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Abstract : Discontinuous price changes called jumps are an essential component
of financial asset price dynamics. As it was shown by Andersen, Bollerslev [1],
Andersen et al. [2] and Lahaye et al. [3], jump occurrence in prices of various
financial instruments is strongly correlated with macroeconomic announcements.
Simulation researches show that the tests for jumps generally are sufficiently pow-
erful, provided that high frequency data was used. Unfortunately, high frequency
data is usually polluted by market microstructure noise (nonsynchronous trading,
bid-ask bounce, discreteness etc.). In this paper we present results of test for jumps
in the levels of three European stock indexes. We use two alternative approaches
to testing of jump occurence by the assuption of presence of market microstructure
noise: by Barndorff-Nielsen and Shephard [4] with, introduced by Andersen et al.
[2], staggered bi- and tripower variation as estimators of integrated volatility and
quarticity, and analytically modified form of swap variance tests introduced by
Jiang and Oomen [5].
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1 Introduction

Towards the end of the 20th century Black and Scholes [6] introduced first
option pricing models which assumed that the underlying price process may be
described by a simple diffusion model. In the following years an application of
models with continuous time to modeling and forecasting financial instruments
became important and the model has been gradually developed.

The most modern derivative pricing models assume that the underlying is de-
scribed by jump diffusion models − the continuous time models which take into
account uncontinuous price changes called jumps. The models can also explain the
excess kurtosis which is typical feature of most financial time series. An application
of jumps diffusion models requires identification of jumps in studying processes.
Testing for jumps allows to assess connection between the jumps occurrence and
various macroeconomical announcements. Empirical studies of Barndorff-Nielsen
and Shephard [7], Jiang Oomen [5] show that all tests mentioned in the following
paper give satisfying results only if there is high frequency data used to estimat-
ing multipower variations, swap variances and realized variances. An important
complication that makes the estimating difficult is the presence of market mi-
crostructure noise − the pollution of observed data connected with some of typical
features of financial markets like nonsynchronous trading, bid-ask spread etc. (see
[8] for more details). The market microstructure effects have been being studied
for over 40 years. Niederhoffer and Osborne [9] showed that the existence of a
bid-ask spread introduces the first order autocorellation in observed returns. Over
the last ten years the interest in market microstructure rised. One of important
problems to be solved is finding market microstructure noise-corrected estimators
of integrated variance. Ait-Sahalia et al. [10], [11] and Zhang et al. [12] studied
properties of estimators of the integrated volatility based on data frequencies high
enough for that noise to be dominant consideration. Moreover, they proposed
noise-resistant integrated volatility estimators. Zhang [13] introduced multi-scale
realized volatility estimator which converge very fast to the true volatility. Another
bias-corrected integrated variance estimators were proposed by and Hansen and
Lunde [14] and Christensen et al. [15]. An essential issue is also testing for jumps
in the prices contaminated with the market microstructure noise. Fan and Wang
[16] introduced methods to estimate both integrated volatility and jump variation.
Andersen et al. [2] proposed an application of Barndorff-Nielsen and Shephard [7]
and [4] statistics with staggered version of realized bi- and tripower variations.
Huang and Tauchen [17] showed empirically that using logarithmic statistic with
this type of integrated variance and quarticity estimators gives surprisingly good
results. Jiang and Oomen [5] proposed modified swap variance test, called noise
adjusted swap variance test, which retains power for noisy high frequency data.
In the following paper we test jump occurrence in stock index levels of three eu-
ropean markets. We use high frequency 5-minute data. The main purpose of our
empirical studies is the assesment of the influence scale of market microstructure
noise on the number of detected jumps. Our goal is to check whether the influence
is big enough to justify using noise-corrected tests for jumps with typical 5-minute
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sampling applied.

