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Abstract : In this paper, the reduced form of differential transform method
(called reduced DTM), is employed to approximate the solutions of Kawahara and
modified Kawahara equations. These equations, proposed first by Kawahara [T.
Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Jpn. 33
(1972) 260–264.] in 1972, occurs in the theory of shallow water waves and plays
an important role in the modeling of many physical phenomena such as plasma
waves, magneto–acoustic wave. In the last few years, considerable efforts have
been expended in formulating accurate and efficient methods to solve these equa-
tions. In this paper, we first present the two–dimensional reduced DTM then
employ to approximate solutions of the Kawahara and modified Kawahara equa-
tions. This method provides remarkable accuracy for the approximate solutions
when compared to the exact solutions, especially in large scale domain. Numerical
results demonstrate that the methods provide efficient approaches to solving these
equations.
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1 Introduction

Nonlinear partial differential equations (PDEs) and their modified forms arise
in a large number of mathematical and engineering problems. The world around
us is inherently nonlinear. Nonlinear problems are more difficult to solve than
linear ones. When studying these nonlinear phenomena, which particularly plays
a major role in many fields of physics (such as fluid mechanics, solid state physics,
plasma physics, etc.), one can encounter with an equation of the form:

∂u

∂t
+ αum ∂u

∂x
+ β

∂3u

∂x3
− γ

∂5u

∂x5
= 0, (1.1)

where α, β and γ are nonzero positive arbitrary constants and m = 1, 2, 3, ..., with
u, ux, u3x, u5x → 0, when |x| → ∞. When m = 1 and m = 2, Eq. (1.1) is called
Kawahara and modified Kawahara equations, respectively. Kawahara equation,
proposed first by Kawahara [1] in 1972, occurs in the theory of shallow water waves
and plays an important role in the modeling of many physical phenomena such as
plasma waves, magneto–acoustic waves, see [2–4] and the references therein.

In the Eq. (1.1), the second term is convective part and the third term is
dispersive part. Karpman and Vanden–Broeck showed numerically that the fifth
order term in Eq. (1.1) is of critical importance for the soliton stability [5]. If
the coefficient of the term having third–order derivative is dominant over that of
the fifth order, then a monotone solitary wave solution is found. If the fifth–order
derivative is dominating over the third one, oscillatory structure of the solitary
waves forms, which are called as Kawahara solitons. The existence and uniqueness
of solutions are obtained by Shuangping and Shuangbin [6]. In the literature, this
equation is also referred as a fifth–order KdV equation [7]. The modified Kawahara
equation also has wide applications in physics such as plasma waves, capillary–
gravity water waves, water waves with surface tension, shallow water waves and
so on [1–4]. This equation is also called the singularly perturbed KdV equation
[7].

There are some valuable efforts that focus on finding the analytical and numer-
ical methods for solving the Kawahara and modified Kawahara equations. These
analytical and numerical methods include the (G′

G
)–expansion method [8], tanh–

function method [9], extended tanh-function method [10], sine–cosine method [11],
Jacobi elliptic function method [12], direct algebraic method [13], Bäcklund trans-
formation [14], Adomian decomposition method [15], He’s variational method [16],
Homotopy analysis method [17], homotopy perturbation method [18] and Crank–
Nicolson–Differential quadrature algorithm [19].

On the other hand, in recent years, the differential transform method (DTM)
has been developed for solving ordinary and partial differential equations. The
DTM was first introduced by Zhou in a study about electrical circuits [20]. The
differential transform method obtains an analytical solution in the form of a poly-
nomial. It is different from the traditional high order Taylors series method, which
requires symbolic competition of the necessary derivatives of the data functions.
The Taylor series method is computationally taken long time for large orders.
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With this method, it is possible to obtain highly accurate results or exact solu-
tions for differential equations. With this technique, the given partial differential
equation and related initial conditions are transformed into a recurrence equation
that finally leads to the solution of a system of algebraic equations as coefficients of
a power series solution. This method is useful for obtaining exact and approximate
solutions of linear and nonlinear ordinary and partial differential equations. There
is no need for linearization or perturbations, large computational work and round–
off errors are avoided. It has been used to solve effectively, easily and accurately
a large class of linear and nonlinear problems with approximations.

