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Abstract : For a positive integer k, an operator A on a Hilbert space H is
called k-quasiposinormal operator if A*F(AA*)A*F < 2 A*(E+D AK+D for some
¢ > 0. In this paper, we describe the conditions for the composition and weighted
composition operators to be k-quasiposinormal operators.
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1 Introduction

Throughout the paper, by an operator we mean a bounded linear operator
on a Hilbert space. If H denotes a separable complex Hilbert space, denote the
algebra of all operators on H by B(H) and the kernel and range of an operator A
on H by Ker(A) and Ran(A) respectively. An operator A € B(H) is called

e hyponormal if AA* < A*A;
o p-hyponormal if (AA*)P < (A*A)P, where 0 < p < 1;
o quasihyponormal if A*(AA*)A < A*?A? equivalently (A*A)? < A*2A2;

o k-quasihyponormal if A**(AA*)A*F < A*(E+D AK+HD where k is a positive
integer;
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e (p, k)-quasihyponormal if A**(AA*)PA* < A*F(A* A)P A¥| where k is a pos-
itive integer and 0 < p < 1;
e posinormal if AA* < c2A* A for some ¢ > 0;
o p-posinormal if (AA*)P < c2(A*A)P for some ¢ > 0, where 0 < p < 1;
e (p, k)-quasiposinormal if A*F(AA*)PAF < 2 A*k(A* A)P AF for some ¢ > 0.

It is clear that for p = 1, p-hyponormal, p-posinormal and (p, k)-quasihyponor-
mal are hyponormal, posinormal and k-quasihyponormal respectively. Also for
k =1, (p, k)-quasihyponormal, (p, k)-quasiposinormal and k-quasihyponormal are
p-quasihyponormal, p-quasiposinormal and quasihyponormal respectively.

Definition 1.1. An operator A € B(H) is called
o quasiposinormal if A*(AA*)A < c2A*2A? for some ¢ > 0;

o k-quasiposinormal if — A*F(AA*)AF < 2A**HD AR for some ¢ > 0,
where k is a positive integer.

One can see from the definitions, as expected, for p =1,

(p, k) — quasiposinormal = k — quasiposinormal

and for £k =1,

k — quasiposinormal = quasiposinormal.

Also one can easily verify that

hyponormal C quasihyponormal C quasiposinormal C k-quasiposinormal;
k — quasihyponormal C k — quasiposinormal;

k — quasiposinormal C k' — quasiposinormal

for positive integers k < k.

The readers are referred to [1-6] and the references therein for more details
and applications of hyponormal, p-hyponormal, k-quasihyponormal and (p, k)-
quasihyponormal operators.

Let (2,4, 11) be a o— finite measure space. A measurable transformation
T :Q — Q satistying

w(T~1(B)) =0 whenever u(B)=0 for B€ A

is said to be a non-singular measurable transformation. If T is non-singular, then
the measure T ~! given by

(WT™)(B) = W(T~'(B)) for B € A,
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is absolutely continuous with respect to the measure p and we denote it by writing
uT~1 << p. Hence by the Radon Nikodym theorem, there exists a non-negative
measurable function h such that

(1 )B) = [ hd
B
for every B € A. The function h is called the Radon Nikodym derivative of the
measure pT~1 with respect to the measure . It is denoted by h = duT 1 /dpu.
A weighted composition operator W (= W(, 1)) acting on the Hilbert space
L?, induced by a complex-valued measurable function v and a measurable trans-
formation T is given by

Wf=u-foT foreach f € L%

In case u =1 a.e., W becomes a composition operator denoted by Crp.

We use a symbol E very frequently in the paper, which denotes the conditional
expectation operator E(./T~1(A)) = E(f). E(f) is defined for each non-negative
function f or for each f € LP(Q, A, 1), 1 < p < 00, and is uniquely determined by
the conditions

(i) E(f) is T~*(A)-measurable, and
(ii) if B is any T~ '(A)-measurable set for which [, f du exists, we have

/Bf dn = /BE(f) .