2 Two Alternalive Approaches to Testing Jumps

in Logarithmic Price Process

Assume that X(t) is a logarithmic price process. Barndorff-Nielsen and Shep-
hard [7] introduced the realized bipower variation process. The realized bipower
variation in the period (t, t + 1) is defined in normalized form as

BV(t,t+1)(δ) = µ−2
1

[1/δ]−1∑

j=1

|yt+jδ,δ|
∣∣yt+(j+1)δ,δ

∣∣ ,

where yt,δ = X(t)− X(t− δ), µr = E |u|r for r > 0 and u ∽ N(0, 1). Moreover, it

can be shown that µr = 2r/2

√
π

Γ
(

1
2 (r + 1)

)
.

The authors showed that realized bipower variation process introduced by
them tends (as δ → 0) to the integrated variance defined by

IV(t,t+1) =

t+1∫

t

σ2(s)ds

independently of jumps occurrence in processes of logarithmic prices of financial
instruments. Moreover, the realized variance introduced by Andersen and Boler-
slev [1], which is defined as

RV(t,t+1)(δ) =

[1/δ]∑

j=1

y2
t+jδ,δ,

converges to integrated variance as δ → 0 in the case of absence of jumps in the
logarithmic price process. Otherwise, it converges to sum of integrated variance
and squared jumps. Therefore we have

plim
δ→0

[
RV(t,t+1)(δ) − BV(t,t+1)(δ)

]
=






0 if there is no jumps in (t, t + 1)
[1/δ]∑

t≤i≤t+1

c2(i) otherwise,
(2.1)

where c(i) is size of the jump. This difference became the starting point for con-
struction of tests for jumps by Barndorff-Nielsen and Shephard [4]. They showed
that

GBNS = δ−1/2(RV(t,t+1)(δ) − BV(t,t+1)(δ))
/√

Q(t,t+1)
d−→ N(0, ϑ)

and

HBNS =
δ−1/2(RV(t,t+1)(δ) − BV(t,t+1)(δ))

RV(t,t+1)(δ)
IV(t,t+1)

/√
Q(t,t+1)

d−→ N(0, ϑ),
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where ϑ = π2

4 + π − 5 and Q(t,t+1) is the quarticity and

Q(t,t+1) =

t+1∫

t

σ4(s)ds.

The GBNS and HBNS statistics test the null hypothesis that the asset prices
have continuous sample paths in (t, t + 1) against the alternative hypothesis that
there are some jumps in asset price process in (t, t + 1).The unobserved quarticity∫ t+1

t
σ4(s)ds can be estimated by the realized tripower or fourpower variation

defined in normalized form respectively as

TQ(t,t+1)(δ) = µ−3
4/3δ

−1

[1/δ]−2∑

j=1

|yt+jδ,δ|4/3 ∣∣yt+(j+1)δ,δ

∣∣4/3 ∣∣yt+(j+2)δ,δ

∣∣4/3
,

and

QQ(t,t+1)(δ) = µ−4δ−1

[1/δ]−2∑

j=1

|yt+jδ,δ|
∣∣yt+(j+1)δ,δ

∣∣ ∣∣yt+(j+2)δ,δ

∣∣ ∣∣yt+(j+3)δ,δ

∣∣ .

After normalization, the rough version, of statistics GBNS , HBNS can be writ-
ten in the form

ĜBNS = δ−1/2(RV(t,t+1)(δ) − BV(t,t+1)(δ))
/√

ϑTQ(t,t+1)(δ)

and

ĤBNS =
δ−1/2(RV(t,t+1)(δ) − BV(t,t+1)(δ))

RV(t,t+1)(δ)

[
BV(t,t+1)(δ)

] /√
ϑTQ(t,t+1)(δ)2 .

Huang and Tauchen [17] suggested that the linear statistics can overstate num-
ber of detected jumps. They advise to use the normalized logarithmic statistic
obtained by using delta method, which is given by the formula

ĴBNS = δ−1/2
[(

log RV(t,t+1)(δ)
)
−

(
log BV(t,t+1)(δ)

)] /√
ϑTQ(t,t+1)(δ) .

