A Common Fixed Point for a Family of Compatible Maps Involving a Quasi-contraction on Cone Metric Spaces

Hassen Aydi

Université de Sousse, Institut Supérieur d'Informatique et des Technologies de Communication de Hammam Sousse, Route GP1, 4011 H. Sousse. Tunisie
e-mail : hassen.aydi@isima.rnu.tn

Abstract

In this paper, we establish a common fixed point result for a family of compatible maps satisfying a quasi-contraction on a complete cone metric space without assumption of normality condition of the cone. The result is an extension of a recent paper of Janković et al. [S. Janković, Z. Golubović, S. Radenović, Compatible and weakly compatible mappings in cone metric spaces, Math. Comput. Modelling 52 (2010) 1728-1738].

Keywords : cone metric space; common fixed point; weakly compatible mappings; compatible pair of mappings.
2010 Mathematics Subject Classification : 47H10; 54H25.

1 Introduction

Fixed point theory is a mixture of analysis, topology and geometry. The theory of existence of fixed points of maps has been revealed as a very powerful and important tool in the study of nonlinear phenomena. Huang and Zhang [1] re-introduced the concept of a cone metric space, replacing the set of real numbers by an ordered Banach space and obtain some fixed point theorems for mappings satisfying different contraction conditions. The study of fixed point theorems in such spaces is followed by some other mathematicians, see [2-17]. In this paper,

Copyright (c) 2013 by the Mathematical Association of Thailand.

 All rights reserved.we give a common fixed point result for a family of compatible maps satisfying a quasi-contraction on a complete cone metric space.

In the sequel, the letter \mathbb{N}^{*} will denote the set of all positive natural numbers. Let E be a real Banach space and 0_{E} is the zero vector of E.

Definition 1.1. A non-empty subset P of E is called a cone if the following conditions hold:
(i) P is closed and $P \neq\left\{0_{E}\right\}$;
(ii) $a, b \in \mathbb{R}, a, b \geq 0, x, y \in P \Longrightarrow a x+b y \in P$;
(iii) $x \in P,-x \in P \Longrightarrow x=0_{E}$.

Given a cone $P \subset E$, a partial ordering \leq_{E} with respect to P is naturally defined by $x \leq_{E} y$ if and only if $y-x \in P$, for $x, y \in E$. We shall write $x<_{E} y$ to indicate that $x \leq_{E} y$ but $x \neq y$, while $x \ll y$ will stand for $y-x \in \operatorname{int} P$, where $\operatorname{int} P$ denotes the interior of $P . P$ is said solid if $\operatorname{int} P$ is non-empty.

Definition 1.2 ([1]). Let X be a non-empty set and $d: X \times X \rightarrow P$ satisfies
(i) $d(x, y)=0_{E}$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(x, y) \leq_{E} d(x, z)+d(z, y)$ for all $x, y, z \in E$.

Then d is called a cone metric on X and (X, d) is called a cone metric space.
Definition 1.3 ([1]). Let (X, d) be a cone metric space, $\left\{x_{n}\right\}$ is a sequence in X and $x \in X$.
(i) If for every $c \in E$ with $0_{E}<_{E} c$, there is $N \in \mathbb{N}$ such that $d\left(x_{n}, x\right)<_{E} c$ for all $n \geq N$, then $\left\{x_{n}\right\}$ is said to be convergent to x. This limit is denoted by $\lim _{n \rightarrow+\infty} x_{n}=x$ or $x_{n} \rightarrow x$ as $n \rightarrow+\infty$.
(ii) If for every $c \in E$ with $0_{E}<_{E} c$, there is $N \in \mathbb{N}$ such that $d\left(x_{n}, x_{m}\right)<_{E} c$ for all $n, m>N$, then $\left\{x_{n}\right\}$ is called a Cauchy sequence in X.
(iii) If every Cauchy sequence in X is convergent in X, then (X, d) is called a complete cone metric space.

We start by recalling some useful definitions.
Definition 1.4. Let X be a non-empty set, N is a natural number such that $N \geq 2$ and $T_{1}, T_{2}, \ldots, T_{N}: X \rightarrow X$ are given self-mappings on X. If $w=T_{1} x=T_{2} x=$ $\cdots=T_{N} x$ for some $x \in X$, then x is called a coincidence point of $T_{1}, T_{2}, \ldots, T_{N-1}$ and T_{N}, and w is called a point of coincidence of $T_{1}, T_{2}, \ldots, T_{N-1}$ and T_{N}. If $w=x$, then x is called a common fixed point of $T_{1}, T_{2}, \ldots, T_{N-1}$ and T_{N}.
Definition 1.5 ([18]). Let X be a non-empty set and $T_{1}, T_{2}: X \rightarrow X$ are given self-maps on X. The pair $\left\{T_{1}, T_{2}\right\}$ is said to be weakly compatible if $T_{1} T_{2} t=T_{2} T_{1} t$, whenever $T_{1} t=T_{2} t$ for some t in X.

The following definition extends the notion of compatibility of a pair of selfmappings on a metric space introduced by Jungck in [19] to a cone metric space.

Definition 1.6. Let (X, d) be a cone metric space and $f, g: X \rightarrow X$ are given selfmappings on X. The pair $\{f, g\}$ is said to be compatible if for any $c \gg 0_{E}$ we have $d\left(f g x_{n}, g f x_{n}\right) \ll c$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow+\infty} f x_{n}=$ $\lim _{n \rightarrow+\infty} g x_{n}=t$ for some t in X.

Definition 1.7. Let (X, d) be a cone metric space and $T: X \rightarrow X$ be a given mapping. We say that T is continuous on $x_{0} \in X$ if for every sequence $\left\{x_{n}\right\}$ is X, we have

$$
x_{n} \rightarrow x_{0} \text { as } n \rightarrow+\infty \Longrightarrow T x_{n} \rightarrow T x_{0} \text { as } n \rightarrow+\infty
$$

If T is continuous on each point $x_{0} \in X$, then we say that T is continuous on X.
The following lemmas from [20] will be useful for the rest of the paper.
Lemma 1.8. Let u, v and w be vectors from Banach space E
(1) If $u \leq_{E} v$ and $v \ll w$, then $u \ll w$.
(2) If $0_{E} \leq_{E} u \ll c$ for each $c \in$ intP, then $u=0_{E}$.

Lemma 1.9. If $c \in$ intP and $0_{E} \leq_{E} a_{n}$ with $a_{n} \rightarrow 0_{E}$, then there exists an n_{0} such that for all $n>n_{0}$, we have $a_{n} \ll c$.