DTM has been successfully applied to solve system of differential equations
[21], differential-algebraic equations [22], difference equations [23], differential dif-
ference equations [24], partial differential equations [25–29], partial differential
equations with proportional delay [30], system of PDEs [31], some coupled PDEs
[32] and in [33] the author extended DTM to solve the first and second kind of the
Riccati matrix differential equations. And finally, authors of [34, 35], applied a
similar method to obtain the numerical solution of PDEs with nonlocal boundary
conditions.

Although, one of the advantage of the two–dimensional DTM over other meth-
ods, such as the Adomian’s decomposition method (ADM), variational iteration
method (VIM), homotopy perturbation method (HPM) and homotopy analysis
method (HAM) are that the two–dimensional DTM are exact, the two–dimensional
DTMs recursive equation generate exactly all the multivariate Taylor series coef-
ficients of exact solutions. Our first interest in the present work is introducing a
reduced form of two–dimensional DTM as reduced-DTM, where generate the mul-
tivariate Taylor series coefficients of exact solutions u with respect to the variable
weights U0, and implementing the present method to stress its power in handling
nonlinear equations. The next interest is to employ the reduced-DTM to solve the
nonlinear Kawahara equation (1.1).

Rest of the paper is organized as follows: In Section 2, the differential transform
method is produced. Section 3 is devoted to employed the method on the problems
related to the Kawahara equation and their modified form. Section 4 is the brief
conclusion of this paper. Finally some references are listed in the end.

2 Basic Definitions

With reference to the articles [20–27, 30–33], the basic definitions of differential
transformation are introduced as follows:

2.1 One-Dimensional Differential Transform Method

The transformation of the k-th derivative of a function in one variable is as
follows:
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Definition 2.1. If u(t) ∈ R can be expressed as a Taylor series about fixed point
t0, then u(t) can be represented as

u(t) =

∞
∑

k=0

u(k)(t0)

k!
(t − t0)

k. (2.1)

If un(t) =
∑n

k=0
u(k)(t0)

k! (t − t0)
k, is the n-partial sums of a Taylor series

Eq. (2.1), then

u(t) =

n
∑

k=0

u(k)(t0)

k!
(t − t0)

k + Rn(t). (2.2)

where un(t) is called the n-th Taylor polynomial for u(t) about t0 and Rn(t) is
remainder term. If U(k) is defined as

U(k) =
1

k!

[

dku(t)

dtk

]

t=t0

, (2.3)

where k = 0, 1, ...,∞ then Eq. (2.1) reduce to

u(t) =
∞
∑

k=0

U(k)(t − t0)
k (2.4)

and the n-partial sums of a Taylor series Eq. (2.2) reduce to

un(t) =

n
∑

k=0

U(k)(t − t0)
k + Rn(t). (2.5)

The U(k) defined in Eq. (2.5), is called the differential transform of function u(t).
For simplicity assume that t0 = 0, then the Eq. (2.5) reduce to

un(t) =

n
∑

k=0

U(k)tk + Rn(t). (2.6)

From the above definitions, it can be found that the concept of the one-dimensional
differential transform is derived from the Taylor series expansion. With relation-
ships (2.3)–(2.6), the fundamental mathematical operations performed by oned-
imensional differential transform can readily be obtained and listed in Table 1.
(See [25–27] and their references).