In subsequent literature ĜBNS , ĤBNS and ĴBNS are called bipower variation test
statistics. Moreover, to avoid understating of realized bi- and tripower variation,
Huang and Tauchen [17] recommended to multiply them by scaling factors. The
scaled realized bi-, tripower variation are given by the formulas

BV s
(t,t+1)(δ) =

1/δ

(1/δ) − 1
BV(t,t+1)(δ)

and

TQs
(t,t+1)(δ) =

1/δ

(1/δ) − 2
TQ(t,t+1)(δ).
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Furthermore, in the case of rejection of H0 hypothesis of no jumps in the period
(t, t+1) and by the assumption that in this period at the most one jump can occur,
we can approximate the jump value from the following equation

|cj | ≈
√

RV(t,t+1)(δ) − BV(t,t+1)(δ).

Jiang and Oomen [5] proposed an alternative approach to tests for jumps.
First, they showed that by the suitable assumptions on the logarithmic price
process the following relation holds

2

t+1∫

t

(dS(s)/S(s) − dX(s)) =

t+1∫

t

σ2(s)ds + 2

t+1∫

t

(exp c(s) − c(s) − 1)dq(s), (2.2)

where S(t) = exp(X(t)) is the price process and dq(t) is a counting process equal
to 1 if the jump happens in time t and 0 otherwise. The left-hand side of equation
2.2, which can be interpreted as the cumulative delta-hedged gains of two short log
contracts (Neuberger [18]), converges to integrated variance in the case of absence
of jumps in (t, t + 1). Otherwise, it tends to sum of integrated variance and the
expression

2

t+1∫

t

(exp c(s) − c(s) − 1)dq(s).

The discretized version of this expression is called realized swap variance and it is
the accumulated difference between simple and log returns

SwV(t,t+1)(δ) = 2

[1/δ]∑

j=1

(Yt+jδ,δ − yt+jδ,δ),

where Yt+jδ,δ = (St − St−δ)/ St−δ and yt+jδ,δ are given as above. Therefore, the
following relationship holds

plim
δ→0

[
SwV(t,t+1)(δ) − RV(t,t+1)(δ)

]
=






0 if there is no jumps in (t, t + 1)

2
t+1∫
t

(exp c(s) − 1
2c2(s) − c(s) − 1)dq(s)

otherwise.

This difference was used in the construction of a new class of tests for jumps by
Jiang and Oomen [5] called swap variance tests. Jiang and Oomen [5] showed the
following test statistics

ĜJO = 3(SwV(t,t+1)(δ) − RV(t,t+1)(δ))
/

δ
√

µ6S(t,t+1) ,

ĤJO =
3(SwV(t,t+1)(δ) − RV(t,t+1)(δ))IV(t,t+1)

SwV(t,t+1)(δ)

/
δ
√

µ6S(t,t+1) ,
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ĴJO = 3
[
ln(SwV(t,t+1)(δ)) − ln(RV(t,t+1)(δ))

]
IV(t,t+1)

/
δ
√

µ6S(t,t+1) ,

where S(t,t+1) is the sexticity and

S(t,t+1) =

t+1∫

t

σ6(s)ds.

All statistics follow standard normal distribution, under the null hypothesis of
no jumps in (t, t + 1). The difference between the swap variance and realized
variance can be positive or negative. Hence, as opposed to the Barndorff-Nielsen
and Shephard [4] test, the Jiang and Oomen [5] jump test is a two-sided test.
Authors suggest to estimate the unobserved sexticity S(t,t+1) by realized four- or
sixpower variation which are defined in the normalized form respectively as

SQ(δ) = µ−6
3/2δ

−2

[1/δ]−3∑

j=1

|yt+jδ,δ|3/2 ∣∣yt+(j+1)δ,δ

∣∣3/2 ∣∣yt+(j+2)δ,δ

∣∣3/2 ∣∣yt+(j+3)δ,δ

∣∣3/2
,

and

SS(δ) = µ−6
1 δ−2

[1/δ]−5∑

j=1

|yt+jδ,δ|
∣∣yt+(j+1)δ,δ

∣∣ · · ·
∣∣yt+(j+5)δ,δ

∣∣ .

