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1 Introduction

In 1966, Husain [1] introduced the notion of almost continuous function. The
notion of preopen sets and precontinuity introduced by Mashhour et al. [2] in
1982. They showed where that the notion of almost continuity and precontinuity
are equivalent. In 1968, Velic̆ko [3] introduced the class of δ-open sets to give more
characterization of H-closed spaces. In 1982, Hdeib [4] introduced the notion of
ω-open sets. In 1993, Raychaudhuri et al. [5] used the notion of δ-open sets
to introduce the notion of δ-preopen sets and δ-almost continuous functions as
a strictly weaker forms of preopen sets and almost continuous functions in the
sense of Husain [1]. As continuation of this work, in Section 3, we introduce and
study a new class of sets namely ωp-open sets which is properly placed between
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the class of preopen sets and the class of open sets. In Section 4, the class of ω-
almost continuous function are introduced and investigated. This class of almost
continuity is strictly stronger than almost continuity according to Husain and
strictly weaker than continuity. Finally, in section 5, some decompositions of
continuity are obtained.

2 Preliminaries

Throughout this paper <X, IA (simply X) represent non-empty topological
spaces (briefly, spaces) on which no separation axioms are assumed unless explicitly
stated. If A is a subset of X , then the closure and interior of A in X are denoted
by ClA and IntA, respectively. A subset U of a space X is called δ-open [3] (resp.
ω-open [4]) if for each x . U , there exists an open set G containing x such that
IntClG R U (resp. G �U is countable). In a space <X, IA the family of all δ-open
and ω-open sets are denoted by Iδ and I

ω, respectively and it is well known that
Iδ P I P I

ω. The complement of a δ-open (resp. ω-open) set is called δ-closed
(resp. ω-closed). For a subset A of a space X , the δ-closure (resp. δ-interior,
ω-closure and ω-interior) is denoted by ClδA (resp. IntδA, ClωA and IntωA). A
subset A of a space X is said to be preopen [2] (resp. δ-preopen [5], pre-ω-open
[6]) if A R IntClA (resp. A R IntClδA, A R IntωClA). The family of all preopen
(resp. δ-preopen, pre-ω-open) subsets of a space X will be denoted by PO<XA
(resp. δPO<XA, PωO(X)).

Definition 2.1 ([7]). A space X is said to locally countable if for each x . X ,
there exists a countable open subset G of X containing x.

Definition 2.2 ([7]). A space X is said to anti-locally countable if each non-empty
open subset of X is uncountable.

Lemma 2.3 ([7]). If a space X is an anti-locally countable space, then:

1. ClωA � ClA for each ω-open subset of X.

2. IntωA � IntA for each ω-closed subset of X.

Lemma 2.4 ([8]). If <A, IAA is an anti-locally countable subspace of a space X,
then ClωA � ClA.

Lemma 2.5 ([6]). For a subset A, if G is open then Cl<G¸AA � Cl<G¸ClAA,
and hence G¸ClA R Cl<G¸AA.

As an immediate consequence of the above lemma we have:

Corollary 2.6. For a subset A, if G is ω-open then Clω<G¸AA � Clω<G¸ClωAA,
and hence G¸ClωA R Clω<G¸AA.
Lemma 2.7 ([7, 8]). If A is any subset of a space <X, IA, then <IAAω � <IωAA.
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Definition 2.8 ([9]). A subset A of a space X is said to be ω-dense if ClωA � X .

Definition 2.9 ([1]). A function f � X � Y is said to be almost continuous in
the sense of Husain if for each x . X and each open set V containing f<xA, there
exists an open set U containing x such that U R Clf�1<V A.
Definition 2.10. A function f � X � Y is said to be precontinuous [2] (resp.
pre-ω-continuous [6]) if f�1<V A is preopen (resp. pre-ω-open) in X for each open
subset V of Y .

Mashhor et al. [2] proved that the almost continuity in the sense of Husain
and precontinuity are equivalent.

3 ωp-Open Sets

Definition 3.1. A subset A of a space X is said to be ωp-open if A R IntClωA.

The complement of such set is called ωp-closed. The collection of all ωp-open
(resp. ωp-closed) subsets of X will be denoted by ωpO(X) (resp. ωpC(X)).