2.2 Two–Dimensional Reduced DTM

Consider a function of two variables w(x, t), and suppose that it can be repre-
sented as a product of two single-variable function, i.e., w(x, t) = f(x)g(t). Based
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Table 1: The fundamental operations of one–dimensional DTM.
Original function Transformed function

w(t) = u(t) ± v(t) W (k) = U(k) ± V (k)

w(t) = dmu(t)
dtm

W (k) = (k+m)!
k! U(k + m)

w(t) = u(t)v(t) W (k) = U(k) ⋆ V (k) =
∑k

l=0 U(l)V (k − l)

w(x) = xm W (k) = δ(k − m) =

{

1 k = m,

0 otherwise

w(t) = exp (λt) W (k) = λk

k!

w(t) = sin(αt + β) W (k) = αk

k! sin(kπ
2 + β)

w(t) = cos(αt + β) W (k) = αk

k! cos(kπ
2 + β)

on the properties of one–dimensional differential transform, the function w(x, t)
can be represented as

w(x, t) =
∞
∑

i=0

F (i)xi

∞
∑

j=0

G(j)tj =
∞
∑

i=0

∞
∑

j=0

W (i, j)xitj , (2.7)

where W (i, j) = F (i)G(j) is called the spectrum of w(x, t).

Remark 2.2. The poisson function series generates a multivariate Taylor series
expansion of the input expression w, with respect to the variables X, to order n,
using the variable weights W .

Remark 2.3. The relationship introduce in (2.7) is the poisson series form of the
input expression w(x, t), with respect to the variables x and t, to order N , using
the variable weights Wk(x).

Similar on previous section, the basic definitions of two–differential reduced
differential transformation are introduced as follows:

Definition 2.4. If w(x, t) is analytical function in the domain of interest, then
the spectrum function

Wk(x) =
1

k!

[

∂k

∂tk
w(x, t)

]

t=t0

(2.8)

is the reduced transformed function of w(x, t).

Similarly on previous sections, the lowercase w(x, t) respect the original func-
tion while the uppercase Wk(x) stand for the reduced transformed function. The
differential inverse transform of Wk(x) is defined as:

w(x, t) =

∞
∑

k=0

Wk(x)(t − t0)
k. (2.9)
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Combining Eq. (2.2) and Eq. (2.3), it can be obtained that

w(x, t) =
∞
∑

k=0

1

k!

[

∂k

∂tk
w(x, t)

]

t=t0

(t − t0)
k.

From the above proposition, it can be found that the concept of the reduced two–
dimensional differential transform is derived from the two–dimensional differential
transform method. With Eq. (2.2) and Eq. (2.3), the fundamental mathemat-
ical operations performed by reduced two–dimensional differential transform can
readily be obtained and listed in Table 2.

Table 2: The fundamental operations of two–dimensional reduced DTM.
Original function Reduced transformed function

w(x, t) = u(x, t) ± v(x, t) Wk(x) = Uk(x) ± Vk(x)

w(x, t) = ∂
∂x

u(x, t) Wk(x) = d
dx

Uk(x)

w(x, t) = ∂
∂t

u(x, t) Wk(x) = (k + 1)Uk+1(x)

w(x, t) = ∂r+s

∂xr∂ts
u(x, t) Wk(x) = (k+s)!

k!
dr

dxr Uk+s(x)

w(x, t) = u(x, t)v(x, t) Wk(x) =
∑k

r=0 Ur(x)Vk−r(x)

w(x, t) = xmtn Wk(x) = xmδ(k − n) =

{

xm k = n

0 otherwise

3 Application

Consider the generalized Kawahara equation (1.1). When m = 1, Eq. (1.1) is
called Kawahara equation

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3
− γ

∂5u

∂x5
= 0, (3.1)

and when m = 2, Eq. (1.1) is called modified Kawahara equation

∂u

∂t
+ αu2 ∂u

∂x
+ β

∂3u

∂x3
− γ

∂5u

∂x5
= 0. (3.2)

Recently, the hyperbolic function solutions of Kawahara Eq. (3.1) and modified

Kawahara Eq. (3.2) was derived by Öziş and Aslan [8] using (G′

G
)–expansion

method and are given by

u(x, t) = − 3

169

12(β2 + γ)

αγ
+

105

169

β2

αγ
sech4

(√
13

26

√

β

γ

(

x +
36

169
t

)

)

, (3.3)

and

u(x, t) =

√
10

10

β√
αγ

+

√
10

9

√

γ

α

{

1 − 3

2
tanh2

(

−1

6
x +

β2 + 5
27γ2

60γ
t

)}

. (3.4)
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respectively, where α, β and γ are nonzero arbitrary constants.