Moreover, similarly as in the case of Barndorff-Nielsen and Shephard [4] tests
in the case of rejection hypothesis of no jumps in the period and by the assumption
that in this period at the most one jump can occur, the approximate value of jump
can be evaluated from the equation

SwV(t,t+1)(δ) − RV(t,t+1)(δ) ≈ 2 exp c(s) − c2(s) − 2c(s) − 2.

3 Testing for Jumps in the Presence of Market

Microstructure Noise

It is known that the observed logarithmic price process, and in consequence
also the return series, is polluted by microstructure noise. Following Ait-Sahalia et
al. [10], Bandi, Russell [19], Zhang et al. [12], and Andersen et al. [2] we suppose
that the observed logarithmic price process can be written as

Xt = X∗
t + υt,

where Xt is a real unobserved logarithmic price process and υt is a white noise.
Therefore, the logarithmic return is given by the formula

yt,δ = X∗
t − X∗

t−δ + υt − υt−δ = y∗
t,δ + ηt,δ,

where y∗
t,δ is a real unobserved logarithmic return and ηt,δ is the MA(1) process.

Consequently a negative first-order autocorrelation appears in the observed re-
turns. The dependence between neighboring returns introduced an upward bias
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in realized bi- and tripower variation. Therefore, Andersen et al. [2] proposed
to use a staggered version of realized multipower variations. Their idea based on
the skipping of one observation when computing product of adjacent returns. The
staggered version of realized bi- and tripower variations are given by the formulas

BV ∗
(t,t+1)(δ) =

1/δ

(1/δ) − 2

[1/δ]−2∑

j=1

|yt+jδ,δ|
∣∣yt+(j+2)δ,δ

∣∣ ,

TQ∗
(t,t+1)(δ) =

1/δ

(1/δ) − 4

[1/δ]−4∑

j=1

|yt+jδ,δ|4/3 ∣∣yt+(j+2)δ,δ

∣∣4/3 ∣∣yt+(j+4)δ,δ

∣∣4/3
.

In case when the order of the serial autocorrelation was higher, the authors suggest
to skip more than one return. The other problem is bias of realized volatility. The
bias-reduced measures of Realized Volatility appear in modern literature (e.g. Asai
et al.), but empirical studies of Bandi and Russell [19] and Hansen and Lunde [14]
show that data for the bias of realized variance determined on the basis of 5-min.
is very small. Therefore, we decide to apply standard realized variance measure.

Jiang and Oomen [5] show that, by the assumption of presence of market

microstructure noise, statistics ĜJO, ĤJO and ĴJO are given by the following
formulas

Ĝ∗
JO = 3(SwV(t,t+1)(δ) − RV(t,t+1)(δ))

/
δ
√

Ω∗
SwV ,

Ĥ∗
JO =

3(SwV(t,t+1)(δ) − RV(t,t+1)(δ))

SwV(t,t+1)(δ)

(
IV(t,t+1) + 2

ω2

δ

) /
δ
√

Ω∗
SwV ,

Ĵ∗
JO = 3

[
ln(SwV(t,t+1)(δ)) − ln(RV(t,t+1)(δ))

] (
IV(t,t+1) + 2

ω2

δ

)/
δ
√

Ω∗
SwV ,

where Ω∗
SwV = 15S(t,t+1) + 72ω2

δ Q(t,t+1) + 72ω4

δ2 IV(t,t+1) + 36ω6

δ3 + 84ω6

δ2 .

Statistics Ĝ∗
JO, Ĥ∗

JO and Ĵ∗
JO have approximately zero mean and unit vari-

ance for small but nonzero δ. The crucial issue in the implementation of the
statistics Ĝ∗

JO, Ĥ∗
JO and Ĵ∗

JO is the estimation of market microstructure noise
variance. Bandi and Russell [19] proposed using a consistent estimator ω̂2 =
δRV(t,t+1)(δ)/2. They also suggested using data sampled at low frequency to ob-
tain estimates of the integrated variance free of noise. Oomen [20, 21] proposed
following autocovariance-based noise variance estimator

ω̂ =
1

(1/δ) − 1

[1/δ]−1∑

j=1

yt+jδ,δyt+(j+1)δ,δ.