Remark 3.2. It is obvious that:

1. Every open set is ωp-open.

2. Every ωp-open is preopen, δ-preopen and pre-ω-open.

The following example shows that the converses of neither parts of the above
remark are true.

Example 3.3. Consider the set of all real numbers R with the indiscrete topology
τ , then the set A � F0K is preopen, δ-preopen and pre-ω-open but not ωp-open.
However, the set B � <0, 1A is ωp-open but it is neither ω-open nor open.

The following example with the above example show that the ω-openness and
ωp-openness are independent topological concepts.

Example 3.4. Let the set of all natural numbers N be equipped with the topology
I � FNKº FA R N � 0 � AK. Then the set A � F0K is ω-open and pre-ω-open but it
is neither ωp-open, preopen, δ-preopen nor open.

However, the following example with Example 3.3 show that the δ-preopenness
and pre-ω-openness are independent topological concepts.

Example 3.5. Consider the uncountable point included topology I � FφKºFG R
R � <0, 1A R GK on R [10, Example 10 , p.44]. Then Iδ � Fφ,RK, and hence every
subset of R is δ-preopen. While, the set F0K is not pre-ω-open.

We say a subset A of a space <X, IA is a preω-open subset of X , if it is a preopen
subset of <X, IωA. The family of all preω-open subsets of a space X denotes by
PO<XωA.
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Remark 3.6. We notice that:

1. Every ωp-open set is preω-open, but not conversely. Since the set A � F0K
in Example 3.4 is preω-open but it is not ωp-open.

2. Every preω-open is pre-ω-open, but not conversely. Since the set G 1

2
L in

Example 3.5 is pre-ω-open, but it is not preω-open.

3. The concepts of preopenness and preω-openness are independent as well as
the δ-preopenness and preω-openness. Since in Example 3.3, the set F0K is
preopen and δ-preopen but it is not preω-open. However, in Example 3.4,
the set F0K is preω-open but it is neither preopen nor δ-preopen.

The following diagram indicates the relationships among the above type of

sets:
ω � open � preω � open � pre � ω � open� � � � � �

open � ωp � open � preopen � δ � preopen

where A � B (resp. A � B) means A implies B (resp. A and B are independent).

Proposition 3.7. A subset A of a space X is ωp-closed if and only if ClIntωA R
A.

Proof. A is ωp-closed if and only if X � A is ωp-open if and only if X � A R
IntClω<X � AA if and only if ClIntωA R A.

Proposition 3.8. Arbitrary union <intersectionA of ωp-open <ωp-closedA sets is
ωp-open <ωp-closedA.
Proof. Straightforward.

Remark 3.9. The intersection of even two ωp-open sets may not be ωp-open.
Thus the family of ωp-open sets in a space X does not always form a topology on
X. For example, the sets A � ��1, 0� and B � �0, 1� in Example 3.3 are ωp-open
sets but A¸B � F0K is not ωp-open.

Proposition 3.10. If X is an anti-locally countable space, then ωpO<XA � PO<XωA.
Proof. A . ωpO<XA if and only if A R IntClωA Fby Definition 3.1K if and only if
A R IntωClωA Fby Lemma 2.3K if and only if A . PO<XωA.
Proposition 3.11. If X is an anti-locally countable space, then PO<XA � PωO<XA.
Proof. The proof is analogous to the proof of Proposition 3.10.

In view of Example 3.3, we notice that it is not necessary that ωpO<XA �
PO<XA or PO<XA � PO<XωA even in an anti-locally countable space.

Proposition 3.12. Let <A, IAA be an anti-locally countable subspace of a space<X, IA. Then
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1. A is ωp-open if and only if it is preopen.

2. A is preω-open if and only if it is pre-ω-open.

Proof. (1) A is ωp-open if and only if A R IntClωA if and only if A R IntClA Fby
Lemma 2.4K if and only if A is preopen.

(2) The proof is analogous to the first part.

Theorem 3.13. A singleton subset of a space X is ωp-open if and only if it is
open.

Proof. Let FxK be an ωp-open subset of X . Then FxK R IntClω FxK. Since each
singleton subset of any space is ω-closed, then Clω FxK � FxK. Thus FxK R Int FxK.
Hence FxK is open. The proof of the converse part is followed by part (1) of Remark
3.2.