In the followings, we demonstrate the advantages of present method on Kawa-
hara equation (3.1) and modified Kawahara equation (3.2).

3.1 Kawahara Equation

Firstly, we consider the Kawahara equation (3.1) subject to initial conditions:

u(x, 0) = − 3

169

12(β2 + γ)

αγ
+

105

169

β2

αγ
sech4

(√
13

26

√

β

γ
x

)

, (3.5)

where α, β, and γ, are nonzero arbitrary constants. Therefore, by applying the re-
duced differential transform method on Kawahara equation (3.1), for k = 0, 1, 2, ...,

we get the following recursive equation

Uk+1(x) =
−1

k + 1

{

α

k
∑

r=0

Ur(x)
d

dx
Uk−r(x) + β

d3

dx3
Uk(x) − γ

d5

dx5
Uk(x)

}

, (3.6)

and their initial value is obtained from initial condition (3.5) as follow

U0(x) = − 3

169

12(β2 + γ)

αγ
+

105

169

β2

αγ
sech4

(√
13

26

√

β

γ
x

)

(3.7)

then by utilize the initial condition (3.7) in recursive equation (3.6) for k =
0, 1, 2, 3, the first four terms of Uk(x) obtain as follow

U1(x) = −7560
√

13

371293

β2

q
β
γ

sinh
�

√

13

26

q
β
γ

x
�

αγ cosh5
�

√

13

26

q
β
γ

x
� ,

U2(x) =
68040

62748517

β3
�
4 cosh2

�
√

13

26

q
β
γ

x
�
− 5
�

αγ2 cosh6
�

√

13

26

q
β
γ

x
� ,

U3(x) = − 816480
√

13

137858491849

β3

q
β
γ

sinh
�

√

13

26

q
β
γ

x
��

8 cosh2
�

√

13

26

q
β
γ

x
�
− 15

�
αγ2 cosh7

�
√

13

26

q
β
γ

x
� ,

U4(x) =
3674160

23298085122481

β4
�
105 − 130 cosh2

�
√

13

26

q
β
γ

x
�

+ 32 cosh4
�

√

13

26

q
β
γ

x
��

αγ3 cosh6
�

√

13

26

q
β
γ

x
� .

(3.8)

In the same manner, the rest of components can be obtained using the recurrence
relation (3.6). Substituted the obtained quantities in inverse differential transform
Eq. (2.9), the approximation solution of Kawahara equation (3.1) in the Poisson
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series form are:

U4(x, t) = U0(x) + U1(x)t + U2(x)t2 + U3(x)t3 + U4(x)t4

= −
3

169

12(β2 + γ)

αγ
+

105

169

β2

αγ
sech4

 √
13

26

s
β

γ
x

!
− 7560

√
13

371293

β2

q
β
γ

sinh
�

√

13

26

q
β
γ

x
�

αγ cosh5
�

√

13

26

q
β
γ

x
� t

+
68040

62748517

β3
�
4 cosh2

�
√

13

26

q
β
γ

x
�
− 5
�

αγ2 cosh6
�

√

13

26

q
β
γ

x
� t2

− 816480
√

13

137858491849

β3

q
β
γ

sinh
�

√

13

26

q
β
γ

x
��

8 cosh2
�

√

13

26

q
β
γ

x
�
− 15

�
αγ2 cosh7

�
√

13

26

q
β
γ

x
� t3

+
3674160

23298085122481

β4
�
105 − 130 cosh2

�
√

13

26

q
β
γ

x
�

+ 32 cosh4
�

√

13

26

q
β
γ

x
��

αγ3 cosh6
�

√

13

26

q
β
γ

x
� t4,

(3.9)