Moreover, Jiang and Oomen [5] introduced bias-corrected measure of realized
bipower variation. It is given by the formula

BV ∗∗
(t,t+1)(δ) = (1 + cV (γ))BV(t,t+1)(δ),
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where cV (γ) is the bias-correction function and

cV (γ) = (1 + γ)

√
1 + γ

1 + 3γ
+ γ

π

2
− 1 + 2

γ

(1 + λ)
√

1 + 2λ
+ 2γπκ(λ)

with γ = ω2/V , λ = γ/(1 + γ) and

κ(λ) =

∞∫

−∞

x2Φ(x
√

λ)(1 − Φ(x
√

λ))φ(x
√

λ)dx,

where V is the return variance, and Φ(·) and φ(·) are the CDF and PDF of the stan-
dard normal distribution respectively. Similarly they introduced bias-correction
function for quarlicity and sexticity estimators equaled cQ(γ) = 5.46648γ2 + 4γ
and cS(γ) = 13.2968γ3 + 14.4255γ2 + 6γ, respectively.

4 Data

The data applied in this paper consist of 5-min. intraday levels of the indexes
CAC40, DAX and WIG20 from the period between January 1, 2004 and December
29, 2006. In the aforementioned period all indexed grew steady and uniform. We
avoid considering the period of the global financial crisis, in which the behavior
of the indexes levels series were very time-changing. The descriptive statistics
of studied logarithmic indexes levels (multiplied by 100) and their returns are
presented in the tables 1 and 2 respectively.

Table 1. Descriptive statistics for the multiplied by 100, 5-minute
logarithmic levels of CAC40, DAX and WIG20.

series. obs. num. mean std. dev. skewness kurtosis min max

CAC40 5 min. 78642 4349.2 616.20 0.30621 1.6629 3454.6 5553
DAX 5 min. 78438 4844.6 836.57 0.39903 1.7656 3620.3 6625.4
WIG20 5 min. 57010 2324,6 553.88 0.33721 1.5879 1577.1 3429.8

Table 2. Descriptive statistics for the 5-minute logarithmic returns
of CAC40, DAX and WIG20.

series. obs. num. mean std. dev. skewness kurtosis min max

CAC40 5 min. 78641 0.0003 0.0651 -0.0837 14.717 -1.2192 1.1110
DAX 5 min. 78437 0.0003 0.0778 -0.6293 39.174 -2.1689 1.7562
WIG20 5 min. 57009 0.0007 0.1301 -0.0770 8.9422 -1.6520 1.3182

5 Empirical Research

In the following section we present results of test for jumps. The occurrence
of jumps is verified in one-day periods, but multipower variation, realized variance
and swap variance are estimated by using 5-min returns. In Tables 3, 4 and 5
there are given numbers of detected days with jumps in logarithmic level process
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of indexes CAC40, DAX and WIG20 obtained by using Barndorff-Nielsen and
Shephard [4] tests with significance levels 0.05, 0.01, 0.005 and 0.001.

Table 3. Number of detected days with jumps in level process of
indexes CAC40, DAX and WIG20 in relation with significance level by
using Barndorff-Nielsen and Shephard linear statistic.

Number of detected days with jumps
Time Estimators of IV (Percentage share of days with jumps)
series and quarticity 0.05 0.01 0.005 0.001

CAC40 BV, TQ 223 (29.00%) 156 (20.29%) 128 (16.64%) 92 (11.96%)
5 min. BV s, TQs 213 (27.70%) 138 (17.95%) 119 (15.47%) 88 (11.44%)
DAX BV, TQ 374 (48.51%) 272 (35.28%) 248 (32.17%) 201 (26.07%)
5 min. BV s, TQs 356 (46.17%) 257 (33.33%) 237 (30.74%) 192 (24.90%)
WIG20 BV, TQ 265 (35.01%) 171 (22.59%) 142 (18.76%) 105 (13.87%)
5 min. BV s, TQs 232 (30.65%) 149 (19.68%) 130 (17.17%) 92 (12.15%)

Table 4. Number of detected days with jumps in level process of
indexes CAC40, DAX and WIG20 in relatio with significance level by
using Barndorff-Nielsen and Shephard logarithmic statistic.