Corollary 3.14. A space X is discrete if and only if every subset of X is ωp-open.

Proof. It is a direct consequence of Theorem 3.13.

Analogous to the above results we can obtain the following result:

Proposition 3.15. A singleton subset of a space X is preω-open if and only if it
is ω-open. Hence, a space X is locally countable if and only if every subset of X

is preω-open.

Proof. Similar to the proof of Theorem 3.13 and Corollary 3.14.

Theorem 3.16. A subset A of a space X is ωp-open if and only if it is the
intersection of an open and an ω-dense subset of X.

Proof. Let A be an ωp-open subset of X . Then A R IntClωA. Put G � IntClωA

and D � <X � IntClωAAºA, then G is an open subset of X and A � G¸D,
so we have only to show D is an ω-dense subset of X . Since ClωD � Clω�<X �
IntClωAAºA� � Clω<X�IntClωAAºClωA � ClωClIntω<X�AAºClωA S Intω<X�
AAºClωA � X . Thus D is an ω-dense subset of X . Conversely, let A � G¸D,
where G and D are open and ω-dense subsets of X , respectively. We have to
show G R Clω<G¸DA. Suppose that G º Clω<G¸DA, then there exists a point
y . G but y � Clω<G¸DA. This means that there exists an ω-open subset V of
X containing y such that V ¸<G¸DA � φ. Hence <V ¸GA¸D � φ. This implies
that y � ClωD � X which is impossible. Therefore, G R Clω<G¸DA, and hence
A R G R IntClωG R IntClω<G¸DA � IntClωA. Thus A is ωp-open.

Theorem 3.17. A subset A of a space X is ωp-open if and only if there exists an
open subset G of X such that A R G R ClωA.

Proof. It is very simple, so we omitted.
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Theorem 3.18. A subset A of a space X is ωp-open if and only if G¸A is
ωp-open for each open subset G of X.

Proof. Let A be an ωp-open subset of X . Let G be any open subset of X . Then
G¸A R G¸ IntClωA Fsince A is ωp-openK � Int<G¸ClωAA R IntClω<G¸AAFby Corollary 2.6K. Hence G¸A is ωp-open. The other part is followed from
A � X ¸A.

Corollary 3.19. The intersection of an open set and an ωp-open set is ωp-open.

Theorem 3.20. If A is ωp-open and U R A R ClωU , then U is ωp-open.

Proof. Let A be ωp-open and U R A R ClωU . Then by Theorem 3.17, there exists
an open subset V of X such that A R V R ClωA. This implies that U R V R ClωU .
Hence by Theorem 3.17, U is ωp-open.

If A is a subspace of a space X and B R A, then the ω-closure and ω-interior
of B in A are denoted by ClAω B and IntAω B, respectively.

Theorem 3.21. Let A . ωpO<XA and V . ωpO<AA. Then V . ωpO<XA.
Proof. Let A . ωpO<XA and V . ωpO<AA. Then by Theorem 3.17, there are two
open subsets G and O of X such that A R G R ClωA and V R O¸A R ClAω V . It
follows from Lemma 2.7, ClAω V � ClωV ¸A. Since A is ωp-open and O is open,
then by Corollary 3.19, O¸A is an ωp-open subset of X . Hence by Theorem
3.17, there exists an open subset U of X such that O¸A R U R Clω<O¸AA.
Thus V R U R Clω<O¸AA R Clω<ClωV ¸AA R ClωV . So by Theorem 3.17,
V . ωpO<XA.
Theorem 3.22. If B . ωpO<XA and B R A R X, then B . ωpO<AA.
Proof. Straightforward.

Definition 3.23. The intersection (union) of all ωp-closed (ωp-open) subsets of
X containing (contained in) A is called the ωp-closure (ωp-interior) of A and is
denoted by ωpClA (ωpIntA).

Proposition 3.24. For subsets A and B of a space X, we have:

1. A is ωp-closed (ωp-open) if and only if ωpClA � A <ωpIntA � AA.
2. If A R B, then ωpClA R ωpClB and ωpIntA R ωpIntA.

3. ωpClA <ωpIntAA is ωp � closed <ωp � openA.
4. ωpCl<ωpClAA � ωpClA and ωpInt<ωpIntAA � ωpIntA.