Lemma 1.10. Let x_{n} and x be given in X. If $0_{E} \leq_{E} d\left(x_{n}, x\right) \leq_{E} b_{n}$ and $b_{n} \longrightarrow 0_{E}$, then $d\left(x_{n}, x\right) \ll c$ for each $c \in \operatorname{int} P$.

Lemma 1.11. If $0_{E} \leq_{E} a_{n} \leq_{E} b_{n}$ and $a_{n} \longrightarrow a$ and $b_{n} \rightarrow b$, then $a \leq_{E} b$ for each cone P.

Lemma 1.12. If $a \leq_{E} \lambda a$ where $a \in P$ and $0 \leq \lambda<1$, then $a=0_{E}$.
Using the concept of weak compatibility and compatibility of pairs of self maps, the aim of this paper is to establish a common fixed point result for $(2 n+2)$ mappings involving a quasi-contraction on a complete cone metric space without assumption of normality condition of the cone.

2 Main Results

We start by citing our main theorem
Theorem 2.1. Let (X, d) be a complete cone metric space with a solid cone P. Let $n \in \mathbb{N}^{*}, P_{1}, P_{2}, \ldots, P_{2 n}, Q_{0}$ and Q_{1} be self-mappings on X satisfying the following conditions:

$$
\left(c_{1}\right) \quad Q_{0} X \subseteq P_{1} P_{3} \cdots P_{2 n-1} X \text { and } Q_{1} X \subseteq P_{2} P_{4} \cdots P_{2 n} X
$$

(c_{2})

$$
\begin{aligned}
P_{2}\left(P_{4} \cdots P_{2 n}\right) & =\left(P_{4} \cdots P_{2 n}\right) P_{2}, \\
P_{2}\left(P_{4} \cdots P_{2 n}\right) & =\left(P_{4} \cdots P_{2 n}\right) P_{2}, \\
P_{2} P_{4}\left(P_{6} \cdots P_{2 n}\right) & =\left(P_{6} \cdots P_{2 n}\right) P_{2} P_{4}, \\
& \vdots \\
P_{2} \cdots P_{2 n-2}\left(P_{2 n}\right) & =\left(P_{2 n}\right) P_{2} \cdots P_{2 n-2}, \\
Q_{0}\left(P_{4} \cdots P_{2 n}\right) & =\left(P_{4} \cdots P_{2 n}\right) Q_{0}, \\
Q_{0}\left(P_{6} \cdots P_{2 n}\right) & =\left(P_{6} \cdots P_{2 n}\right) Q_{0}, \\
& \vdots \\
Q_{0} P_{2 n} & =P_{2 n} Q_{0}, \\
P_{1}\left(P_{3} \cdots P_{2 n-1}\right) & =\left(P_{3} \cdots P_{2 n-1}\right) P_{1}, \\
P_{1} P_{3}\left(P_{5} \cdots P_{2 n-1}\right) & =\left(P_{5} \cdots P_{2 n-1}\right) P_{1} P_{3}, \\
& \vdots \\
P_{1} \cdots P_{2 n-3}\left(P_{2 n-1}\right) & =\left(P_{2 n-1}\right) P_{1} \cdots P_{2 n-3}, \\
Q_{1}\left(P_{3} \cdots P_{2 n-1}\right) & =\left(P_{3} \cdots P_{2 n-1}\right) Q_{1}, \\
Q_{1}\left(P_{5} \cdots P_{2 n-1}\right) & =\left(P_{5} \cdots P_{2 n-1}\right) Q_{1}, \\
& \vdots \\
Q_{1} P_{2 n-1} & =P_{2 n-1} Q_{1},
\end{aligned}
$$

(c3) the pair $\left\{Q_{0}, P_{2} \cdots P_{2 n}\right\}$ is compatible and the pair $\left\{Q_{1}, P_{1} \cdots P_{2 n-1}\right\}$ is weakly compatible,
(c_{4}) $P_{2} \cdots P_{2 n}$ or Q_{0} is continuous,
(c_{5}) for some $\lambda \in[0,1)$ and for any $x, y \in X$ there exists

$$
u(x, y) \in\left\{\begin{array}{l}
d\left(P_{2} P_{4} \cdots P_{2 n} x, Q_{0} x\right), d\left(P_{1} P_{3} \cdots P_{2 n-1} y, Q_{1} y\right), \\
d\left(P_{2} P_{4} \cdots P_{2 n} x, P_{1} P_{3} \cdots P_{2 n-1} y\right) \\
\frac{1}{2}\left[d\left(P_{1} P_{3} \cdots P_{2 n-1} y, Q_{0} x\right)+d\left(P_{2} P_{4} \cdots P_{2 n} x, Q_{1} y\right)\right]
\end{array}\right\}
$$

such that $d\left(Q_{0} x, Q_{1} y\right) \leq_{E} \lambda u(x, y)$.
Then the $(2 n+2)$ maps, $P_{1}, P_{2}, \ldots, P_{2 n}, Q_{0}$ and Q_{1} have a unique common fixed point in X.
Proof. Let x_{0} be an arbitrary point in X. From the condition $\left(c_{1}\right)$, there exist x_{1}, x_{2} in X such that $Q_{0} x_{0}=P_{1} P_{3} \cdots P_{2 n-1} x_{1}=y_{0}$ and $Q_{1} x_{1}=P_{2} P_{4} \cdots P_{2 n} x_{2}=y_{1}$. Inductively, we can construct sequences $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ in X defined by

$$
\begin{equation*}
Q_{0} x_{2 k}=P_{1} P_{3} \cdots P_{2 n-1} x_{2 k+1}=y_{2 k} \text { and } Q_{1} x_{2 k+1}=P_{2} P_{4} \cdots P_{2 n} x_{2 k+2}=y_{2 k+1} \tag{2.1}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Denote

$$
\begin{equation*}
A=P_{2} P_{4} \cdots P_{2 n} \quad \text { and } \quad B=P_{1} P_{3} \cdots P_{2 n-1} \tag{2.2}
\end{equation*}
$$

then, (2.1) becomes

$$
\begin{equation*}
Q_{0} x_{2 k}=B x_{2 k+1}=y_{2 k} \text { and } Q_{1} x_{2 k+1}=A x_{2 k+2}=y_{2 k+1}, \text { for all } k \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

Step 1: We will show that

$$
\begin{equation*}
d\left(y_{k+1}, y_{k}\right) \leq_{E} \lambda d\left(y_{k}, y_{k-1}\right) \text { for any } k \in \mathbb{N}^{*} \tag{2.4}
\end{equation*}
$$