The conditional expectation operator E has the following properties:
El.E(f-goT) = E(f)-(goT).
E2.If f > g almost everywhere, then FE(f) > E(g) almost everywhere.
E3. E(1)=1.

B4 |E(fg)l < E(If1)E(lg]?).
E5. For f > o almost everywhere, E(f) > 0 almost everywhere.

For each measurable function f, there exists a measurable function g such that
E(f) = goT. If we assume that the support of g lies in the support of h, then
E(f) = goT for exactly one measurable function.

In particular, g = E(f) o T~! is a well defined measurable function.

As an operator on LP, F is the projection operator onto the closure of the
range of the composition operator Cr. This operator plays a vital role in the study
of composition and weighted composition operators on various Banach function
spaces (see [1] and [7]) and in this paper we present few more applications of this
operator. For a deeper study of the properties of expectation operator we refer
the paper of Lambert [8].
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In the present paper various examples are given to show the proper inclu-
sion amongst the classes described in the beginning. Some properties of the k-
quasiposinormal operators acting on the Hilbert space H are discussed. Paper
also provides applications of conditonal expectation operator E to characterize
k-quasiposinormal composition and k-quasiposinormal weighted composition op-
erator acting on L2.

2  On Hilbert Space

Motivated by the result [2, Theorem 1] of Douglas, Lee and Lee [5, Theorem
2.2] obtained some characterization for the (p, k)-quasiposinormal operators, 0 <
p <1 and k any natural number, introduced by them. This led us immediately to
the following results about a k-quasiposinormal operator A acting on the Hilbert
space H.

Theorem 2.1. For an operator A € B(H), the following are equivalent:

1. A is k-quasiposinormal.

Ran(A**A) ¢ Ran(A**+1),
There exists C' € B(H) satisfying A*A = A*Fk+DC,

There exists a positive operator P € B(H) satisfying

AF(AAT) AR = AR pAGHD,

5. Ran(A**\/AA*) C Ran(A*FVA*A).
6. There exists C € B(H) satisfying A*AA* = A*F\/A*A C.

7. There exists a positive operator P € B(H) satisfying
A (AA) AR = AV A A PVA*A A

Proof. Equivalence of the conditions 1, 5, 6 and 7 follow from [5, Theorem 2.2]
on setting p = 1. The equivalence of the conditions 1, 2, 3 and 4 follow along the
lines of proof of [2, Theorem 1]. O

The conditions 5, 6 and 7 are less useful being more difficult than the conditions
2, 3 and 4 to check whether an operator is k-quasiposinormal or not.

Now, it is evident that every invertible operator is k-quasiposinormal for
each positive integer k and if A € B(H) is k-quasiposinormal then aA is k-
quasiposinormal, for each a € C. It is also apparent that if A € B(H) is k-
quasiposinormal and V' € B(H) is an isometry then VAV* is k-quasiposinormal.
The next result can be obtained along the computations made in [5, Theorem 2.6]
with p = 1.
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Theorem 2.2. If A € B(H) is k-quasiposinormal then there exists ¢ > 0 such
that
1A ]| AFF ]| > ]| AR

forallx € H.

Corollary 2.3. If A € B(H) is k-quasiposinormal then Ker(A™) = Ker(A¥) for
alln > k.

Corollary 2.4. If A € B(H) is k-quasiposinormal and A™ = 0 for some n > k,
then A* = 0.

Now we discuss few examples which make the relevance of the study.

Example 2.5. Consider the Hilbert space 1? with orthonormal basis {e,|n > 0}.
Let A be the unilateral weighted shift with weight sequence <an> where

n>0’
3 ifn=0
ap =14 2 ifn=1.
1 ifn>2

Then ||A*Aeo||? = 81, ||A%e0||*> = 36 and Ran(A*A) C Ran(A*?). Hence A
is not quasithyponormal but is quasiposinormal. This justifies that the inclusion
quasihyponormal C quasiposinormal is strict.

