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Abstract : Tolerance spaces and algebraic structures with compatible tolerances
play an important role in contemporary algebra and their applications. In this
contribution we are presenting transformation hyperstructures, namely semihy-
pergroups and hypergroups acting on tolerance spaces. Some basic concepts con-
cerning the mentioned structures are introduced and their fundamental properties
are examinated on suitable constructions.
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1 Introduction

One of the motivating factors in developing the theory of hyperstructures
was the generalization of concepts of classical mathematical structures, namely
groups. According to the opinion of specialists in this field the development of the
join spaces, which form a special class of hypergroup, is a very important moment
in the investigation of concrete mathematical (especially geometrical) structures.

So in this contribution we generalize in a certain sense the classical concept of
action of a group on a given phase space.

Transformation groups which represent the classical and developing discipline
are situated in the intersection of several parts of mathematical structures.

This idea is adopted from the functorial assignment of a commutative hy-
pergroup to an arbitrary transformation (discrete) group. We will describe this
construction in more details.

Let G = (X, T, π) be a transformation group, (i.e. X–phase set, T–phase
group, π–action (projection): X × T → X). For any pair x, y ∈ X we define

x ∗G y = π(x, T ) ∪ π(y, T ) =
{
π(x, t); t ∈ T

} ∪ {
π(y, t); t ∈ T

}
.

It is easy to show that (X, ∗G) is an extensive commutative hypergroup (definition
follows).

Recall first the basic terms and definitions. A hypergroupoid is a pair (H, ·)
where H is a (nonempty) set and · : H ×H → P∗(H) (= P(H)\{∅}) is a binary
hyperoperation on the set H. If a·(b·c) = (a·b)·c for all a, b, c ∈ H, (associativity),
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then (H, ·) is called a semihypergroup. A semihypergroup (H, ·) is said to be
a hypergroup if the following axiom a · H = H = H · a for all a ∈ H, (the
reproduction axiom), is satisfied. Here, for A,B ⊆ H, A 6= ∅ 6= B we define as
usual A ·B =

⋃{a · b; a ∈ A, b ∈ B}, (see e.g. [3]).
Let (H, ∗) and (H ′, ?) be hypergroupoids. Then a mapping f : H → H ′ is

called inclusion homomorphism if it satisfies the condition:

f(x ∗ y) ⊆ f(x) ? f(y) for all pairs x, y ∈ H.

Let X be a set and τ be a tolerance relation (i.e., reflexive and symmetric
binary relation), see [6]. Then the pair (X, τ) is a tolerance space.

An ordered semigroup is a triple (S, ·,≤), where (S, ·) is a semigroup and “≤”
is an ordering on the set S with substitution property on (S, ·) (i.e., for an arbitrary
quadruple of elements a, b, c, d ∈ S for which a ≤ b, c ≤ d the relation a · c ≤ b · d
holds). An ordered monoid (i.e., a semigroup with unit element) such that any
element has its inverse is called an ordered group.

It is to be noticed that the substitution property is equivalent to a simpler
condition: for an arbitrary triple of elements a, b, c ∈ S such that a ≤ b the
relations a · c ≤ b · c and c · a ≤ c · b hold.

2 Main Results

Below we will need the following result in which we denote for m from an
ordered set H: [m)≤ =

{
x ∈ H; m ≤ x

}
(principal upper end determined by m).

Lemma 2.1 Let (H, ·,≤) be an ordered semigroup and define a binary hyperop-
eration “∗” on H in this way:

a ∗ b = [a · b)≤ for any a, b ∈ H.

Then (H, ∗) is a semihypergroup. It is commutative if and only if (H, ·) is com-
mutative. If, moreover, (H, ·) is a group, then (H, ∗) is a hypergroup.

For the proof see [8, p. 146–147].

Definition 2.2 Let (X, τ) be a tolerance space (so called phase tolerance space),
(G, •) be a semihypergroup (so called phase semihypergroup) and π : X ×G → X
a mapping such that

(i) π(π(x, t), s) ∈ π(x, t • s), where π(x, t • s) =
{
π(x, u); u ∈ t • s)

}
for each

x ∈ X, s, t ∈ G;
(ii) if x, y ∈ X are such that x τ y, then π(x, g) τ π(y, g) holds for any g ∈ G.

Then (X, G, π) is a transformation semihypergroup with phase tolerance space.
If, moreover, the pair (G, •) is a hypergroup (phase hypergroup), then the

triple (X, G, π) is a transformation hypergroup with phase tolerance space.
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Definition 2.3 Let (Xi, τi) be a tolerance space, (Gi, •i) be a hypergroup and a
triple Ti = (Xi, Gi, πi), where i = 1, 2 be a transformation hypergroup with phase
tolerance space.