Putting $x=x_{2 k}$ and $y=x_{2 k+1}$ in the condition $\left(c_{5}\right)$, we have

$$
d\left(y_{2 k+1}, y_{2 k}\right)=d\left(y_{2 k}, y_{2 k+1}\right)=d\left(Q_{0} x_{2 k}, Q_{1} x_{2 k+1}\right) \leq_{E} \lambda u_{1}
$$

where

$$
u_{1} \in\left\{\begin{array}{l}
d\left(A x_{2 k}, Q_{0} x_{2 k}\right), d\left(B x_{2 k+1}, Q_{1} x_{2 k+1}\right), d\left(A x_{2 k}, B x_{2 k+1}\right) \\
\frac{1}{2}\left[d\left(B x_{2 k+1}, Q_{0} x_{2 k}\right)+d\left(A x_{2 k}, Q_{1} x_{2 k}\right)\right]
\end{array}\right\}
$$

By (2.3), we get

$$
\begin{aligned}
u_{1} & \in\left\{d\left(y_{2 k-1}, y_{2 k}\right), d\left(y_{2 k}, y_{2 k+1}\right), d\left(y_{2 k-1}, y_{2 k}\right), \frac{1}{2} d\left(y_{2 k-1}, y_{2 k+1}\right)\right\} \\
& =\left\{d\left(y_{2 k-1}, y_{2 k}\right), d\left(y_{2 k}, y_{2 k+1}\right), \frac{1}{2} d\left(y_{2 k-1}, y_{2 k+1}\right)\right\}
\end{aligned}
$$

Letting $x=x_{2 k+2}$ and $y=x_{2 k+1}$ in the condition $\left(c_{5}\right)$, we obtain

$$
d\left(y_{2 k+2}, y_{2 k+1}\right)=d\left(Q_{0} x_{2 k+2}, Q_{1} x_{2 k+1}\right) \leq_{E} \lambda u_{2}
$$

where

$$
u_{2} \in\left\{\begin{array}{l}
d\left(A x_{2 k+2}, Q_{0} x_{2 k}\right), d\left(B x_{2 k+1}, Q_{1} x_{2 k+1}\right) \\
d\left(A x_{2 k+2}, B x_{2 k+1}\right), \frac{1}{2}\left[d\left(B x_{2 k+1}, Q_{0} x_{2 k+2}\right)+d\left(A x_{2 k+2}, Q_{1} x_{2 k}\right)\right]
\end{array}\right\}
$$

Again, from (2.3)

$$
\begin{aligned}
u_{2} & \in\left\{d\left(y_{2 k+2}, y_{2 k+1}\right), d\left(y_{2 k}, y_{2 k+1}\right), d\left(y_{2 k+1}, y_{2 k}\right), \frac{1}{2} d\left(y_{2 k}, y_{2 k+2}\right)\right\} \\
& =\left\{d\left(y_{2 k+2}, y_{2 k+1}\right), d\left(y_{2 k+1}, y_{2 k}\right), \frac{1}{2} d\left(y_{2 k}, y_{2 k+2}\right)\right\}
\end{aligned}
$$

Then, we have the six following cases:

$$
\begin{array}{lll}
\mathbf{1}^{0} u_{1}=d\left(y_{2 k}, y_{2 k-1}\right), & \mathbf{2}^{0} u_{1}=d\left(y_{2 k+1}, y_{2 k}\right), & \mathbf{3}^{0} u_{1}=\frac{1}{2} d\left(y_{2 k+1}, y_{2 k-1}\right), \\
\mathbf{4}^{0} u_{2}=d\left(y_{2 k+2}, y_{2 k+1}\right), & \mathbf{5}^{0} u_{2}=d\left(y_{2 k+1}, y_{2 k}\right), & \mathbf{6}^{0} u_{2}=\frac{1}{2} d\left(y_{2 k+2}, y_{2 k}\right)
\end{array}
$$

In the case $\mathbf{1}^{0}$, we get $d\left(y_{2 k+1}, y_{2 k}\right) \leq_{E} \lambda d\left(y_{2 k}, y_{2 k-1}\right)$, so (2.4) holds. For the case $\mathbf{2}^{0}$, we have $d\left(y_{2 k+1}, y_{2 k}\right) \leq_{E} \lambda d\left(y_{2 k+1}, y_{2 k}\right)$. Since $\lambda<1$, hence $d\left(y_{2 k+1}, y_{2 k}\right)=$ 0 , and then (2.4) holds. Now, in the case $\mathbf{3}^{0}$, using the triangular inequality and $\lambda<1$, we get

$$
d\left(y_{2 k+1}, y_{2 k}\right) \leq_{E} \lambda u_{1}=\frac{\lambda}{2} d\left(y_{2 k+1}, y_{2 k-1}\right) \leq_{E} \frac{1}{2} d\left(y_{2 k+1}, y_{2 k}\right)+\frac{\lambda}{2} d\left(y_{2 k}, y_{2 k-1}\right)
$$

We rewrite this as follows

$$
d\left(y_{2 k+1}, y_{2 k}\right) \leq_{E} \lambda d\left(y_{2 k}, y_{2 k-1}\right)
$$

For the cases $\boldsymbol{4}^{0}$ and $\boldsymbol{5}^{0}$, it is immediate that (2.4) holds. In the case $\boldsymbol{6}^{0}$, using $\lambda<1$ and the triangular inequality, we obtain

$$
\begin{aligned}
d\left(y_{2 k+2}, y_{2 k+1}\right) & \leq_{E} \lambda u_{2}=\frac{\lambda}{2} d\left(y_{2 k+2}, y_{2 k}\right) \\
& \leq_{E} \frac{1}{2} d\left(y_{2 k+2}, y_{2 k+1}\right)+\frac{\lambda}{2} d\left(y_{2 k+1}, y_{2 k}\right)
\end{aligned}
$$

which immediately yields that (2.4) holds.
Step 2: $\left\{y_{k}\right\}$ is a Cauchy sequence. Thanks to (2.4), one can write

$$
\begin{equation*}
d\left(y_{k+1}, y_{k}\right) \leq_{E} \lambda d\left(y_{k}, y_{k-1}\right) \leq_{E} \cdots \leq_{E} \lambda^{k} d\left(y_{1}, y_{0}\right) \forall k \in \mathbb{N} \tag{2.5}
\end{equation*}
$$

Using (2.5) and the triangular inequality, we get for $p>q$

$$
\begin{aligned}
d\left(y_{p}, y_{q}\right) & \leq_{E} d\left(y_{p}, y_{p-1}\right)+d\left(y_{p-1}, y_{p-2}\right)+\cdots+d\left(y_{q+1}, y_{q}\right) \\
& \leq_{E}\left(\lambda^{p-1}+\lambda^{p-2}+\cdots+\lambda^{q}\right) d\left(y_{1}, y_{0}\right) \\
& =\lambda^{q}\left(1+\lambda+\cdots+\lambda^{p-q-1}\right) d\left(y_{1}, y_{0}\right) \\
& \leq_{E} \frac{\lambda^{q}}{1-\lambda} d\left(y_{1}, y_{0}\right) \longrightarrow 0_{E} \quad \text { as } q \rightarrow+\infty
\end{aligned}
$$