5. ωpCl<X �AA � X � ωpIntA and ωpInt<X � AA � X � ωpClA.

6. x . ωpClA <x . ωpIntAA if and only if for each <there exists anA ωp � open

set V containing x, V ¸A h φ <V R AA.
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7. ωpClA � AºClIntωA and ωpIntA � A¸ IntClωA.

Proof. The proof of (1)-(6) are followed by using [11, Lemma 3.1 and Lemma 3.3].
We only write the proof of part (7). Since ClIntω<AºClIntω AA R ClIntωAº
ClIntωClIntωA � ClIntωA R AºClIntωA, then by Proposition 3.7, we have
AºClIntωA is an ωp-closed set containing A, Therefore, by definition of ωpClA,
we obtain ωpClA R AºClIntωA. Conversely, let x be any point of AºClIntωA.
Then x . A or x . ClIntωA. If x . A, then x . ωpClAF Since A R ωpClAK.
Now, If x . ClIntωA, let V be any ωp-open subset of X containing x. Then by
Theorem 3.17, there exists an open set G contains x such that V R G R ClωV .
Since x . ClIntωA, then G¸ IntωA h φ, so V ¸ IntωA h φ, therefore V ¸A h φ.
Thus x . ωpClA, and hence AºClIntωA R ωpClA. So ωpClA � AºClIntωA.
Then by using part (5), we obtain ωpIntA � A¸ IntClωA.

Theorem 3.25. If A is an ω-open <ω-closedA subset of a space X, then ωpClA �
ClA <ωpIntA � IntAA.
Proof. If A is ω-open, then by part (7) of Proposition 3.24, ωpClA � AºClIntωA �
AºClA � ClA. Also, if A is ω-closed, then by part (7) of Proposition 3.24,
ωpIntA � A¸ IntClωA � A¸ IntA � IntA.

4 ω-Almost Continuous Functions

For a function f � X � Y , it is well known that the continuity of f can be
characterized by the condition f<ClAA R Clf<AA for every subset A of X , whereas
almost continuity is equivalent to the same condition when A is restricted to lie
in the class of open subsets of X (see [12]). However, the δ-almost continuity is
equivalent to the same condition when A is more restricted to lie in the class of
δ-open subsets of X . This motivates us to define ω-almost continuous function
which is equivalent to the same condition whereas A is taken through the class of
all ω-open subsets of X .

Definition 4.1. A function f � X � Y is said to be ω-almost continuous, if
f<ClAA R Clf<AA for every ω-open subset A of X .

Theorem 4.2. For a function f � X � Y , the following are equivalent:

1. f is ω-almost continuous.

2. f�1<GA is ωp-open, for each open set G of Y .

3. For each x . X and each neighborhood G of f<xA in Y , Clωf�1<GA is a
neighborhood of x in X.

4. For each x . X and each neighborhood G of f<xA in Y , there exists an
ωp-open set S such that x . S R Clωf�1<GA.
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Proof. <1A � <2A Let G be any open subset of Y . Then X � Clωf�1<GA is
an ω-open subset of X . So, by ω-almost continuity of f , we have f<Cl<X �
Clωf�1<GAAA R Cl<f<X�Clωf�1<GAAA R Y �Int<f<Clωf�1<GAAA. This implies that
X � IntClωf�1<GA R f�1<f<X � IntClωf�1<GAAA R f�1<Y � Int<f<Clωf�1<GAAAA �
X �f�1<Int<Clωf�1<GAAA R X�f�1<GA. Therefore, f�1<GA R IntClωf�1<GA. Thus
f�1<GA is ωp-open.<2A� <3A It followes by using Theorem 3.17.<3A � <1A Let V be an ω-open subset of X . Let x . ClV but f<xA � Clf<V A.
Then there exists an open subset G of Y containing f<xA such that G¸ f<V A �
φ. Hence f�1<GA¸V � φ. Since V is ω-open, then Clωf�1<GA¸V � φ. Since
Clωf�1<GA is a neighborhood of x. This implies that, x � ClV which is against.
Thus f<ClV A R Clf<V A. Hence f is ω-almost continuous.<3A� <4A It is clear.