Number of detected days with jumps
Time Estimators of IV (Percentage share of days with jumps)
series and quarticity 0.05 0.01 0.005 0.001

CAC40 BV, TQ 214 (27,76%) 126 (16,34%) 108 (14,01%) 73 (9,47%)
5 min. BV s, TQs 192 (24,90%) 119 (15,43%) 97 (12,58%) 64 (8,30%)
DAX BV, TQ 357 (46,42%) 245 (31,86%) 218 (28,35%) 173 (22,50%)
5 min. BV s, TQs 329 (42,78%) 236 (30,69%) 207 (26,92%) 159 (20,68%)
WIG20 BV, TQ 242 (31,97%) 140 (18,49%) 120 (15,85%) 66 (8,72%)
5 min. BV s, TQs 218 (28,80%) 128 (16,91%) 104 (13,74%) 60 (7,93%)

Table 5. Number of detected days with jumps in level process of
indexes CAC40, DAX and WIG20 in relation with significance level by
using Barndorff-Nielsen and Shephard ratio statistic.

Number of detected days with jumps
Time Estimators of IV (Percentage share of days with jumps)
series and quarticity 0.05 0.01 0.005 0.001

CAC40 BV, TQ 186 (24.19%) 99 (12.87%) 81 (10.53%) 52 (6.76%)
5 min. BV s, TQs 176 (22.89%) 90 (11.70%) 75 (9.75%) 46 (5.98%)
DAX BV, TQ 321 (41.63%) 210 (27.24%) 179 (23.22%) 117 (15.18%)
5 min. BV s, TQs 300 (38.91%) 201 (26.07%) 169 (21.92%) 112 (14.53%)
WIG20 BV, TQ 208 (27.48%) 99 (13.08%) 71 (9.38%) 38 (5.02%)
5 min. BV s, TQs 190 (25.10%) 89 (11.76%) 60 (7.93%) 34 (4.49%)

We can observe that linear test detects slightly higher number of jumps than
other statistics. This is most likely result of a big size of the test. We can also
observe that ratio statistic detects jumps remarkably less often. This might be
result of lower size and power of this test, as shown by empirical studies. Test
statistics with unscalled realized bi- and tripower variations applied as integrated
variance and quarticity estimators overstate number of detected jumps.

In the table 6, 7 and 8 there are presented number of detected days with jumps
in logarithmic level process of indexes CAC40, DAX and WIG20 obtained by using
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Jiang and Oomen [5] tests with significance levels 0.05, 0.01, 0.005 and 0.001.

Table 6. Number of detected days with jumps in level process of
indexes CAC40, DAX and WIG20 in relation with significance level by
using Jiang and Oomen linear statistic.

Estimator Number of detected days with jumps
Time of (Percentage share of days with jumps)
series sexticity 0.05 0.01 0.005 0.001

CAC40 5 min. SS 287 (37.32%) 219 (28.48%) 200 (26.01%) 166 (21.59%)
DAX 5 min. SS 382 (49.55%) 307 (39.82%) 284 (36.84%) 244 (31.65%)
WIG20 5 min. SS 268 (35.40%) 208 (27.48%) 182 (24.04%) 151 (19.95%)

Table 7. Number of detected days with jumps in logarithmic level
process of indexes CAC40, DAX, and WIG20 in dependence on signif-
icance level by using Jiang and Oomen logarithmic statistic.