Referring to Lemmas 1.8 and 1.9, it follows that $d\left(y_{p}, y_{q}\right) \ll c$ for any $c \gg 0_{E}$, that is, $\left\{y_{k}\right\}$ is a Cauchy sequence in the cone metric space (X, d), which is complete, hence there exists $z \in X$ such that $y_{k} \rightarrow z$. For its subsequences, we have

$$
\begin{equation*}
Q_{0} x_{2 k} \rightarrow z, \quad A x_{2 k} \rightarrow z, \quad Q_{1} x_{2 k+1} \rightarrow z, \quad B x_{2 k+1} \rightarrow z \tag{2.6}
\end{equation*}
$$

Step 3: We will show that z is a coincidence point. We have two cases related to the condition $\left(c_{4}\right)$. We start with:
Case 1. If $A=P_{2} P_{4} \cdots P_{2 n}$ is continuous. For the rest, k is taken large enough and $c \in E$ with $c \gg 0_{E}$. From the condition $\left(c_{3}\right)$, the pair $\left\{Q_{0}, A\right\}$ is compatible, and since $Q_{0} x_{2 k} \rightarrow z$ and $A x_{2 k} \rightarrow z$, then

$$
d\left(Q_{0} A x_{2 k}, A Q_{0} x_{2 k}\right) \ll \frac{c}{2}
$$

On the other hand, A is continuous, so (2.6) yields that $A Q_{0} x_{2 k} \longrightarrow A z$. Thus,

$$
d\left(A Q_{0} x_{2 k}, A z\right) \ll \frac{c}{2}
$$

By triangular inequality, we have

$$
\begin{equation*}
d\left(Q_{0} A x_{2 k}, A z\right) \leq_{E} d\left(Q_{0} A x_{2 k}, A Q_{0} x_{2 k}\right)+d\left(A Q_{0} x_{2 k}, A z\right) \ll \frac{c}{2}+\frac{c}{2}=c \tag{2.7}
\end{equation*}
$$

Therefore, $Q_{0} A x_{2 k} \longrightarrow A z$.
(a) We first need to show that $A z=z$. The triangular inequality gives us

$$
\begin{equation*}
d(A z, z) \leq_{E} d\left(A z, Q_{0} A x_{2 k}\right)+d\left(Q_{0} A x_{2 k}, Q_{1} x_{2 k+1}\right)+d\left(Q_{1} x_{2 k+1}, z\right) \tag{2.8}
\end{equation*}
$$

Thanks to (2.6)-(2.7), we are able to control the first and the third terms of the right-hand side of (2.8). It rests only the control of the term $d\left(Q_{0} A x_{2 k}, Q_{1} x_{2 k+1}\right)$. To do this, we apply condition $\left(c_{5}\right)$ for $x=A x_{2 k}$ and $y=x_{2 k+1}$ to get

$$
d\left(Q_{0} A x_{2 k}, Q_{1} x_{2 k+1}\right) \leq_{E} \lambda u_{1}
$$

where

$$
u_{1} \in\left\{\begin{array}{l}
d\left(Q_{0} A x_{2 k}, A^{2} x_{2 k}\right), d\left(B x_{2 k+1}, Q_{1} x_{2 k+1}\right), d\left(A^{2} x_{2 k}, B x_{2 k+1}\right) \\
\frac{1}{2}\left[d\left(B x_{2 k+1}, Q_{0} x_{2 k}\right)+d\left(A^{2} x_{2 k}, Q_{1} x_{2 k+1}\right)\right]
\end{array}\right\}
$$

We have the following four cases:
$\mathbf{1}^{0}$: In this case, we have
$d\left(Q_{0} A x_{2 k}, Q_{1} x_{2 k+1}\right) \leq_{E} \lambda d\left(Q_{0} A x_{2 k}, A^{2} x_{2 k}\right) \leq_{E} \lambda d\left(Q_{0} A x_{2 k}, A z\right)+\lambda d\left(A z, A^{2} x_{2 k}\right)$.
By the fact that A is continuous, we get from (2.6), $A^{2} x_{2 k} \longrightarrow A z$. Also, by (2.8), it follows that

$$
\begin{aligned}
d(A z, z) & \leq_{E}(1+\lambda) d\left(Q_{0} A x_{2 k}, A z\right)+\lambda d\left(A z, A^{2} x_{2 k}\right)+d\left(Q_{1} x_{2 k+1}, z\right) \\
& \ll(1+\lambda) \frac{c}{3(1+\lambda)}+\lambda \frac{c}{3 \lambda}+\frac{c}{3}=\frac{c}{3}+\frac{c}{3}+\frac{c}{3}=c
\end{aligned}
$$

$\mathbf{2}^{0}$: Here, we have
$d\left(Q_{0} A x_{2 k}, Q_{1} x_{2 k+1}\right) \leq_{E} \lambda d\left(Q_{1} A x_{2 k+1}, B x_{2 k+1}\right) \leq_{E} \lambda d\left(Q_{1} x_{2 k+1}, z\right)+\lambda d\left(z, B x_{2 k+1}\right)$.
Again, (2.8) yields

$$
\begin{aligned}
d(A z, z) & \leq_{E} d\left(A z, Q_{0} A x_{2 k}\right)+(1+\lambda) d\left(Q_{1} x_{2 k+1}, z\right)+\lambda d\left(B x_{2 k+1}, z\right) \\
& \ll \frac{c}{3}+(1+\lambda) \frac{c}{3(1+\lambda)}+\lambda \frac{c}{3 \lambda}=\frac{c}{3}+\frac{c}{3}+\frac{c}{3}=c
\end{aligned}
$$

3^{0} : In this case, we find

$$
\begin{aligned}
d\left(Q_{0} A x_{2 k}, Q_{1} x_{2 k+1}\right) & \leq_{E} \lambda d\left(A^{2} x_{2 k}, B x_{2 k+1}\right) \\
& \leq_{E} \lambda d\left(A^{2} x_{2 k}, A z\right)+\lambda d(A z, z)+\lambda d\left(z, B x_{2 k+1}\right)
\end{aligned}
$$

