) =
1√
2π

∫ x

−∞

e
−y2

2 dy

see [1, p.91] the equation (1.3) is called Black-scholes formula.
In this paper, we solve the solution of (1.1) satisfies (1.2) in the other form

which is different from (1.3). We let R = ln s and τ = T −t write u(s, t) = V (R, τ),
by changing s to R, then (1.1) is transformed to

∂V (R, τ)

∂τ
− 1

2
σ2 ∂2V (R, τ)

∂τ2
− (r − σ2

2
)
∂V (R, τ)

∂τ
+ rV (R, τ) = 0. (1.4)

Now, for τ = 0 we have t = T . Thus (1.2) corresponds to the initial condition
V (R, 0) = (s − p)+ = (eR − p)+. Let

V (R, 0) = (eR − p)+ = f(R) (1.5)

where f is the function of R

By taking the Fourier transform with respect to R to (1.4) and (1.5), we obtain
the solution V (R, τ) of (1.4) in the convolution form

V (R, τ) = K(R, τ) ∗ f(R) (1.6)

where K(R, τ) is the Kernel or elementary solution of (1.4) of the form

K(R, τ) =
1√

2πτσ2
e−rτ exp

[−[(r − σ
2 )2τ − R]2

2σ2τ

]
. (1.7)

Now, from (1.6) we have

V (R, τ) =
1

2π

∫ ∞

−∞

eiRωV̂ (ω, τ)dω (1.8)

which is the inverse Fourier transform. We define the closed interval [a, b] as the

spectrum of V (R, τ) that is [a, b] = suppV̂ (ω, τ) which is the support of V̂ (ω, τ),
a and b are constant. By the concept of spectrum, we define

V̂ (ω, τ) =

{
f̂(ω) exp

(
−

[
σ2

2 ω2 + (r − σ2

2 )(iω) + r
]
τ
)

for ω ∈ [a, b]

0 for ω 6∈ [a, b]
(1.9)
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and the size of [a, b] = b − a.

Now, from (1.8)

V (R, τ) =
1

2π

∫ ∞

−∞

eiRω f̂(ω) exp
(
−

[σ2

2
ω2 + (r − σ2

2
)(iω) + r

]
τ
)
dω

=
1

2π

∫ a

b

eiRω f̂(ω) exp
(
−

[σ2

2
ω2 + (r − σ2

2
)(iω) + r

]
τ
)
dω.

by (1.9) thus

|V (R, τ)| ≤ 1

2π

∫ b

a

|eiRω ||f̂(ω)||e−(r−σ2

2 )(iω)τ ||e−( σ2

2 ω2+r)τ |dω.

Let M = max |f̂(ω)| and N = |e−( σ2

2 ω2+r)τ | for any fixed τ . Thus

|V (R, τ)| ≤ 1

2π
NM

∫ b

a

dω =
1

2π
NM(b − a).

It follows that

|V (R, τ)| ≤ NM

2π
(b − a) for fixed τ. (1.10)

That means the solution V (R, τ) of (1.4) is bounded by some constants times the
size of the spectrum.

Now, from (1.6) we have

|V (R, τ)| = |K(R, τ) ∗ f(R)| ≤ NM

2π
(b − a).

Since |K(R, τ)∗f(R)| ≤ ||K(R, τ)|| ||f(R)|| where ||.|| is L2-norm and K(R, τ), f(R)
are continuous. Thus choose ||K(R, τ)|| ||f(R)|| = sup |K(R, τ) ∗ f(R)|
thus ||K(R, τ)|| ||f(R)|| ≤ NM

2π
(b − a) or

||K(R, τ)|| ≤ NM

2π||f(R)|| (b − a). (1.11)

This gives the Kernel K(R, τ) is bounded by some constants times the size of the
spectrum.

2 Preliminaries

Before reaching the main results, the following definitions and the basic con-
cepts are needed.