A pair of mappings (hX , hG) will be called homomorphism of the transforma-
tion hypergroup T1 into the transformation hypergroup T2 if:

(i) the mapping hX : X1 → X2 is the homomorphism of tolerance spaces (i.e., for
any x, y ∈ X1 such that x τ1 y we have hX(x) τ2 hX(y));

(ii) the mapping hG : G1 → G2 is the inclusion homomorphism (i.e., hG(u •1 v)
⊆ hG(u) •2 hG(v));

(iii) hX(π1(x, u)) = π2(hX(x), hG(u)) for any x ∈ X1, u ∈ G1.

The class of all transformation hypergroups with all above defined homomor-
phism forms a category of transformation hypergroups with tolerance spaces.

If all phase hypergroups are identical, we speak about a category over the
given phase hypergroup.

Example 2.4 Let J ⊂ R be an open interval and denote C∞(J) the ring of all
infinitely differentiable functions on J . Let us consider the set LAn(J), n ∈ N, of
all linear differential operators of the nth order in the form

D(p0, . . . , pn−1) =
dn

dxn
+

n−1∑

k=0

pk(x)
dk

dxk
,

where pk ∈ C∞(J), k = 0, 1, . . . , n− 1; D(p0, . . . , pn−1) : C∞(J) → C∞(J), thus

D(p0, . . . , pn−1)(f) = f (n)(x) + pn−1(x)f (n−1)(x) + · · ·+ p0(x)f(x), f ∈ C∞(J).

Let δij stands for the Kronecker symbol δ. For any m ∈ {0, 1, . . . , n−1} we denote
by

LAn(J)m =
{

D(p0, . . . , pn−1); pk ∈ C∞(J), pm > 0
}
.

Shortly we put p =
(
p0(x), . . . , pn−1(x)

)
, x ∈ J .

On the set LAn(J)m we define a binary operation “◦m” and a binary relation
“≤m” in this way:

For an arbitrary pair of operators D(p), D(q) ∈ LAn(J)m we put

D(p) ◦m D(q) = D(u), (2.1)

where uk(x) = pm(x)qk(x) + (1− δkm)pk(x), x ∈ J, 0 ≤ k ≤ n− 1 and

D(p) ≤m D(q) (2.2)

whenever pk(x) ≤ qk(x), k 6= m, k ∈ {0, 1, . . . , n− 1}, pm(x) = qm(x), x ∈ J.
It is easy to verify that (LAn(J)m, ◦m,≤m) is an ordered non-commutative

group with the neutral element D(ω), where ωk(x) = δkm. An inverse to any D(q)
is

D−1(q) =
(
− q0

qm
, . . . ,

1
qm

, . . . ,−qn−1

qm

)
.
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Let (Z, +,≤) be an additive group of all integers with an usual ordering “≤”.
Then by Lemma 2.1 the structure G = (Z, ?), where ? : Z× Z→ P∗(Z)

k ? l = [k + l)≤ =
{
u ∈ Z; k + l ≤ u

}
,

is a hypergroup.
For a fixed D(q) ∈ LAn(J)m we define an action

πq : LAn(J)m × Z→ LAn(J)m

as follows:
πq(D(p), k) = Dk(q) ◦m D(p),

where

D0(q) = D(ω),

Dk(q) = D(q) ◦m D(q) ◦m · · · ◦m D(q)︸ ︷︷ ︸
k-times

for k > 0,

Dk(q) =
(
D−1(q)

)|k| for k < 0.

Evidently Dk(q) ◦m Dl(q) = Dk+l(q), k, l ∈ Z. Thus

πq

(
πq(D(p), k), l

)
= πq(D

k(q) ◦m D(p), l)

= Dl(q) ◦m Dk(q) ◦m D(p)

= Dk+l(q) ◦m D(p) = πq(D(p), k + l).

On the other hand

πq(D(p), k ? l) = πq(D(p), [k + l)≤) so πq(D(p), k + l) ∈ πq(D(p), k ? l).

Therefore (LAn(J)m, G, πq) is a transformation hypergroup with discrete phase
tolerance (i.e., D(p) τ D(q) if and only if D(p) = D(q)).

Remark 2.5 Analogously it is possible to proceed in the case of any dynamical
system (X,G, π), where G = (Z,+) or (R, +).