The inequality (2.8) leads to

$$
\begin{aligned}
d(A z, z) \leq_{E} & \frac{1}{1-\lambda} d\left(A z, Q_{0} A x_{2 k}\right)+\frac{\lambda}{1-\lambda} d\left(A^{2} x_{2 k}, A z\right)+\frac{\lambda}{1-\lambda} d\left(B x_{2 k+1}, z\right) \\
& +\frac{1}{1-\lambda} d\left(Q_{1} x_{2 k+1}, z\right) \\
\ll & \frac{1}{1-\lambda} \frac{(1-\lambda) c}{4}+\frac{1}{1-\lambda} \frac{(1-\lambda) c}{4}+\frac{1}{1-\lambda} \frac{(1-\lambda) c}{4}+(1-\lambda) \frac{c}{4(1-\lambda)} \\
= & c
\end{aligned}
$$

4^{0} : In this case, we get

$$
\begin{aligned}
d\left(Q_{0} A x_{2 k}, Q_{1} x_{2 k+1}\right) \leq_{E} & \frac{\lambda}{2} d\left(Q_{0} x_{2 k}, B x_{2 k+1}\right)+\frac{\lambda}{2} d\left(A^{2} x_{2 k}, Q_{1} x_{2 k+1}\right) \\
\leq_{E} & \frac{\lambda}{2}\left(d\left(Q_{0} x_{2 k}, A z\right)+d(A z, z)+d\left(z, B x_{2 k+1}\right)\right) \\
& +\frac{\lambda}{2}\left(d\left(A^{2} x_{2 k}, A z\right)+d(A z, z)+d\left(z, Q_{1} x_{2 k+1}\right)\right) \\
= & \frac{\lambda}{2}\left(d\left(Q_{0} x_{2 k}, A z\right)+d\left(z, B x_{2 k+1}\right)\right) \\
& +\frac{\lambda}{2}\left(d\left(A^{2} x_{2 k}, A z\right)+d\left(z, Q_{1} x_{2 k+1}\right)\right)+\lambda d(A z, z)
\end{aligned}
$$

By (2.8), we have

$$
\begin{aligned}
d(A z, z) \leq_{E} & \frac{2+\lambda}{2(1-\lambda)} d\left(A z, Q_{0} A x_{2 k}\right)+\frac{\lambda}{2(1-\lambda)} d\left(A^{2} x_{2 k}, A z\right) \\
& +\frac{\lambda}{2(1-\lambda)} d\left(B x_{2 k+1}, z\right)+\frac{\lambda+1}{2(1-\lambda)} d\left(Q_{1} x_{2 k+1}, z\right) \\
\ll & \frac{c}{4}+\frac{c}{4}+\frac{c}{4}+\frac{c}{4}=c
\end{aligned}
$$

In all the four above cases, $d(A z, z) \ll c$, then referring to Lemma 1.8, we find $A z=z$.
(b) Here, we prove that $Q_{0} z=z$. For this, from the condition $\left(c_{5}\right)$, let us write for $x=z$ and $y=x_{2 k+1}$

$$
\begin{equation*}
d\left(Q_{0} z, z\right) \leq_{E} d\left(Q_{0} z, Q_{1} x_{2 k+1}\right)+d\left(z, Q_{1} x_{2 k+1}\right) \leq_{E} \lambda u_{2}+d\left(z, Q_{1} x_{2 k+1}\right) \tag{2.9}
\end{equation*}
$$

where

$$
u_{2} \in\left\{\begin{array}{l}
d\left(z, Q_{0} z\right), d\left(Q_{1} x_{2 k+1}, B x_{2 k+1}\right), d\left(z, B x_{2 k+1}\right), \\
\frac{1}{2}\left[d\left(Q_{0} z, B x_{2 k+1}\right)+d\left(Q_{1} x_{2 k+1}, z\right)\right]
\end{array}\right\}
$$

Here, we have used $A z=z$. Also, we have the following four cases: $\mathbf{1}^{0}$: In this case, using (2.9), we have

$$
d\left(Q_{0} z, z\right) \leq_{E} \lambda d\left(z, Q_{0} z\right)+d\left(Q_{1} x_{2 k+1}, z\right)
$$

Therefore, referring to (2.6), we find

$$
d\left(Q_{0} z, z\right) \leq_{E} \frac{1}{1-\lambda} d\left(Q_{1} x_{2 k+1}, z\right) \ll \frac{1}{1-\lambda}(1-\lambda) c=c
$$

$\mathbf{2}^{0}$: Here, using the triangular inequality

$$
\begin{aligned}
d\left(Q_{0} z, z\right) & \leq_{E} \lambda d\left(Q_{1} x_{2 k+1}, B x_{2 k+1}\right)+d\left(Q_{1} x_{2 k+1}, z\right) \\
& \leq_{E}(\lambda+1) d\left(Q_{1} x_{2 k+1}, z\right)+\lambda d\left(B x_{2 k+1}, z\right) \\
& \ll(\lambda+1) \frac{c}{2(1+\lambda)}+\lambda \frac{c}{2 \lambda}=c .
\end{aligned}
$$

$\mathbf{3}^{0}$: Similarly we have

$$
d\left(Q_{0} z, z\right) \leq_{E} \lambda d\left(B x_{2 k+1}, z\right)+d\left(Q_{1} x_{2 k+1}, z\right) \ll \lambda \frac{c}{2 \lambda}+\lambda \frac{c}{2 \lambda}=c
$$

4^{0} : In this case, we get

$$
\begin{aligned}
d\left(Q_{0} z, z\right) & \leq_{E} \frac{\lambda}{2}\left[d\left(Q_{0} z, B x_{2 k+1}\right)+d\left(Q_{1} x_{2 k+1}, z\right)\right]+d\left(Q_{1} x_{2 k+1}, z\right) \\
& \leq_{E} \frac{\lambda}{2} d\left(Q_{0} z, z\right)+\frac{\lambda}{2} d\left(z, B x_{2 k+1}\right)+\left(\frac{\lambda}{2}+1\right) d\left(Q_{1} x_{2 k+1}, z\right) \\
& \leq_{E} \frac{\lambda}{2} d\left(Q_{0} z, z\right)+\frac{1}{2} d\left(z, B x_{2 k+1}\right)+\frac{3}{2} d\left(Q_{1} x_{2 k+1}, z\right)
\end{aligned}
$$

It follows that

$$
d\left(Q_{0} z, z\right) \leq_{E} d\left(z, B x_{2 k+1}\right)+3 d\left(Q_{1} x_{2 k+1}, z\right) \ll \frac{c}{2}+3 \frac{c}{6}=c
$$