which exactly is the first four terms of the poisson series of the exact solution (3.3).
To examine the accuracy and reliability of the RDTM solution for the Kawa-

hara equation, we set α = 1, β = 1
2 , and γ = 3

2 . In Table 3, the error of N–
approximation solution obtained from RDTM and exact solution, u−UN , in var-
ious N are given in some points of the intervals −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10.
The details of these errors are shown in Fig. 1 – Fig. 4.

3.2 Modified Kawahara Equation

Now, consider the modified Kawahara equation (3.2) subject to initial condi-
tions:

u(x, 0) =

√
10

10

β√
αγ

+

√
10

9

√

γ

α

{

1 − 3

2
tanh2

(

−1

6
x

)}

, (3.10)

where α, β, and γ, are nonzero arbitrary constants and α > 0. Similar on pre-
vious section, by applying the reduced differential transform method on modified
Kawahara equation (3.2), for k = 0, 1, 2, ..., the following recursive equation is
obtained

Uk+1(x) =
−1

k + 1

{

α

k
∑

r=0

(

r
∑

ℓ=0

Uℓ(x)Ur−ℓ(x)
) d

dx
Uk−r(x)

+ β
d3

dx3
Uk(x) − γ

d5

dx5
Uk(x)

}

,

(3.11)

with the following initial value

U0(x) =

√
10

10

β√
αγ

+

√
10

9

√

γ

α

{

1 − 3

2
tanh2

(

−1

6
x

)}

, (3.12)
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then by utilize the initial condition (3.12) in recursive equation (3.11) for k =
0, 1, 2, 3, the first four terms of Uk(x) obtain as follow

U1(x) =

√
10

4860

(27β2 + 5γ2) sinh
�

1

6
x
�

√
α
√

γ cosh3
�

1

6
x
� ,

U2(x) =

√
10

15746400

(27β2 + 5γ2)2
�
2 cosh2

�
1

6
x
�
− 3
�

√
α
p

γ3 cosh4
�

1

6
x
� ,

U3(x) =

√
10

19131876000

(27β2 + 5γ2)3
�
cosh2

�
1

6
x
�
− 3
�
sinh

�
1

6
x
�

√
α
p

γ5 cosh5
�

1

6
x
� ,

U4(x) =

√
10

123974556480000

(27β2 + 5γ2)4
�
2 cosh4

�
1

6
x
�
− 15 cosh2

�
1

6
x
�

+ 15
�

√
α
p

γ7 cosh6
�

1

6
x
� .

(3.13)

In the same manner, the rest of components can be obtained using the recurrence
relation (3.11). Substituted the obtained quantities in inverse differential trans-
form Eq. (2.9), the approximation solution of modified Kawahara equation (3.2)
in the Poisson series form are:

U4(x, t) =

√
10

10

β
√

αγ
+

√
10

9

r
γ

α

�
1 −

3

2
tanh2

�
−

1

6
x

��
+

√
10

4860

(27β2 + 5γ2) sinh
�

1

6
x
�

√
α
√

γ cosh3
�

1

6
x
� t

+

√
10

15746400

(27β2 + 5γ2)2
�
2 cosh2

�
1

6
x
�
− 3
�

√
α
p

γ3 cosh4
�

1

6
x
� t2

+

√
10

19131876000

(27β2 + 5γ2)3
�
cosh2

�
1

6
x
�
− 3
�
sinh

�
1

6
x
�

√
α
p

γ5 cosh5
�

1

6
x
� t3

+

√
10

123974556480000

(27β2 + 5γ2)4
�
2 cosh4

�
1

6
x
�
− 15 cosh2

�
1

6
x
�

+ 15
�

√
α
p

γ7 cosh6
�

1

6
x
� t4,

(3.14)

which exactly is the first four terms of the poisson series of the exact solution (3.4).