Definition 2.1. Let f(x) ∈ L(R), the space of integrable function on the set of
real number R. The Fourier transform of f(x) is defined by

f̂(ω) = Ff(x) =

∫ ∞

−∞

e−iωxf(x)dx (2.1)
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where ω, x ∈ R. Also the inverse Fourier transform is defined by

f(x) = F−1f̂(ω) =
1

2π

∫ ∞

−∞

eiωxf̂(ω)dω (2.2)

Lemma 2.2. Given the Black-scholes equation

∂u(s, t)

∂t
+

σ2s2

2

∂2u(s, t)

∂s2
+ rs

∂u(s, t)

∂s
− ru(s, t) = 0 (2.3)

with terminal condition

u(s, T ) = (sT − p)+ (2.4)

for 0 ≤ t ≤ T . By changing the variable s to R with R = ln s and τ = T − t then
(2.3) is transformed to

∂V (R, τ)

∂τ
− 1

2
σ2 ∂2V (R, τ)

∂τ2
− (r − σ2

2
)
∂V (R, τ)

∂τ
+ rV (R, τ) = 0 (2.5)

with the initial condition V (R, 0) = (s − p)+ = (eR − p)+. Let

V (R, 0) = (eR − p)+ = f(R) (2.6)

where f is the function of R.

Proof. We have R = ln s and write u(s, t) = V (R, τ) where τ = T − t.

Now,
∂u(s, t)

∂t
=

∂V (R, τ)

∂t
=

∂V

∂τ

∂τ

∂t
= −∂V

∂τ

∂u(s, t)

∂s
=

∂V (R, τ)

∂s
=

∂V (R, τ)

∂R

∂R

∂s
=

1

s

∂V (R, t)

∂R

and
∂2u(s, t)

∂s2
=

1

s2

∂2V (R, τ)

∂R2
− 1

s2

∂V (R, τ)

∂R
.

Substitute into (2.3) we obtain (2.5) and (2.6) as required.

Lemma 2.3. The equation (2.5) with the initial condition (2.6) has a solution in
convolution form

V (R, τ) = K(R, τ) ∗ f(R) (2.7)

where

K(R, τ) =
1√

2πτσ2
e−rτ exp

[−[(r − σ2

2 )τ + R]2

2σ2τ

]
(2.8)

is the Kernel of (2.5).
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Proof. Take the Fourier transform given by (2.1) to both sides of (2.5), we obtain

∂V̂ (ω, τ)

∂τ
+

1

2
σ2ω2V̂ (ω, τ) + iω(r − 1

2
σ2)V̂ (ω, τ) + rV̂ (ω, τ) = 0. (2.9)

Now, for any fixed ω, (2.8) is the ordinary differential equation of variable τ and
we obtain

V̂ (ω, τ) = C(ω) exp
[
− (

1

2
σ2ω2 + iω(r − 1

2
σ2) + r)τ

]
(2.10)

as the solution of (2.8). We need to find C(ω). We have from (2.6), V (R, 0) =

(eR − p)+ = f(R) thus V̂ (ω, 0) = f̂(ω). It follows that C(ω) = f̂(ω) from (2.9).

Now, by (2.2), V (R, τ) =
1

2π

∫ ∞

−∞
eirωV̂ (ω, τ)dω. Thus, by (2.9)

V (R, τ) =
1

2π

∫ ∞

−∞

eiωRf̂(ω) exp
[
− (

1

2
σ2ω2 + iω(r − 1

2
σ2) + r)τ

]
dω

=
1

2π

∫ ∞

−∞

∫ ∞

−∞

eiωRe−iωy exp
[
− (

1

2
σ2ω2 + iω(r − 1

2
σ2) + r)τ

]
f(y)dydω

=
1

2π

∫ ∞

−∞

∫ ∞

−∞

exp
[
− (

1

2
σ2ω2τ + i(τ(r − 1

2
σ2) − R + y)ω + rτ)

]
f(y)dydω

=
1

2π
e−rτ

∫ ∞

−∞

∫ ∞

−∞

exp
[
− 1

2
σ2τ

(
ω2 − 2i((r − 1

2σ2)τ − R + y)ω

σ2τ

)]
f(y)dydω

=
1

2π
e−rτ

∫ ∞

−∞

∫ ∞

−∞

exp
[
− 1

2
σ2τ

(
ω − i((r − 1

2σ2)τ − R + y)