Example 2.6. Through this example, we show that the inclusion in k-quasihypono-
rmal C k-quasiposinormal is also strict. For, let A be the unilateral weighted shift
with a positive weight sequence <o¢n>n20 with ag—1 > ai and o, < g1 < apys <

Then one can see that, | A*AFeg| > || A ey and if ax—1 < cay for some
c>1 then

A" ARz|| < e Az
for all x € H. Hence, A is not k-quasihyponormal but is k-quasiposinormal.

Next, we show that the inclusion k-quasiposinormal C k’-quasiposinormal,
where k < k’, is also strict.

Example 2.7. Let A be the unilateral weighted shift with a weight sequence
<o¢n>n>0, where ag, = 0 and «, = 1 for each n # k. Then A is (k+1)-quasiposino-
rmal but not k-quasiposinormal.

It is easy to verify that unilateral shift operator U on the Hilbert space I sat-
isfies the condition (3) of the Theorem 2.1 with C' = U? and is k-quasiposinormal,
whereas U™ is not k-quasiposinormal.

The class of k-quasiposinormal operators is not translation invariant i.e. if A is
k-quasiposinormal then (A 4+ o) may not be k-quasiposinormal for o € C. It can
be verified by the fact that A = (U* — 21) is k-quasiposinormal being invertible
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but A + 21 = U* is not k-quasiposinormal. This also ensures that the sum of two
k-quasiposinormal operators need not be k-quasiposinormal.

In general, the product of two k-quasiposinormal operators need not be k-
quasiposinormal. This can be checked by considering the unilateral shift operator
A and the diagonal operator B with diagonal entries ag = 1,3 = 0 and a,, = 1 for
n > 2. Then A and B both are quasiposinormal and AB is a unilateral weighted
shift operator with weight sequence <6">n>0’ where B, = 0,81 =0 and 3, =1
for n > 2. Hence AB is not quasiposinormal. It is worth noticing that these
operators A and B do not commute. It is yet not known, whether the product
of two commuting k-quasiposinormal operators is a k-quasiposinormal operator
or not. However, the next result present some affirmative answer under certain
situations.

Theorem 2.8. If A and B are k-quasiposinormal operators such that A commutes
with B and B* both then AB is k-quasiposinormal.

Proof. We can assume that
A*k(AA*)Ak < CA*(kJrl)A(kJrl)

and
B*k(BB*)Bk < cB*(k—i—l)B(k-i-l)

for some ¢ > 0. As the positive operators (cA*(F+DAK+L) — A*k(44%)AF) and
(eB**+D Bk+1) — B*k(BB*)B*) commute, hence

(cAT D ARTL AR (AA*)AF) (eB* VBT 4 p**(BB*)B*) >0 (2.1)
By the similar argument, we have

(cA* D ARTY 4 AR (AA*)AF) (eB* TV BEHD — p**(BB*)B*) >0 (2.2)
Using (2.1) and (2.2), we find that

(AB)™"(AB)(AB)"(AB)") = (A**(4A")A") (B**(BB")B¥)
< > (A*(k+1)A(k+1)) (B*(k+1)B(k+1))
= *(AB)** ) (AB) D),

Hence AB is k-quasiposinormal. O

Corollary 2.9. If A is a k-quasiposinormal and B is a normal operator such that
A commutes with B then AB is k-quasiposinormal.

Proof. As B is a normal operator, by Fuglede-Putnam theorem, A commutes with
B*. Hence the result. O
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3 Weighted Composition Operators

Let (92, A, 1) be a o— finite measure space and T : 2 — ) be a measurable
transformation inducing composition operator Cr(f +— f o T) on L?. For the
non-singular transformation 7 : Q — Q and a positive integer k, we mean by T*
the composition ToT o---oT(k times). Let T° = I and for k > 1, define the

measure T ~% on the measure space (Q, A4, i) as
pT~*(B) = pr~*Y(T"Y(B)) for B € A.