Similar on previous section and to examine the accuracy and reliability of the
RDTM solution for the modified Kawahara equation, we set α = β = γ = 1.
In Table 4, the error of N–approximation solution obtained from RDTM and
exact solution, u − UN , in various N are given in some points of the intervals
−10 ≤ x ≤ 10 and −10 ≤ t ≤ 10. Fig. 5 – Fig. 8 shown these details.

4 Conclusions

In this paper, we have shown that the reduced differential transform method can be
used successfully for solving the a famous partial differential differential equation
with physical interest namely, the Kawahara equation and their modified form.
The results of the test examples show that the differential transform method re-
sults are equal to ADM, HPM and HAM results. The advantage of the reduced
differential transform method over other methods, such as ADM, HPM and HAM,
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is that the differential transform method is exact. Nonetheless, it is rather straight-
forward to apply. The present method reduces the computational difficulties of the
other methods and all the calculations can be made with simple manipulations.
On the other hand the results are quite reliable. Therefore, this method can be
applied to many complicated linear and nonlinear PDEs and systems of PDEs
and does not require linearization, discretization or perturbation. Another con-
siderable advantage of the method is that Poisson coefficients of the solution are
found very easily by using the computer programs. Also, the accuracy of the series
solution increases when the number of terms in the series solution is increased.

Acknowledgement : The authors would like to thank the referee(s) for his/her
comments and suggestions on the manuscript.
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Figure 1: The error between exact and 4-RDTM solution of Kawahara
equation (3.1), when α = 1, β = 1
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Figure 5: The error between exact and 4-RDTM solution of Modified
Kawahara equation (3.1), when α = 1, β = 1, and γ = 1.
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Figure 6: The error between exact and 5-RDTM solution of Modified
Kawahara equation (3.1), when α = 1, β = 1, and γ = 1.
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Figure 7: The error between exact and 6-RDTM solution of Modified
Kawahara equation (3.1), when α = 1, β = 1, and γ = 1.
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Table 3: The numerical results for the N-term approximate solutions (3.9) obtained

by RDTM in comparison with the exact solution (3.3), u(x, t) − UN (x, t), of Kawahara

equation (3.1) at some points and in various N , when α = 1, β = 1

2
and γ = 3

2
.

x t u(x, t) − U4(x, t) u(x, t) − U5(x, t) u(x, t) − U6(x, t) u(x, t) − U7(x, t)