Example 2.6 Similarly as in Example 2.4 let J ⊂ R be an open interval. Without
loss of generality we will suppose e.g. J = (0,∞). Let Cn(J) be the ring of all
functions having continuous derivatives up to the order n, n ∈ N0. Let the set
LAn(J)m has an analogous meaning as in the mentioned Example 2.4, i.e., if
D(p) ∈ LAn(J)m, then

D(p) =
dn

dxn
+

n−1∑

k=0

pk(x)
dk

dxk
,
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where pk ∈ C0(J). Let us denote M(J) ⊂ C0(J) the subset of all functions
bounded at infinity, i.e., p ∈ M(J) if and only if lim sup

x→∞
|p(x)| < ∞.

We will consider a set of linear differential operators BLAn(J)m ⊂ LAn(J)m,
where pk ∈ M(J), k ∈ 0, 1, . . . , n− 1, lim inf

x→∞
pm(x) > 0. With respect to the form

of an inverse element

D−1(q) =
(
− q0

qm
, . . . ,

1
qm

, . . . ,−qn−1

qm

)
,

it is easy to see that (BLAn(J)m, ◦m,≤m) is a subgroup of the ordered group
(LAn(J)m, ◦m,≤m), where the operation “◦m” and the ordering “≤m” are given
by (2.1) and (2.2), respectively.

Let us define a binary hyperoperation

• : BLAn(J)m × BLAn(J)m → P∗(BLAn(J)m)

in this way: For an arbitrary pair D(p) ∈ BLAn(J)m, D(q) ∈ BLAn(J)m, we set

D(p) •D(q) = [D(q) ◦m D(p))≤.

Then by Lemma 2.1 the pair (BLAn(J)m, •) is a non-commutative hypergroup.
Let P (J) = BLAn(J)m × Cn(J) be a phase space. We will define an action

π : P (J)× BLAn(J)m → P (J) by

π
(
(D(u), f),D(p)

)
=

(
D(u) ◦m D(p), f

)
.

We will show that the condition 1 from Definition 2.2 is satisfied :
Suppose f ∈ Cn(J) be an arbitrary function and D(p), D(q) ∈ BLAn(J)m be

an arbitrary linear operators. Then we have

π
(
π
(
(D(u), f), D(p)

)
,D(q)

)
= π

((
D(u) ◦m D(p), f

)
,D(q)

)

=
(
D(u) ◦m D(p) ◦m D(q), f

)∈ P (J).

On the other hand

D(p) •D(q) =
[
D(q) ◦m D(p)

)
≤ = {D(r); D(q) ◦m D(p) ≤m D(r)},

π
(
(D(u), f), D(p) •D(q)

)
=

{
π
(
(D(u), f), D(r)

)
; D(p) ◦m D(q) ≤m D(r)

}

=
{(

D(u) ◦m D(r), f
)
; D(p) ◦m D(q) ≤m D(r)

}
,

hence
π
(
π
(
(D(u), f), D(p)

)
, D(q)

)
∈ π

(
(D(u), f), D(p) •D(q)

)
.

Let us define a tolerance τ1 on BLAn(J)m as follows :
For D(p), D(q) ∈ BLAn(J)m we set

D(p) τ1 D(q) if and only if lim
x→∞

|pk(x)− qk(x)| = 0
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for k = 0, 1, . . . , n− 1.
Let τ2 be an arbitrary tolerance on Cn(J). For (D(p), f), (D(q), g) ∈ P (J)

define
(
D(p), f

)
τ

(
D(q), g

)
if and only if D(p) τ1 D(q) and f τ2 g.

Evidently, τ is a tolerance on P (J).
If D(p) τ1 D(q), then for D(r) ∈ BLAn(J)m the following relation holds:

D(p) ◦m D(r) τ1 D(q) ◦m D(r). Indeed, suppose first that k = m. Then

lim
x→∞

∣∣pm(x)rk(x) + (1− δkm)pk(x)− qm(x)rk(x)− (1− δkm)qk(x)
∣∣

= lim
x→∞

∣∣pm(x)rk(x)− qm(x)rk(x)
∣∣

= lim
x→∞

∣∣pm(x)− qm(x)
∣∣|rk(x)| = 0,

since there is a constant α ∈ R+ such that |rk(x)| ≤ α for large x ∈ J . Now
suppose k 6= m. Then similarly

lim
x→∞

∣∣pm(x)rk(x) + (1− δkm)pk(x)− qm(x)rk(x)− (1− δkm)qk(x)
∣∣

= lim
x→∞

∣∣pm(x)rk(x) + pk(x)− qm(x)rk(x)− qk(x)
∣∣

≤ lim
x→∞

∣∣pm(x)− qm(x)
∣∣|rk(x)|+ lim

x→∞
∣∣pk(x)− qk(x)

∣∣ = 0.