Then

(k=1)

pT =% << uT~ << << pT? << Tl << p

We denote the Radon Nikodym derivative of 7 ~* with respect to by hy and the
Radon Nikodym derivative of uT~**+1) with respect to u7 " by hj. We assume
that ho = 1 and hy = h. It can be seen that hy, = h-hoT~t-hoT2.....hoT~(k=1),
These notations help us to present the following facts, which are either known or
obtained by simple computations. For f € L2,

1. Cif = h-E(f)oT L.

2. For any positive integer k, Ckf = foT* and C3¥f = hy - E(f) o T7F,
where hy, = duT =" /dp.

3. CyCrf = h-f.
4. CrCrf = (hoT)- E(f).
5. E is the identity operator on L? if and only if T—(A) = A.
Theorem 3.1. Let Cr € B(L?). Then the following are equivalent:
1. Cr is quasiposinormal.
2 b Il < clVBz - f| for each f € L2,
3. h- fl <cll\/h-E(h)oT=T- f|| for each f € L.
4. h < chy, where hy = dpT=2/duT—1.
5. h<cPE(h)oT™ 1
Proof. (1) = (2):
(1) <= C;(C7C3)Or < PCH2CE
— (C4 Or)* < 2032 O3
— (PP, f) < 02/|foT2|2du = 02/|f|2h2du for each f € L?
= <h2f,f> < <c2h2f,f> for each f € L?

< ||h- f|| < cl|V/ha- f| for each f € L.
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(2) = (3): This part of the Theorem follows by using the observation that for
each f € L2

(haf, [)

(CFCTf. f)
(Cr(CrCr)Crf, f)
<h E(h-foT)oT™! f>

(h-E(h)oT™" - f,f),

which yields that ho = h- E(h) o T~

(1) = (4): (1) <= (h2f, f) < (Ehaf, f) for each f € L?. As a consequence
of this, (1) <= h? < c*hy. The result follows from here by using the fact that
hy = dpT=2/dp = (dpT =2 /dpT =) - (dpT =" /dp) = h - hy.

(1) = (5): This follows by replacing the value of hy by h- E(h) o T~! in the
above arguments. Hence the Theorem. O

It is interesting to see that hy = h-E(h)oT ! = h-hi, so that hy = E(h)oT!
a.e. on the support of h.

Corollary 3.2. If T-Y(A) = A then Cr is quasiposinormal if and only if h <
2hoT 1.
Theorem 3.3. Let Cr € B(L?). Then the following are equivalent:
1. Cr is k-quasiposinormal.
2. |[Vhi-hoT=k=Df|| <c|[/hg - E(h) o Tk f|| for each f € L*.
3. hp-hoT— (=1 < 2, . E(h) o T=*, where hy, = duT =% /dy.
4o hipey - (hoT=R=1)2 < 2hy y -hoT~ =1 . E(h) o T—*.
5. hgr0T t hoT=* D <2hy_ 1 oT 1. E(h)oTF.
Proof. Using the observations,
(C* (CTCT)CT)f (CTCT)(fOTk)
“E(hoT - foTk)
=hy-EhoT-foTk)oT*
= hy, - hoT—(k=1). f
and
x(k k *
CT( +1)Cé +1)f _ (CTk(h fo Tk)
=hy-Eh-foTF)oT™*
=hy-E(h)oT ",
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we conclude that Cr is k-quasiposinormal if and only if for each f € L2,

(DI £ py < RO (CrCRCR f f)

hi-hoT~*=D < 2hy - E(h) o TF.

Hence, we have (1) <= (2) <= (3). Now (3) < (4) <= (5) follows by using
the observations hy = hg_1 - h o T—(k=1) being

equivalently for each f € L2,

H hye - B o T*(kfl)fH <c||v/hi- E(h) o T—Ff

or

pT~*(B) = T~ (T~*"1(B))

/ hdp
T-(k=1)(B)

:/ hk_l'hOT_(k_l)d/,L
B

and hy = h_1) 0 T~ h being

pT~*(B) = pT~ (T~ 1(B))

= / hi—1du
T-(1(B)
:/ h-hp_1o0T Ydu
B
for each B € A. O

Corollary 3.4. If T~1(A) = A then Ot is k-quasiposinormal if and only if hy -
hoT—(k=1) < 2h, . hoT*.