We say a function f � <X, IA � <Y, τA is ω�-almost continuous, if f � <X, IωA �<Y, τA is almost continuous function. That is, a function f � X � Y is ω�-almost
continuous if and only if f<ClωAA R Clf<AA for each ω-open subset A of X .

Remark 4.3. It is obvious that:

1. Every continuous function is ω-almost continuous.

2. Every ω-almost continuous function is almost continuous, δ-almost contin-
uous, ω�-almost continuous and pre-ω-continuous.

3. Every ω-continuous function is ω�-almost continuous function.

The following examples show that the converse of neither part of the above
remark is true.

Example 4.4. Let τ and U be the indiscrete and usual topologies on R. Then
identity function f � <R, τA � <R, U A is ω-almost continuous, and hence it is
ω�-continuous but it is neither continuous nor ω-continuous.

Example 4.5. Let τ and I be the indiscrete and discrete topologies on R. Then
identity function f � <R, τA � <R, IA is δ-almost-continuous, almost-continuous and
pre-ω-continuous, but it is neither ω-almost continuous nor ω�-almost continuous.

Example 4.6. Let <N, τA be the topological space which given in example 3.4, and
let I be the discrete topologies on N , then the identity function f � <N, τA � <N, IA
is ω�-almost continuous but it is not ω-almost continuous. However, it is also
ω-continuous.

The following example with example 4.4 show that the ω-almost continuity
and ω-continuity are independent topological concepts.
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Example 4.7. Consider the identity function f � <N, τA � <N, IA, where τ and I

are the indiscrete and discrete topologies on N, then f is ω-continuous, but it is
not ω-almost continuous.

Theorem 4.8. For a function f � X � Y , the following statements are equivalent:

1. f is ω-almost continuous.

2. for each x . X and each open set G of Y containing f<xA, there exists an
ωp-open set U of X containing x such that f<UA R G.

3. f�1<F A is ωp-closed, for each closed set F of Y .

4. f<ωpClAA R Clf<AA, for each subset A of X.

5. ωpClf�1<BA R f�1<ClBA, for each subset B of Y .

6. f�1<intBA R ωpIntf�1<BA, for each subset B of Y .

Proof. Straightforward.

Theorem 4.9. Let f � X � Y be a function from an anti-locally countable space
X into a space Y. Then

1. f is ω-almost continuous if and only if it is ω�-almost continuous.

2. f is almost continuous if and only if it is pre-ω-continuous.

Proof. (1) It follows from Proposition 3.10 and Theorem 4.2.

(2) It follows from Proposition 3.11.

Proposition 4.10. Let f be an injective function from a space X into a discrete
space Y . Then f is ω-almost continuous if and only if X is a discrete space.

Proof. It is follows from Theorem 3.13 and Theorem 4.2.

Theorem 4.11. If f � X � Y is an ω-almost continuous function and U an open
subset of X, then f2U � U � Y is ω-almost continuous.

Proof. Let G be any open subset of Y . Then by ω-almost continuity of f and
Theorem 4.2, we have f�1<GA is an ωp-open subset of X . Since U is open, then
by Corollary 3.19, f�12U <GA � f�1<GA¸U is an ωp-open subset of X , and hence by

Theorem 3.22, f�12U <GA is an ωp-open subset of U . That is, by Theorem 4.2, f2U is
ω-almost continuous.

Theorem 4.12. Let f � X � Y and let FUλ � λ . ΛK be any ωp-open cover X.
Then f is ω-almost continuous, if f2Uλ

� Uλ � Y is ω-almost continuous for each
λ . Λ.
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Proof. Let G be any open subset of Y . Then f�12Uλ

<GA is an ωp-open subset of
Uλ, for each λ . Λ. Since Uλ is ωp-open, for each λ . Λ, so by Theorem 3.21
f�12Uλ

<GA is an ωp-open subset of X , for each λ . Λ. Since f�1<GA � ºλ.λ f�12Uλ
<GA,

then by Proposition 3.8, f�1<GA is an ωp-open subset of X . Hence f is ω-almost
continuous.