Thus, if
(
D(p), f

)
τ

(
D(q), g

)
, then

(
D(p) ◦m D(r), f

)
τ

(
D(q) ◦m D(r), g

)
and

the condition 2 from Definition (2.2) is satisfied, which shows that
(P (J),BLAn(J)m, π) is a transformation hypergroup with tolerance.

In the following example we will use the relation of proximity and for our
purposes the most appropriate version is that one by E. Čech [2].

Definition 2.7 A binary relation p on the family of all subsets of the set H is
called a proximity on the set H if p satisfies the following conditions:

(i) ∅nonpH

(ii) The relation p is symmetric, i.e., A,B ⊂ H, ApB implies B pA .
(iii) For any pair of subset A,B ⊂ H, A ∩B 6= ∅ implies ApB.
(iv) If A,B, C are subsets of H, then (A ∪ B)pC if and only if either ApC or

B pC.

A proximity space is a pair (H,pH) consisting of a set H and a proximity pH on
the set H.

Example 2.8 Let (P, T1,p) be a topological space with proximity relation p ⊂
P(P )×P(P ). Let us denote by SP (as sheaf) the set of all T1-continuous functions
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into another topological space, say (E, T2), and for all ∅ 6= U ⊂ P , U is T1-
open, put SU = {f |U : U → E; f ∈ SP }. Now denote X = {SU ; ∅ 6= U ⊂
P, U is T1-open} and for SU , SV ∈ X we set

SU τp SV , whenever U pV.

Then evidently (X, τp) is a tolerance space. Further, let G = T1\{∅} and for
U, V ∈ G define U ? V = P∗(U ∪ V ) ∩ T1. The pair (G, ?) is a commutative
hypergroup. In fact, it is possible to check that for U, V, W ∈ G there is (U ? V ) ?
W = P∗(U ∪V ∪W )∩T1 = U ?(V ?W ), which gives associativity law. Further, for
any U ∈ G there is U ? G ⊃ U ? P = P∗(U ∪ P ) ∩ T1 = G. As trivially U ? G ⊂ G
we obtain reproduction axiom.

Now, define a mapping π : X × G → X by π(SU , V ) = SU∪V . We will verify
that the conditions of Definition 2.2 hold.

(i) For all U, V, W ∈ G there is

π
(
π(SU , V ),W

)
= π(SU∪V ,W ) = SU∪V ∪W ,

π(SU , V ? W ) =
{
π(SU , T ); ∅ 6= T ⊂ V ∪W,T is T1-open

}

=
{
SU∪T ; ∅ 6= T ⊂ V ∪W,T is T1-open

}
.

Since SU∪V ∪W ∈ {SU∪T ; ∅ 6= T ⊂ V ∪ W,T is T1-open} for T = V ∪ W , we
have π

(
π(SU , V ),W

) ∈ π(SU , V ? W ).
(ii) Suppose SU , SV ∈ X, SU τp SV , i.e., U pV . Then for an arbitrary W ∈ G we

get π(SU , W ) = SU∪W , π(SV ,W ) = SV ∪W , U ⊂ U ∪ W , V ⊂ V ∪ W , thus
(U ∪W )p (V ∪W ), so SU∪W τp SV ∪W , consequently π(SU ,W ) τp π(SV ,W ).

Therefore the triple (X,G, π) is a transformation tolerance hypergroup.

Example 2.9 Let Ω ⊆ Rn be a domain, i.e., an open connected subset of the
n-dimensional Euclidean space of n-tuples of reals. As usual, C1(Ω) stands for
the ring of all continuos functions of n-variables u : Ω → R with continuous first
partial derivatives ∂u

∂xk
, k = 1, 2, . . . , n. We will consider linear first-order partial

differential operators of the form

D(a1, . . . , an, p) =
n∑

k=1

ak(x1, . . . , xn)
∂

∂xk
+ p(x1, . . . , xn) Id,

where ak ∈ C1(Ω) for k = 1, 2, . . . , n and p ∈ C1(Ω), p(x1, . . . , xn) > 0 for any
point [x1, . . . , xn] ∈ Ω. Denote by L1D(Ω) the set of all such operators which are
associated to linear first-order homogeneous partial differential equations

n∑

k=1

ak(x1, . . . , xn)
∂u(x1, . . . , xn)