(c) Here we prove that $P_{2 n} z=z$. From the condition $\left(c_{2}\right)$, we have $Q_{0} P_{2 n}=P_{2 n} Q_{0}$ and $A P_{2 n}=P_{2 n} A$. Letting $x=P_{2 n} z$ and $y=x_{2 k+1}$ in the condition $\left(c_{5}\right)$, we have

$$
\begin{aligned}
d\left(P_{2 n} z, z\right) & =d\left(P_{2 n} Q_{0} z, z\right)=d\left(Q_{0} P_{2 n} z, z\right) \\
& \leq_{E} d\left(Q_{0} P_{2 n} z, Q_{1} x_{2 k+1}\right)+d\left(Q_{1} x_{2 k+1}, z\right) \\
& \leq_{E} \lambda u_{3}+d\left(Q_{1} x_{2 k+1}, z\right)
\end{aligned}
$$

where

$$
u_{3} \in\left\{\begin{array}{l}
d\left(P_{2 n} z, P_{2 n} z\right)=0_{E}, d\left(Q_{1} x_{2 k+1}, B x_{2 k+1}\right), d\left(P_{2 n} z, B x_{2 k+1}\right) \\
\frac{1}{2}\left[d\left(P_{2 n} z, B x_{2 k+1}\right)+d\left(P_{2 n} z, Q_{1} x_{2 k+1}\right)\right]
\end{array}\right\}
$$

using $Q_{0} z=A z=z$. As the two precedent steps, we have the four cases: 1^{0} :

$$
d\left(P_{2 n} z, z\right) \leq_{E} \lambda d\left(P_{2 n} z, P_{2 n} z\right)+d\left(Q_{1} x_{2 k+1}, z\right)=d\left(Q_{1} x_{2 k+1}, z\right) \ll c
$$

2^{0} :

$$
\begin{aligned}
d\left(P_{2 n} z, z\right) & \leq_{E} \lambda d\left(Q_{1} x_{2 k+1}, B x_{2 k+1}\right)+d\left(Q_{1} x_{2 k+1}, z\right) \\
& \leq_{E}(\lambda+1) d\left(Q_{1} x_{2 k+1}, z\right)+\lambda d\left(B x_{2 k+1}, z\right) \\
& \ll(\lambda+1) \frac{c}{2(1+\lambda)}+\lambda \frac{c}{2 \lambda}=c .
\end{aligned}
$$

3^{0} :

$$
\begin{aligned}
d\left(P_{2 n} z, z\right) & \leq_{E} \lambda d\left(P_{2 n} z, B x_{2 k+1}\right)+d\left(Q_{1} x_{2 k+1}, z\right) \\
& \leq_{E} \lambda d\left(P_{2 n} z, z\right)+\lambda d\left(z, B x_{2 k+1}\right)+d\left(Q_{1} x_{2 k+1}, z\right) .
\end{aligned}
$$

It is clear that $d\left(P_{2 n} z, z\right) \ll c$.
4^{0} :

$$
\begin{aligned}
d\left(P_{2 n} z, z\right) \leq_{E} & \frac{\lambda}{2}\left[d\left(P_{2 n} z, B x_{2 k+1}\right)+d\left(Q_{1} x_{2 k+1}, P_{2 n} z\right)\right]+d\left(Q_{1} x_{2 k+1}, z\right) \\
\leq_{E} & \frac{\lambda}{2} d\left(P_{2 n} z, z\right)+\frac{\lambda}{2} d\left(z, B x_{2 k+1}\right)+d\left(Q_{1} x_{2 k+1}, z\right) \\
& +\frac{\lambda}{2} d\left(Q_{1} x_{2 k+1}, z\right)+\frac{\lambda}{2} d\left(z, P_{2 n} z\right) .
\end{aligned}
$$

We obtain

$$
d\left(P_{2 n} z, z\right) \leq_{E} \frac{\lambda}{2(1-\lambda)} d\left(z, B x_{2 k+1}\right)+\frac{2+\lambda}{2(1-\lambda)} d\left(Q_{1} x_{2 k+1}, z\right) \ll c .
$$

Hence, following the four cases, we obtain $P_{2 n} z=z$.
(d) From the condition $\left(c_{1}\right), Q_{0} X \subseteq B X$, hence there exists $v \in X$ such that $z=Q_{0} z=B v$. First, we need to show that $B v=Q_{1} v$. For this we have

$$
d\left(B v, Q_{1} v\right)=d\left(Q_{0} z, Q_{1} v\right) \leq_{E} \lambda u_{4}
$$

where thanks to condition $\left(c_{5}\right)$ with $x=z$ and $y=v$,

$$
u_{4} \in\left\{0_{E}, d\left(B v, Q_{1} v\right), 0_{E}, \frac{1}{2}\left[0_{E}+d\left(B v, Q_{1} v\right)\right]\right\}
$$

Since $d\left(B v, Q_{1} v\right) \leq_{E} \lambda d\left(B v, Q_{1} v\right)$ and $d\left(B v, Q_{1} v\right) \leq_{E} \frac{\lambda}{2} d\left(B v, Q_{1} v\right)$, which implies $d\left(B v, Q_{1} v\right)=0$, hence $B v=Q_{1} v$. From the condition $\left(c_{3}\right),\left(Q_{1}, B\right)$ is weakly compatible, then $Q_{1} B v=B Q_{1} v$. We deduce $Q_{1} z=B z$.
(e) Here, we write

$$
d\left(Q_{1} z, z\right)=d\left(Q_{1} z, Q_{0} z\right)=d\left(Q_{0} z, Q_{1} z\right) \leq_{E} \lambda u_{5}
$$

where applying $x=y=z$ in condition $\left(c_{5}\right)$, we obtain
$u_{5} \in\left\{d\left(A z, Q_{0} z\right)=0_{E}, d\left(B z, Q_{1} z\right)=0_{E}, d(A z, B z), \frac{1}{2}\left[d\left(B z, Q_{0} z\right)+d\left(A z, Q_{1} z\right)\right]\right\}$.