Number of detected days with jumps
Time Estimators of IV (Percentage share of days with jumps)
series and sexticity 0.05 0.01 0.005 0.001

CAC40 BV, SS 258 (33.55%) 189 (24.58%) 173 (22.50%) 121 (15.73%)
5 min. BV s, SSs 261 (33.94%) 193 (25.10%) 175 (22.76%) 125 (16.25%)
DAX BV, SS 351 (45.53%) 268 (34.76%) 239 (31.00%) 208 (26.98%)
5 min. BV s, SSs 352 (45.65%) 269 (34.89%) 246 (31.91%) 211 (27.37%)
WIG20 BV, SS 242 (31.97%) 176 (23.25%) 159 (21.00%) 120 (15.85%)
5 min. BV s, SSs 245 (32.36%) 180 (23.78%) 162 (21.40%) 122 (16.12%)

Table 8. Number of detected days with jumps in level process of
indexes CAC40, DAX and WIG20 in relation with significance level by
using Jiang and Oomen ratio statistic.

Number of detected days with jumps
Time Estimators of IV (Percentage share of days with jumps)
series and sexticity 0.05 0.01 0.005 0.001

CAC40 BV, SS 258 (33.55%) 189 (24.58%) 173 (22.50%) 121 (15.73%)
5 min. BV s, SSs 260 (33.81%) 194 (25.23%) 175 (22.76%) 125 (16.25%)
DAX BV, SS 351 (45.53%) 268 (34.76%) 239 (31.00%) 208 (26.98%)
5 min. BV s, SSs 352 (45.65%) 269 (34.89%) 246 (31.91%) 211 (27.37%)
WIG20 BV, SS 242 (31.97%) 176 (23.25%) 159 (21.00%) 120 (15.85%)
5 min. BV s, SSs 245 (32.36%) 180 (23.78%) 162 (21.40%) 122 (16.12%)

Similarly to bipower variation test statistics, swap variance linear statistic
detects higher number of days with jumps than other statistics. Logarithmic and
ratio statistics detect almost identical number of days with jumps. Although the
size and power of the test is not influenced by the type of applied integrated
variance estimator, the difference between number of days with jumps detected
by using the same statistics with realized bipower and scaled bipower variation as
integrated variance estimator is observable.

To determine the existence of market microstructure noise in mentioned intra-
day series we determine their correlograms.
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Figure 1. Autocorrelation of 5-min. logarithmic return of CAC40, DAX
and WIG20 index.

For every intraday return series there exist significant autocorrelations. The
low order negative autocorrelation in high frequency data is the consequence of
market microstructure noise. The higher order linear dependences can be a con-
sequence of the market frictions induced by clustering in order flows, delayed in-
formation discounting or short-term seasonality. Therefore, to avoid the influence
of this spurious autocorrelations on bi- and tripower variations we use staggered
version of the realized multipower variation. Based on the figure 1 we decide to
skip two returns for CAC40 and WIG20 index and one return for DAX. Number
of detected days with jumps by the bipower variation statistics with staggered
realized bi- and tripower variations as estimators of integrated variance, and quar-
ticity are given in table 9. To reduce the microstructure noise we decide to use
also the Ĝ∗

JO, Ĥ∗
JO and Ĵ∗

JO statistics. Number of days with jumps detected by
them is given in the table 9 and 10.
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Table 9. Numbers of detected days with jumps in level process
of indexes CAC40, DAX and WIG20 by using Barndorff-Nielsen and
Shephard statistics with staggered realized bi- and tripower variantions
as estimators of integrated variance and quarticity.

Number of detected days with jumps
Time Type of (Percentage share of days with jumps)
series the test statistic 0.05 0.01 0.005 0.001