10 10 +9.43666706E-006 +1.96237243E-008 -1.84217766E-007 +2.23968836E-008

7.5 +2.24564681E-006 +1.09382804E-008 -2.53411255E-008 +2.23860105E-009

5 +2.95940482E-007 +1.65787792E-009 -1.52714538E-009 +8.70315764E-011

2.5 +9.23382462E-009 +3.74932307E-011 -1.22727661E-011 +3.37979644E-013

-2.5 -9.13362302E-009 +6.27083663E-011 +1.29423694E-011 +3.31623617E-013

-5 -2.89399667E-007 +4.88293692E-009 +1.69791362E-009 +8.37366565E-011

-7.5 -2.16873920E-006 +6.59693233E-008 +2.96899173E-008 +2.11019080E-009

-10 -8.98593251E-006 +4.31110825E-007 +2.27269334E-007 +2.06546844E-008

5 10 -1.78075529E-005 +3.10265273E-006 +1.68172323E-007 -7.71271327E-008

7.5 -4.41486737E-006 +5.47222429E-007 +2.49479629E-008 -7.79556186E-009

5 -6.05982773E-007 +4.74611517E-008 +1.60989541E-009 -3.06506598E-010

2.5 -1.96899289E-008 +7.30193794E-010 +1.37679035E-011 -1.20398136E-012

-2.5 +2.11203670E-008 +7.00244307E-010 -1.61815839E-011 -1.20969901E-012

-5 +6.97069467E-007 +4.36255425E-008 -2.22571381E-009 -3.09311798E-010

-7.5 +5.44372235E-006 +4.81632551E-007 -4.06419159E-008 -7.89839111E-009

-10 +2.35209814E-005 +2.61077585E-006 -3.23704554E-007 -7.84050979E-008

0 10 -5.20756163E-006 -5.20756163E-006 +1.15820790E-007 +1.15820790E-007

7.5 -9.35752298E-007 -9.35752298E-007 +1.16954022E-008 +1.16954022E-008

5 -8.27186814E-008 -8.27186814E-008 +4.59168814E-010 +4.59168814E-010

2.5 -1.29785360E-009 -1.29785360E-009 +1.80030990E-012 +1.80030990E-012

-2.5 -1.29785360E-009 -1.29785360E-009 +1.80030990E-012 +1.80030990E-012

-5 -8.27186814E-008 -8.27186814E-008 +4.59168814E-010 +4.59168814E-010

-7.5 -9.35752298E-007 -9.35752298E-007 +1.16954022E-008 +1.16954022E-008

-10 -5.20756163E-006 -5.20756163E-006 +1.15820790E-007 +1.15820790E-007

-5 10 +2.35209814E-005 +2.61077585E-006 -3.23704554E-007 -7.84050979E-008

7.5 +5.44372235E-006 +4.81632551E-007 -4.06419159E-008 -7.89839111E-009

5 +6.97069467E-007 +4.36255425E-008 -2.22571381E-009 -3.09311798E-010

2.5 +2.11203670E-008 +7.00244307E-010 -1.61815839E-011 -1.20969901E-012

-2.5 -1.96899289E-008 +7.30193794E-010 +1.37679035E-011 -1.20398136E-012

-5 -6.05982773E-007 +4.74611517E-008 +1.60989541E-009 -3.06506598E-010

-7.5 -4.41486737E-006 +5.47222429E-007 +2.49479629E-008 -7.79556186E-009

-10 0 -1.78075529E-005 +3.10265273E-006 +1.68172323E-007 -7.71271327E-008

-10 10 -8.98593251E-006 +4.31110825E-007 +2.27269334E-007 +2.06546844E-008

7.5 -2.16873920E-006 +6.59693233E-008 +2.96899173E-008 +2.11019080E-009

5 -2.89399667E-007 +4.88293692E-009 +1.69791362E-009 +8.37366565E-011

2.5 -9.13362302E-009 +6.27083663E-011 +1.29423694E-011 +3.31623617E-013

-2.5 +9.23382462E-009 +3.74932307E-011 -1.22727661E-011 +3.37979644E-013

-5 +2.95940482E-007 +1.65787792E-009 -1.52714538E-009 +8.70315764E-011

-7.5 +2.24564681E-006 +1.09382804E-008 -2.53411255E-008 +2.23860105E-009

-10 +9.43666706E-006 +1.96237243E-008 -1.84217766E-007 +2.23968836E-008
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Table 4: The error of fourth, fifth, sixth and seventh approximation solutions, u(x, t)−

UN (x, t), of modified Kawahara equation by RDTM at some points and in various N ,

when α = β = γ = 1.

x t u(x, t) − U4(x, t) u(x, t) − U5(x, t) u(x, t) − U6(x, t) u(x, t) − U7(x, t)