∂xk
+ p(x1, . . . , xn)u(x1, . . . , xn) = 0,

with ak, p ∈ C1(Ω). The above operator D(a1, . . . , an, p) can be also denoted in the
following vector form: D(a, p), where a = (a1, . . . , an). Define a binary operation
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“·” and a binary relation “≤” on the set L1D(Ω) by the rule

D(a, p) ·D(b, q) = D(c1, . . . , cn, pq),

where

ck(x1, . . . , xn) = ak(x1, . . . , xn) + p(x1, . . . , xn)bk(x1, . . . , xn)

and

D(a, p) ≤ D(b, q) whenever p ≡ q and ak(x1, . . . , xn) 5 bk(x1, . . . , xn)

for any [x1, . . . , xn] ∈ Ω and k = 1, 2, . . . , n.
The pair (L1D(Ω), ·) is a non-commutative group, see [12]–compare also Ex-

ample 2.2.
Evidently, the relation “≤” on L1D(Ω) is reflexive, antisymmetric and transi-

tive, hence (L1D(Ω), ·,≤) is an ordered group.
Let us define a binary hyperoperation “?” on L1D(Ω) by

D(a, p) ? D(b, q) = {D(c, s); D(a, p) ·D(b, q) ≤ D(c, s), ck, s ∈ C1(Ω)}
= {D(c, pq); ak + pbk 5 ck, ck ∈ C1(Ω)},

where k = 1, 2, . . . , n.
Let M ⊆ Ω be a finite subset. Denote

L1
MD(Ω) =

{
D(a, p) ∈ L1D(Ω); grad p

∣∣
ξ
= 0 for any ξ ∈ M

}
.

Evidently (L1
MD(Ω), ·) is a subgroup of the group (L1D(Ω), ·). We define a binary

relation RM on the set of operators L1
MD(Ω) by the condition

D(a, p)RM D(b, q) whenever p = q and grad ak

∣∣
ξ
= grad bk

∣∣
ξ

for any ξ ∈ M and k = 1, 2, . . . n. Clearly, RM is an equivalence relation (even a
congruence, see [12]) on the set L1

MD(Ω).
Now, set for any pair of subsets A,B ⊆ L1

MD(Ω) that

ApRM
B, whenever D(a, p) RM D(b, q)

for some pair [D(a, p), D(b, q)] ∈ A×B. Evidently, pRM
is reflexive and symmetric,

thus it is a tolerance (it is a proximity as well, see [12]).
Denote T = P∗(L1

MD(Ω)). Then (T,pRM

)
is a tolerance space. (G, ?), where

G = L1
MD(Ω), be an acting hypergroup and let us define an action π : T ×G → T

as follows:

π(U,D(a1, . . . , an, p)) = {D(b1, . . . , bn, q) ·D(a1, . . . , an, p); D(b1, . . . , bn, q) ∈ U}
= {D(b, q) ·D(a, p); D(b, q) ∈ U}.

We will verify that the conditions of Definition 2.2 are fulfilled.
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(i) For any U ∈ T and D(a, p), D(b, q) ∈ G there is

π(π(U,D(a, p)), D(b, q)) = π
(
U ·D(a, p),D(b, q)

)
= U ·D(a, p) ·D(b, q)

=
{

D(c, r) ·D(a, p) ·D(b, q); D(c, r) ∈ U
}
,

π(U,D(a, p) ? D(b, q)) =
{
U ·D(s, t); D(a, p) ·D(b, q) ≤ D(s, t)

}
.

Evidently

U ·D(a, p) ·D(b, q) ∈ {
U ·D(s, t); D(a, p) ·D(b, q) ≤ D(s, t)

}

i.e.,
π
(
π(U,D(a, p),D(b, q))

) ∈ π(U,D(a, p) ? D(b, q)).

(ii) For U, V ∈ T , U pRM
V there exist D(a, p) ∈ U and D(b, q) ∈ V such that

D(a, p)RM D(b, q). For an arbitrary D(c, r) ∈ G we have

D(a, p) ·D(c, r)RM D(b, q) ·D(c, r),
D(a, p) ·D(c, r) ∈ π(U,D(c, r)),
D(b, q) ·D(c, r) ∈ π(V, D(c, r)),

therefore π(U,D(c, r))pRM
π(V, D(c, r)).

We have proved that the (T, G, π) is a transformation hypergroup with phase
tolerance space.
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