Then, since $Q_{0} z=A z=z$, we get

$$
u_{5} \in\left\{0_{E}, d(z, B z), \frac{1}{2}\left[d(B z, z)+d\left(z, Q_{1} z\right)\right]\right\} .
$$

Proceeding as the precedent steps, we easily find $Q_{1} z=z=B z$. (f) We will check that $P_{2} z=z$. For this,

$$
d\left(Q_{0} P_{4} \cdots P_{2 n} z, z\right)=d\left(Q_{0} P_{4} \cdots P_{2 n} z, Q_{1} z\right) \leq_{E} \lambda u_{6}
$$

Letting $x=P_{4} \cdots P_{2 n} z$ and $y=z$ in the condition $\left(c_{5}\right)$, we have

$$
u_{6} \in\left\{\begin{array}{l}
d\left(A P_{4} \cdots P_{2 n}, Q_{0} P_{4} \cdots P_{2 n}\right), d\left(B z, Q_{1} z\right), d\left(A P_{4} \cdots P_{2 n} z, B z\right) \\
\frac{1}{2}\left[d\left(B z, Q_{0} P_{4} \cdots P_{2 n} z\right)+d\left(A P_{4} \cdots P_{2 n} z, Q_{1} z\right)\right]
\end{array}\right\}
$$

Thanks to condition $\left(c_{2}\right)$, we have $A P_{4} \cdots P_{2 n}=P_{4} \cdots P_{2 n} A$ and $Q_{0} P_{4} \cdots P_{2 n}=$ $P_{4} \cdots P_{2 n} Q_{0}$. Therefore, using $B z=Q_{1} z=z=A z=Q_{0} z$, we deduce

$$
u_{6} \in\left\{\begin{array}{l}
0_{E}, d\left(P_{4} \cdots P_{2 n} z, z\right) \\
\frac{1}{2}\left[d\left(z, P_{4} \cdots P_{2 n} z\right)+d\left(P_{4} \cdots P_{2 n} z, z\right)\right]
\end{array}\right\}
$$

It is clear that $P_{4} \cdots P_{2 n} z=z$. Thus, $z=A z=P_{2}\left(P_{4} \cdots P_{2 n}\right) z=P_{2} z$. Proceeding similarly, one can find

$$
z=P_{2} z=P_{4} z=\cdots=P_{2 n} z
$$

(g) We will prove that $P_{2 n-1} z=z$. Since $P_{2 n-1} Q_{1}=Q_{1} P_{2 n-1}$, we have

$$
d\left(P_{2 n-1} z, z\right)=d\left(P_{2 n-1} Q_{1} z, Q_{0} z\right)=d\left(Q_{0} z, Q_{1} P_{2 n-1} z\right) \leq_{E} \lambda u_{7}
$$

where $u_{7} \in\left\{0_{E}, d\left(z, P_{2 n-1} z\right)\right\}$. Here we have taken $x=z$ and $y=P_{2 n-1} z$. It is obvious that $P_{2 n-1} z=z$. Using the same strategy, it can be shown that

$$
z=P_{1} z=P_{3} z=\cdots=P_{2 n-1} z
$$

As a conclusion, we conclude

$$
z=Q_{0} z=Q_{1} z=P_{m} z \forall m \in \mathbb{N}^{*}, \quad 1 \leq m \leq 2 n
$$

that is z is a coincidence point.
Case 2. If Q_{0} is continuous. The mapping Q_{0} is continuous, then $Q_{0}^{2} x_{2 k} \longrightarrow Q_{0} z$ and $Q_{0} A x_{2 k} \longrightarrow Q_{0} z$, as $k \longrightarrow+\infty$. From the condition $\left(c_{3}\right)$, the pair $\left\{Q_{0}, A\right\}$ is compatible, then for each $c \in E$ with $c \gg 0_{E}$

$$
d\left(Q_{0} A x_{2 k}, A Q_{0} x_{2 k}\right) \ll \frac{c}{2}
$$

It follows that $A Q_{0} x_{2 k} \longrightarrow Q_{0} z$. Indeed

$$
\begin{equation*}
d\left(A Q_{0} x_{2 k}, Q_{0} z\right) \leq_{E} d\left(A Q_{0} x_{2 k}, Q_{0} A x_{2 k}\right)+d\left(Q_{0} A x_{2 k}, Q_{0} z\right) \ll \frac{c}{2}+\frac{c}{2}=c \tag{2.10}
\end{equation*}
$$

(h) We need to show that $Q_{0} z=z$. First, the triangular inequality gives us

$$
\begin{align*}
d\left(Q_{0} z, z\right) & \leq_{E} d\left(Q_{0} z, Q_{0}^{2} x_{2 k}\right)+d\left(Q_{0}^{2} x_{2 k}, Q_{1} x_{2 k+1}\right)+d\left(Q_{1} x_{2 k+1}, z\right) \\
& \ll \frac{c}{3}+d\left(Q_{0}^{2} x_{2 k}, Q_{1} x_{2 k+1}\right)+\frac{c}{3} \tag{2.11}
\end{align*}
$$

It rests only the control of the term $d\left(Q_{0}^{2} x_{2 k}, Q_{1} x_{2 k+1}\right)$. To do this, we apply condition $\left(c_{5}\right)$ for $x=Q_{0} x_{2 k}$ and $y=x_{2 k+1}$ to get

$$
d\left(Q_{0}^{2} x_{2 k}, Q_{1} x_{2 k+1}\right) \leq_{E} \lambda u_{8}
$$

where

$$
u_{8} \in\left\{\begin{array}{l}
d\left(A Q_{0} x_{2 k}, Q_{0}^{2} x_{2 k}\right), d\left(B x_{2 k+1}, Q_{1} x_{2 k+1}\right), d\left(A Q_{0} x_{2 k}, B x_{2 k+1}\right) \\
\frac{1}{2}\left[d\left(B x_{2 k+1}, Q_{0}^{2} x_{2 k}\right)+d\left(A Q_{0} x_{2 k}, Q_{1} x_{2 k+1}\right)\right]
\end{array}\right\}
$$

We have four cases. We need to do the first case, the others will be the same. For this,

$$
\begin{aligned}
d\left(Q_{0}^{2} x_{2 k}, Q_{1} x_{2 k+1}\right) & \leq_{E} \lambda u_{8}=\lambda d\left(A Q_{0} x_{2 k}, Q_{0}^{2} x_{2 k}\right) \\
& \leq_{E} \lambda d\left(A Q_{0} x_{2 k}, Q_{0} z\right)+\lambda d\left(Q_{0} z, Q_{0}^{2} x_{2 k}\right) \\
& \ll \lambda \frac{c}{6 \lambda}+\lambda \frac{c}{6 \lambda}=\frac{c}{3}
\end{aligned}
$$

Combining this to (2.11) yields that $Q_{0} z=z$. Now, using similarly steps (d), (e) and (g) leads to

$$
Q_{1} z=P_{1} z=P_{3} z=\cdots=P_{2 n-1} z=z
$$

(i) We know that $Q_{1} X \subseteq A X$, there exists $w \in X$ such that $z=Q_{1} z=A w$. We shall show that $Q_{0} w=A w$. For this we write

$$
d\left(Q_{0} w, A w\right)=d\left(Q_{w}, Q_{1} z\right) \leq_{E} \lambda u_{9}
$$

where $u_{9} \in\left\{0_{E}, \frac{1}{2} d\left(Q_{0} w, z\right)\right\}$, that is, $d\left(Q_{0} w, A w\right)=d\left(Q_{0} w, z\right)=\frac{\lambda}{2} d\left(Q_{0} w, z\right)$, i.e, $Q_{0} w=A w=z$. Since $\left(Q_{0}, A\right)$ is weakly compatible, we have $z=Q_{0} z=A z$. Then, $P_{2 n} z=z$ follows from step (c), and from this and step (f), $P_{2} z=P_{4} z=$ $\cdots=P_{2 n} z=z$. As a consequence, even in this second case, z is a common fixed point of Q_{0}, Q_{1} and all the $2 n$ mappings $\left(P_{k}\right), k=1,2, \ldots, 2 n$.