CAC40 linear 239 (31.08%) 162 (21.07%) 138 (17.95%) 109 (14.17%)
5 min. logarithmic 229 (29.78%) 139 (18.08%) 124 (16.13%) 84 (10.92%)

ratio 195 (29.78%) 139 (18.08%) 124 (16.13%) 84 (10.92%)
DAX linear 414 (53.70%) 331 (42.93%) 296 (38.39%) 239 (31.00%)
5 min. logarithmic 396 (51.37%) 299 (38.78%) 267 (34.63%) 197 (25.55%)

ratio 380 (49.29%) 299 (38.78%) 267 (34.63%) 197 (25.55%)
WIG20 linear 346 (45.71%) 276 (36.46%) 253 (33.42%) 203 (26.82%)
5 min. logarithmic 331 (43.73%) 246 (32.50%) 217 (28.67%) 163 (21.53%)

ratio 299 (39.50%) 246 (32.50%) 217 (28.67%) 163 (21.53%)

Table 10. Numbers of detected days with jumps in level process of
indexes CAC40, DAX and WIG20 by using modified Jiang and Oomen
statistics with bias-corrected measure of realized bipower variation and
sexticity.

Number of detected days with jumps
Time Type of (Percentage share of days with jumps)
series the test statistic 0.05 0.01 0.005 0.001

CAC40 linear 304 (39.43%) 225 (29.18%) 205 (26.59%) 180 (23.35%)
5 min. logarithmic 258 (33.46%) 183 (23.74%) 164 (21.27%) 128 (16.60%)

ratio 258 (33.46%) 183 (23.74%) 164 (21.27%) 128 (16.60%)
DAX linear 366 (47.66%) 310 (40.36%) 298 (38.80%) 257 (33.46%)
5 min. logarithmic 344 (44.79%) 260 (33.85%) 244 (31.77%) 211 (27.47%)

ratio 344 (44.79%) 260 (33.85%) 244 (31.77%) 211 (27.47%)
WIG20 linear 214 (28.27%) 165 (21.80%) 151 (19.95%) 117 (15.46%)
5 min. logarithmic 196 (25.89%) 137 (18.10%) 110 (14.53%) 86 (11.36%)

ratio 196 (25.89%) 137 (18.10%) 110 (14.53%) 86 (11.36%)

We can observe that tests which suppose presence of market microstructure
noise detect slightly less days with jumps. Only swap variance linear test detects in
two cases slightly more days with jumps. This shows that for 5-minute logarithmic
levels the scale of market microstructure noise is big enough to have significant
influence on the test results. Therefore, applying this type of tests to 5-minute
sampled financial data appears to be justified.

6 Summary

Our research shows that occurrence of jumps in processes of stock indexes lev-
els is very common. Both bipower variation tests and swap variance tests detect
similar numbers of jumps. Occurrence of jumps in studied processes is confirmed
by strong leptokurtosis in logarithmic returns series. It justifies using jump diffu-
sion or jump stochastic volatility models to modeling processes of indexes levels
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which leads to more precise description of mentioned processes.
Pollution of market microstructure noise can be observed in a 5-minute index

logarythmic returns series. We show that using the standard Barndorff-Nielsen
and Shephard, and Jiang and Oomen statistics to test for jumps occurence leads
to overstating number of detected jumps. So using two approches to test for jumps,
both of which assume the presence of market microstructure noise, is justified when
a 5-minute sampling was applied.

Using the standard Barndorff-Nielsen and Shephard, and Jiang and Oomen
statistics means we need to seek for compromise. Too small frequency leads to
not precise measures of realized variance, multipower variation etc., but too big
frequency leads to mentioned above bias problem due to market microstructure
noise. Applying Barndorff-Nielsen and Shephard statistics with staggered mea-
sures of multipower variation and corrected Jiang and Oomen statistics can reduce
this problem.

We must take into consideration that the bigger return frequency, the more
returns equal zero. Such data will cause understating the multipower variation
estimates and in consequence the difference between realized variance and bipower
variation will tend to be large and positive, and even more so in the presence of
jumps. Fortunately, swap variance does not have this flaw, but understated value of
sexticity leads to very big size of the test. Moreover as shown by Bandi and Russell
[19], and Hansen and Lunde [14], the bias of realized volatility increases very fast
for frequency higher than 2-min. Therefore, applying bias-corrected statistics of
Barndorff-Nielsen and Shephard, and Jiang and Oomen for 5-min sampled data is
the optimal choice.
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