Theorem 4.13. Let Y be any regular space and let X be any space. Then a
function f � X � Y is continuous if and only if it is ω-almost continuous.

Proof. Let x be any point of X and let G be any open subset of Y containing
f<xA. Since Y is regular, then there exists an open subset U of Y such that
f<xA . U R ClU R G. Since f is ω-almost continuous, then by Theorem 4.2 and
Theorem 4.8, Clωf<UA is a neighborhood of x in X and Clωf�1<UA R f�1<ClUA.
Therefore, x . IntClωf�1<UA R f�1<GA. Thus f�1<GA is a neighborhood of x in
X . This implies that f is continuous. The converse part is followed by Remark
4.3.

5 Some Decompositions of Continuity

In this section, we shall obtain some decomposition of some types of continuity.
For this we recall some definitions:

Definition 5.1. A subset A of a topological space X is said to be regular closed
[13] (resp. semi-closed [14] or t-set [15], semi-regular [16], ω-semi-open [17]) if
A � ClIntA (resp. IntClA R A, IntClA R A R ClIntA, A R ClIntωA).

Remark 5.2. The complement of ω-semi-open sets are called ω-semi-closed. It is
easy to see that, a subset A of a space X is ω-semi-closed if and only if IntClωA R
A if and only if IntClωA � IntA.

Definition 5.3. A subset A of a space X is said to be locally closed [18] (resp.A-set[19], B-set [15], AB-set [12], Bω-set) if A � G¸F , where G is open and F is
closed (resp. regular closed, semi-closed, semi-regular, ω-semi-closed).

Remark 5.4. It is easy to see that every semi-closed set is ω-semi-closed. Hence
every B-set is Bω-set.

Definition 5.5. A function f � X � Y is said to be contra-continuous [20] (resp.
contra-ω-continuous [9] or co-ω-continuous [21], LC-continuous [18], A-continuous
[19], B-continuous [15], AB-continuous [16], Bω-continuous, perfectly continuous
[22] or totally continuous [14]) if the inverse image of any open subset of Y is a
closed (resp. ω-closed, locally closed, A-set, B-set, AB-set, Bω-set, clopen) subset
of X .

Theorem 5.6. A subset A of a space X is open if and only if it is ωp-open andBω-set.
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Proof. If A is an open set, then by part (1) of Remark 3.2, the set A is ωp-
open. Now, Since IntClωX R X , so X is ω-semi-closed, and hence A � A¸X

is Bω-set. Conversely, let A be ωp-open and Bω-set. A R IntClωA and A �
G¸H , for some open set G and ω-semi-closed set H . Then A � A¸ IntClωA R
G¸ IntClω<G¸HA R G¸ IntClωG¸ IntClωH � G¸ IntH Fby Remark 5.2K �
Int<G¸HA � IntA. Hence A is open.

Corollary 5.7. For a subset A of a space X, the following statements are equiv-
alent:

1. A is open.

2. A is ωp-open and locally closed.

3. A is ωp-open and A-set.

4. A is ωp-open and AB-set.

5. A is ωp-open and B-set.

Proof. It is followed from the implications (locally closed � B-set � Bω) and
(A-set � AB-set � B-set � Bω) and Theorem 5.6.

Hence, we obtain the following decompositions of continuity.

Theorem 5.8. For a function f � X � Y , the following are equivalent:

1. f is continuous.

2. f is ω-almost continuous and LC-continuous.

3. f is ω-almost continuous and A-continuous.

4. f is ω-almost continuous and AB-continuous.

5. f is ω-almost continuous and B-continuous.

6. f is ω-almost continuous and Bω-continuous.

Proof. It follows from Theorem 5.6 and Corollary 5.7.

Theorem 5.9. For a subset A of a space X, the following statements are equiv-
alent:

1. A is clopen.

2. A is ω-closed and ωp-open.

3. A is closed and ωp-open.

Proof. Straightforward.

Our final result is the following decompositions of perfectly continuity.

Theorem 5.10. For a function f � X � Y , the following are equivalent:
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1. f is perfectly continuous.

2. f is ω-almost continuous and contra continuous.

3. f is ω-almost continuous and contra ω-continuous.

Proof. It follows from Theorem 5.9.
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