σ2τ

)2

− ((r − 1
2σ2)τ − R + y)2

2σ2τ

]
f(y)dydω

=
1

2π
e−rτ

∫ ∞

−∞

exp
[
− ((r − 1

2σ2)τ − R + y)2

2σ2τ

]
f(y)dy×

∫ ∞

−∞

exp
[
− 1

2
σ2τ(ω − i(r − 1

2
σ2)τ − R + y)2

]
dω

=
1

2π
e−rτ

∫ ∞

−∞

exp
[
− ((r − 1

2σ2)τ − R + y)2

2σ2τ

]
f(y)dy×

∫ ∞

−∞

exp
[
− 1

2
σ2τ

(
ω − i(r − 1

2σ2)τ − R + y

σ2τ

)2
]
dω.

Put u = σ
√

τ
2 (ω − i(r − 1

2σ2)τ − R + y

σ2τ
)2

thus du = σ
√

τ
2 dω, dω =

√
2
τ

1
σ
du
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thus

V (R, τ) =
1

2π
e−rτ

∫ ∞

−∞

exp
[
− ((r − 1

2σ2)τ − R + y)2

2σ2τ

] 1

σ

√
2

τ

∫ ∞

−∞

e−u2

du

=
1

2πσ

√
2

τ

√
π

∫ ∞

−∞

exp
[
− ((r − 1

2σ2)τ − R + y)2

2σ2τ

]
f(y)dy

=
1√

2πτσ2
e−rτ

∫ ∞

−∞

exp
[
− ((r − 1

2σ2)τ + R − y)2

2σ2τ

]
f(y)dy

= K(R, τ) ∗ f(R)

where K(R, τ) =
e−rτ

√
2πτσ2

e−
((r− 1

2
σ2)τ+R)2

2σ2τ is the Kernel of (2.5)

Actually, it is the Gaussian distribution with mean e−rττ(1
2σ2−r) and variance

e−2rτσ2τ . If τ = 0 then t = T and it can be shown that limτ→0 K(R, τ) = δ(R)
where δ(R) is the Diract-delta distribution, see [ , ]. Thus, from (2.7)

V (R, 0) = δ(R) ∗ f(R) = f(R).

It follows that (2.6) holds.

Definition 2.4. Let Ω be closed and bounded set and is called the spectrum of
function f(x) if Ω = suppf̂(ω) where suppf̂(ω) is the support of fourier transform
of f .

Let Ω = [a, b], we define the spectrum of the solution V (R, τ) as

[a, b] = suppV̂ (ω, τ) (2.11)

where

V̂ (ω, τ) =

{
f̂(ω) exp

(
−

[
σ2

2 ω2 + (r − σ2

2 )(iω) + r
]
τ
)

for ω ∈ [a, b]

0 for ω 6∈ [a, b]
(2.12)

we also define the size of the spectrum [a, b] = b − a.

3 Main Results

Theorem 3.1. Given the equation

∂V (R, τ)

∂τ
− 1

2
σ2 ∂2V (R, τ)

∂τ2
− (r − σ2

2
)
∂V (R, τ)

∂τ
+ rV (R, τ) = 0. (3.1)

with the initial condition

V (R, 0) = (eR − p)+ = f(R). (3.2)

Then we obtain V (R, τ) = K(R, τ)∗f(R) as the solution of (3.1) and |V (R, τ)| ≤
MN

2π
(b − a) where M = max f̂(ω), N = |e−( σ2

2 ω+r)τ | and b − a is the size of

spectrum given by (2.11).
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Proof. By taking Fourier transform to (3.1) and (3.2) we obtain
V (R, τ) = K(R, τ) ∗ f(R) by Lemma 2.3, now