Step 4: Proof of uniqueness. Let z_{1} be an other common fixed point of the above maps, then

$$
z_{1}=Q_{0} z_{1}=Q_{1} z_{1}=P_{m} z_{1} \forall m \in \mathbb{N}, 1 \leq m \leq 2 n
$$

We put $x=z$ and $y=z_{1}$ in the condition $\left(c_{5}\right)$, then

$$
d\left(z, z_{1}\right)=d\left(Q_{0} z, Q_{1} z_{1}\right) \leq_{E} \lambda u_{10}
$$

where

$$
u_{10} \in\left\{d\left(A z, Q_{0} z\right), d\left(B z_{1}, Q_{1} z_{1}\right), d\left(A z, B z_{1}\right), \frac{1}{2}\left[d\left(B z_{1}, Q_{0} z\right)+d\left(A z, Q_{1} z_{1}\right)\right\}\right.
$$

We get $u_{10} \in\left\{0_{E}, d\left(z, z_{1}\right)\right\}$. If $u_{10}=0_{E}$, then $d\left(z, z_{1}\right)=0_{E}$, so $z=z_{1}$. While, if $u_{10}=d\left(z, z_{1}\right)$, then $d\left(z, z_{1}\right) \leq_{E} \lambda d\left(z, z_{1}\right)$. Following lemma 1.12, we obtain $z=z_{1}$. Hence, there is a unique common fixed point. The proof of Theorem 2.1 is completed.

Our main theorem is an extension of a recent result of Janković et al. [20]. In fact when we let $n=2$ in Theorem 2.1, we find Theorem 2.1 of [20], which is

Theorem 2.2. Let A, B, S, T, L and M be self-maps in the complete cone metric space (X, d) satisfying the conditions:
(i) $L X \subset S T(X)$ and $M(X) \subset A B(X)$,
(ii) $A B=B A, S T=T S, L B=B L$ and $M T=T M$,
(iii) for some $\lambda \in[0,1)$ and for all $x, y \in X$, there exists

$$
u(x, y) \in\left\{\begin{array}{l}
d(L x, A B x), d(M y, S T y), d(A B x, S T y), \\
\frac{1}{2}(d(L x, S T y)+d(A B x, M y))
\end{array}\right\}
$$

such that $d(L x, M y) \leq_{E} \lambda u(x, y)$,
(iv) the pair $\{L, A B\}$ is compatible and the pair $\{M, S T\}$ is weakly compatible,
(v) either $A B$ or L is continuous.

Then A, B, S, T, L and M have a unique common fixed point.
Proof. It suffice to take $Q_{0}=L, Q_{1}=M, P_{1}=S, P_{3}=T, P_{2}=A$ and $P_{4}=B$ in Theorem 2.1.

References

[1] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007) 1468-1476.
[2] M. Abbas, B.E. Rhoades, T. Nazir, Common fixed points for four maps in cone metric spaces, Appl. Math. Comput. 216 (2010) 80-86.
[3] M. Abbas, G. Jungck, Common fixed results for non-commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (1) (2008) 416-420.
[4] H. Aydi, H.K. Nashine, B. Samet, H. Yazidi, Coincidence and common fixed point results in partially ordered cone metric spaces and applications to integral equations, Nonlinear Anal. 74 (17) (2011) 6814-6825.
[5] C. Di Bari, P. Vetro, φ-pairs and common fixed points in cone metric spaces, Rendiconti del Circolo Matematico di Palermo 57 (2008) 279-285.
[6] Y.J. Cho, R. Saadati, S. Wang, Common fixed point theorems on generalized distance in order cone metric spaces, Comput. Math. Appl. 61 (2011) 12541260.
[7] B.S. Choudhury, N. Metiya, Fixed points of weak contractions in cone metric spaces, Nonlinear Anal. 72 (2010) 1589-1593.
[8] B.S. Choudhury, N. Metiya, The point of coincidence and common fixed point for a pair of mappings in cone metric spaces, Comput. Math. Appl. 60 (2010) 1686-1695.
[9] W.-S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. 72 (2010) 2259-2261.
[10] S. Janković, Z. Kadelburg, S. Radenović, B.E. Rhoades, Assad-Kirk-Type fixed point theorems for a pair of nonself mappings on cone metric spaces, Fixed Point Theory Appl., Vol. 2009, Article ID 761086, 16 pages.
[11] E. Karapinar, Some nonunique fixed point theorems of Ćirić type on cone metric spaces, Abstract and Applied Analysis, Vol. 2010, Article ID 123094, 14 pages.
[12] D. Ilić, V. Rakočević, Quasi-contraction on a cone metric space, Appl. Math. Lett. 22 (2009) 728-731.
[13] Sh. Rezapour, R. Hamlbarani, Some notes on paper cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008) 719-724.
[14] W. Shatanawi, Partially ordered cone metric spaces and coupled fixed point results, Comput. Math. Appl. 60 (2010) 2508-2515.
[15] W. Sintunavart, P. Kumam, Common fixed points of f-weak contractions in cone metric spaces, Bulletin of the Iranian Mathematical Society, (in press).
[16] R. Sumitra, V. Rhymend Uthariaraj, R. Hemavathy, P. Vijayaraju, Common fixed point theorem for non-self mappings satisfying generalized Ćirić type contraction condition in cone metric space, Fixed Point Theory Appl., Vol. 2010, Article ID 408086, 17 pages.
[17] D. Turkoglu, M. Abuloha, Cone metric spaces and fixed point theorems in diametrically contractive mappings, Acta Mathematica Sinica (English Series). 26 (3) (2010) 489-496.
[18] G. Jungck, B.E. Rhoades, Fixed points for set valued functions without continiuty, Indian. J. Pur. Appl. Math. 29 (1998) 227-238.
[19] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986) 771-779.
[20] S. Janković, Z. Golubović, S. Radenović, Compatible and weakly compatible mappings in cone metric spaces, Math. Comput. Modelling 52 (2010) 17281738.
(Received 16 May 2011)
(Accepted 9 December 2011)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