Corollary 3.5. If T~*(A) = A then Cr is quasiposinormal if and only if h <
AhoT™ 1.

Theorem 3.6. Let Cr € B(L?). A necessary and sufficient condition for Ci to
be k-quasiposinormal is that for each f € L*

(hoT* hyoT* E(f), f) < *(hps1 o T E(f), f).
Proof. As CFf = hy - E(f) o T~F, we see that, for each f € L2,
(CH(CHCr)CF) f = hoT* - by o T* - E(f)

and
(CE(CrCp)Ci) f = O f) = hyyr o TEHD - B(f).

Hence the result. O
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Corollary 3.7. If T~'(A) = A then C% is k-quasiposinormal if and only if

Nasreay B e

for each f € L2

Corollary 3.8. Ci is quasiposinormal if and only if for each f € L?

((hoT)?- B(f),f) < *(hao T*- E(f), [).
Corollary 3.9. If T~1(A) = A, then the following are equivalent:
1. C% is quasiposinormal.

2. |hoT - f|| <c|VhaoT?- f||, for each f € L2
3. (hoT)? <c?hgoT?=c?hoT? - hoT.

Now we deal with the weighted composition operator W = W, 1) € B(L?),
(f — u- foT) induced by the complex-valued measurable mapping u on  and
the measurable transformation T": 2 — Q. It is known that W* is given by

W*f=h-E(u-f)oT*

for each f € L2.

For a positive integer k, we put up = u-(uoT) - (woT?)----- (woT*=1) and
G = (woT™H-(uwoT™2)-----(uoT~F). Then, upoT % = 1y,. For k = 0, we denote
up = 4 = 1 and W* = I. However, hy, is used to denote the Radon Nikodym
derivative of uT % with respect to p and hy = h. For f € L?, WFf =y - foT*
so that W*k f = hy, - E(ug, - f) o T~*. The following simple computations,

W*W¥f =h-E@?®) T W f;
WETD f =y g Bugeyny - f) o T™% ) = hyyy - B(u- f) o T~ FFD Ly
WHRWWWEf =hy-hoT~* YD (B oT 2. 02 |- f;
WHEDW D f = ey - Bugy ) o T-*FD - f;

help us to conclude the following:

Theorem 3.10. Let W € B(L?). Then W* is k-quasiposinormal if and only if
b o Blus- 1)o7 < eflhics - Blugr - pyor-*V|
for each f € L?.
Corollary 3.11. W* is quasiposinormal if and only if
|u-hoT E(u-f)| <cl|he 'E(Uz'f)OT_2||
for each f € L2
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Corollary 3.12. If T~ (A) = A then W* is quasiposinormal if and only if
o hoT gl < elfa-ia- £oT?
for each f € L.

Theorem 3.13. Let W € B(L?). Then the following are equivalent:
1. W is k-quasiposinormal.
2. |h-E?) oT=- WD f|| < cl|ugry - f o T*HV|| for each f € L.

8 /1 -hoT= D gy 1 - E@w?) o T f|| < |/ hrs1 - tiwsr - fI| for each
felrL?

4o by - ho T~V (B(u?) o T7F)2 42 | < Phiyy - BE(u?) o T~ . 2 =
Ahy, - by - 02 - B(u?) o T~ where hy = dpT=®+D /dpT—*.
Corollary 3.14. Let W € B(L?). Then the following are equivalent:
1. W 1s quasiposinormal.
2. |h-E@?)oT~ Y- fl| <c|lug- foT?|| for each f € L2
8. ||h-E@?) o T f|| < ¢lWha iz f| for each f e L.
4. B2 (BE(?)oT ™12 < Phy- E(u?) o T2 43
5. h- (Bu?)oTY)2 < hy - E(u?) o T2 42, where hy = duT=2/duT~".

Corollary 3.15. If T~(A) = A then W is quasiposinormal if and only if h-u} <
02711 . ﬂ%
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