V (R, τ) =
1

2π

∫ ∞

−∞

eiωRV̂ (ω, τ)dω

=
1

2π

∫ b

a

eiωRf̂(ω) exp
[
− (

1

2
σ2ω2 + iω(r − σ2

2
) + r)τ

]
dω

by (2.12) thus

|V (R, τ)| ≤ 1

2π

∫ b

a

|eiωR|| exp
[
− (

1

2
σ2ω2 + iω(r − σ2

2
) + r)τ

]
||f̂(ω)|dω

=
1

2π

∫ b

a

|f̂(ω)|| exp
[
− (

1

2
σ2ω2 + r)τ

]
|dω

let M = max |f̂(ω)| and N = | exp
[
−(1

2σ2ω2+r)τ
]
|. Thus |V (R, τ)| ≤ MN

2π

∫ b

a
dω =

MN
2π

(b−a). It follows that |V (R, τ)| ≤ MN
2π

(b−a) as required. That mean V (R, τ)
is bounded by some constant times the size of spectrum.

Theorem 3.2. (The properties of Kernel K(R, τ))
The Kernel given by (2.8) of Lemma 2.3 has the following properties

(i) K(R, τ) satisfies equation (2.12)

(ii) erτ
∫ ∞

−∞
K(R, τ)dR = 1

(iii) limτ→0 K(R, τ) = δ(R) where δ(R) is the Dirac-delta distribution.

(iv) K(R, τ) is Gaussian distribution with mean e−rττ(1
2σ2 − r) and variance

e−2rτσ2τ

(v) ‖ K(R, τ) ‖≤ MN
2π‖f‖ (b − a) where ‖ . ‖ is L2-norm.

Proof. (i) By computing directly, K(R, τ) satisfies (2.12).

(ii)

erτ

∫ ∞

−∞

K(R, τ)dR =
1√

2πτσ2

∫ ∞

−∞

e
−((r− 1

2
σ2)τ+R)2

2σ2τ dR

let u =
(r − 1

2σ2)τ + R√
2τσ

then dR =
√

2τσdu thus

erτ

∫ ∞

−∞

K(R, τ)dR =
1√

2πτσ2

√
2τσ

∫ ∞

−∞

e−u2

du

=
1√

2πτσ2

√
2πτσ2

= 1
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(since
∫ ∞

−∞
e−u2

du =
√

π).

(iii)

lim
τ→0

K(R, τ) = lim
τ→0

(e
−((r− 1

2
σ2)τ+R)2

2σ2τ

√
2πτσ2

)

= δ(R)

see [1, pp. 36-37].

(iv)

mean = E(K(R, τ)) = e−rτE
[ 1√

2πτσ2
e

−((r− 1
2

σ2)τ+R)2

2σ2τ

]

= e−rττ(
σ2

2
− r)

variance = V
[
e−rτ 1√

2πτσ2
e

−((r− 1
2

σ2)τ+R)2

2σ2τ

]

= e−2rτσ2τ.

(v) We have

V (R, τ) = K(R, τ) ∗ f(R)

|V (R, τ)| = |K(R, τ) ∗ f(R)| ≤ MN

2π
(b − a)

by Theorem 3.1.
Now |K(R, τ) ∗ f(R)| ≤‖ K(R, τ) ‖‖ f(R) ‖ where ‖ . ‖ is L2-norm since K(R, τ)
and f(R) are continuous, we can define

‖ K(R, τ) ‖‖ f(R) ‖= sup |K(R, τ) ∗ f(R)|

thus ‖ K(R, τ) ‖‖ f(R) ‖≤ MN
2π

(b − a). That means the norm of K(R, τ) is
bounded by some constants times the size of spectrum.

4 Conclusion

The Black-scholes formula given by (1.3) which is the solution of (1.1) is used
widely in the real world applications. But, when (1.1) is transformed to (1.4)
and obtain (1.6) as a solution. Such solution needs more mathematical concepts
than (1.3), particularly in the part of main result shows the theorem concerning
the boundedness and the norms of the option price and the Kernel. Those are



On the Spectrum of the Option Price of Stock Markets ... 235

bounded by the size of the spectrum. Such main results may not be useful directly
in the real world applications but at least it opens the door to the mathematical
analysis in the area of Financial Mathematics and obtain the new knowledge in
such area.
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