10 10 -3.74002863E-006 -6.12797553E-007 -5.09011784E-008 -1.33079830E-009

7.5 -8.48870378E-007 -1.06763784E-007 -6.75830178E-009 -1.41454792E-010

5 -1.06898683E-007 -9.17271162E-009 -3.93080762E-010 -5.81215631E-012

2.5 -3.19416765E-009 -1.40231049E-010 -3.04931080E-012 -2.37865283E-014

-2.5 +2.91975477E-009 -1.34181832E-010 +2.99990588E-012 -2.56183963E-014

-5 +8.93268727E-008 -8.39909850E-009 +3.80532356E-010 -6.73625045E-012

-7.5 +6.48540776E-007 -9.35658177E-008 +6.43966491E-009 -1.77182075E-010

-10 +2.61309466E-006 -5.14136419E-007 +4.77599551E-008 -1.81042492E-009

5 10 -5.37459857E-006 +3.70866427E-006 +5.31666182E-007 +3.67594633E-009

7.5 -1.51900532E-006 +6.36495525E-007 +7.10581216E-008 +5.79932768E-010

5 -2.30055997E-007 +5.37959670E-008 +4.15537194E-009 +3.04481995E-011

2.5 -8.06236589E-009 +8.08007994E-010 +3.23737148E-011 +1.47770685E-013

-2.5 +9.61398189E-009 +7.43608009E-010 -3.20262705E-011 +1.99673611E-013

-5 +3.29424737E-007 +4.55727730E-008 -4.06782208E-009 +5.71016567E-011

-7.5 +2.65206492E-006 +4.96564071E-007 -6.88733323E-008 +1.60485653E-009

-10 +1.17496012E-005 +2.66633834E-006 -5.10659747E-007 +1.73304892E-008

0 10 -1.15916742E-005 -1.15916742E-005 +2.35879770E-007 +2.35879770E-007

7.5 -2.08123817E-006 -2.08123817E-006 +2.38123365E-008 +2.38123365E-008

5 -1.83870823E-007 -1.83870823E-007 +9.34707978E-010 +9.34707978E-010

2.5 -2.88392188E-009 -2.88392188E-009 +3.66451314E-012 +3.66451314E-012

-2.5 -2.88392188E-009 -2.88392188E-009 +3.66451314E-012 +3.66451314E-012

-5 -1.83870823E-007 -1.83870823E-007 +9.34707978E-010 +9.34707978E-010

-7.5 -2.08123817E-006 -2.08123817E-006 +2.38123365E-008 +2.38123365E-008

-10 -1.15916742E-005 -1.15916742E-005 +2.35879770E-007 +2.35879770E-007

-5 10 +1.17496012E-005 +2.66633834E-006 -5.10659747E-007 +1.73304892E-008

7.5 +2.65206492E-006 +4.96564071E-007 -6.88733323E-008 +1.60485653E-009

5 +3.29424737E-007 +4.55727730E-008 -4.06782208E-009 +5.71016567E-011

2.5 +9.61398189E-009 +7.43608009E-010 -3.20262705E-011 +1.99673611E-013

-2.5 -8.06236589E-009 +8.08007994E-010 +3.23737148E-011 +1.47770685E-013

-5 -2.30055997E-007 +5.37959670E-008 +4.15537194E-009 +3.04481995E-011

-7.5 -1.51900532E-006 +6.36495525E-007 +7.10581216E-008 +5.79932768E-010

-10 0 -5.37459857E-006 +3.70866427E-006 +5.31666182E-007 +3.67594633E-009

-10 10 +2.61309466E-006 -5.14136419E-007 +4.77599551E-008 -1.81042492E-009

7.5 +6.48540776E-007 -9.35658177E-008 +6.43966491E-009 -1.77182075E-010

5 +8.93268727E-008 -8.39909850E-009 +3.80532356E-010 -6.73625045E-012

2.5 +2.91975477E-009 -1.34181832E-010 +2.99990588E-012 -2.56183963E-014

-2.5 -3.19416765E-009 -1.40231049E-010 -3.04931080E-012 -2.37865283E-014

-5 -1.06898683E-007 -9.17271162E-009 -3.93080762E-010 -5.81215631E-012

-7.5 -8.48870378E-007 -1.06763784E-007 -6.75830178E-009 -1.41454792E-010

-10 -3.74002863E-006 -6.12797553E-007 -5.09011784E-008 -1.33079830E-009


