Thai Journal of Mathematics Volume 11 (2013) Number 1 : 131–142

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

On k-Quasiposinormal Weighted Composition Operators

Gopal Datt

Department of Mathematics, PGDAV College University of Delhi, Delhi 110065, India e-mail : gopal.d.sati@gmail.com

Abstract: For a positive integer k, an operator A on a Hilbert space \mathcal{H} is called k-quasiposinormal operator if $A^{*k}(AA^*)A^k \leq c^2 A^{*(k+1)}A^{(k+1)}$ for some c > 0. In this paper, we describe the conditions for the composition and weighted composition operators to be k-quasiposinormal operators.

Keywords : quasiposinormal operator; *k*-quasiposinormal operator; posinormal operator; weighted composition operator.

2010 Mathematics Subject Classification : 47B20; 46E37.

1 Introduction

Throughout the paper, by an operator we mean a bounded linear operator on a Hilbert space. If \mathcal{H} denotes a separable complex Hilbert space, denote the algebra of all operators on \mathcal{H} by $\mathfrak{B}(\mathcal{H})$ and the kernel and range of an operator Aon \mathcal{H} by Ker(A) and Ran(A) respectively. An operator $A \in \mathfrak{B}(\mathcal{H})$ is called

- hyponormal if $AA^* \leq A^*A$;
- *p*-hyponormal if $(AA^*)^p \leq (A^*A)^p$, where 0 ;
- quasihyponormal if $A^*(AA^*)A \leq A^{*2}A^2$ equivalently $(A^*A)^2 \leq A^{*2}A^2$;
- k-quasihyponormal if $A^{*k}(AA^*)A^k \leq A^{*(k+1)}A^{(k+1)}$, where k is a positive integer;

Copyright $\textcircled{}_{\odot}$ 2013 by the Mathematical Association of Thailand. All rights reserved.

- (p,k)-quasihyponormal if $A^{*k}(AA^*)^p A^k \leq A^{*k}(A^*A)^p A^k$, where k is a positive integer and 0 ;
- posinormal if $AA^* \leq c^2 A^* A$ for some c > 0;
- *p*-posinormal if $(AA^*)^p \le c^2(A^*A)^p$ for some c > 0, where 0 ;
- (p,k)-quasiposinormal if $A^{*k}(AA^*)^p A^k \leq c^2 A^{*k}(A^*A)^p A^k$ for some c > 0.

It is clear that for p = 1, *p*-hyponormal, *p*-posinormal and (p, k)-quasihyponormal are hyponormal, posinormal and *k*-quasihyponormal respectively. Also for k = 1, (p, k)-quasihyponormal, (p, k)-quasiposinormal and *k*-quasihyponormal are *p*-quasihyponormal, *p*-quasiposinormal and quasihyponormal respectively.

Definition 1.1. An operator $A \in \mathfrak{B}(\mathcal{H})$ is called

- quasiposinormal if $A^*(AA^*)A \le c^2 A^{*2}A^2$ for some c > 0;
- k-quasiposinormal if $A^{*k}(AA^*)A^k \leq c^2 A^{*(k+1)}A^{(k+1)}$ for some c > 0, where k is a positive integer.

One can see from the definitions, as expected, for p = 1,

(p, k) – quasiposinormal = k – quasiposinormal

and for k = 1,

k - quasiposinormal = quasiposinormal.

Also one can easily verify that

hyponormal \subseteq quasiposinormal \subseteq quasiposinormal \subseteq k-quasiposinormal;

k – quasihyponormal $\subseteq k$ – quasiposinormal;

 $k - quasiposinormal \subseteq k' - quasiposinormal$

for positive integers k < k'.

The readers are referred to [1-6] and the references therein for more details and applications of hyponormal, *p*-hyponormal, *k*-quasihyponormal and (p, k)quasihyponormal operators.

Let $(\Omega, \mathcal{A}, \mu)$ be a σ - finite measure space. A measurable transformation $T: \Omega \to \Omega$ satisfying

$$\mu(T^{-1}(B)) = 0$$
 whenever $\mu(B) = 0$ for $B \in \mathcal{A}$

is said to be a non-singular measurable transformation. If T is non-singular, then the measure μT^{-1} given by

$$(\mu T^{-1})(B) = \mu(T^{-1}(B))$$
 for $B \in \mathcal{A}$,

is absolutely continuous with respect to the measure μ and we denote it by writing $\mu T^{-1} \ll \mu$. Hence by the Radon Nikodym theorem, there exists a non-negative measurable function h such that

$$(\mu T^{-1})(B) = \int_B h d\mu,$$

for every $B \in \mathcal{A}$. The function h is called the Radon Nikodym derivative of the measure μT^{-1} with respect to the measure μ . It is denoted by $h = d\mu T^{-1}/d\mu$.

A weighted composition operator $W(=W_{(u,T)})$ acting on the Hilbert space L^2 , induced by a complex-valued measurable function u and a measurable transformation T is given by

$$Wf = u \cdot f \circ T$$
 for each $f \in L^2$.

In case u = 1 a.e., W becomes a composition operator denoted by C_T .

We use a symbol E very frequently in the paper, which denotes the conditional expectation operator $E(./T^{-1}(\mathcal{A})) = E(f)$. E(f) is defined for each non-negative function f or for each $f \in L^p(\Omega, \mathcal{A}, \mu), 1 \leq p < \infty$, and is uniquely determined by the conditions

- (i) E(f) is $T^{-1}(\mathcal{A})$ -measurable, and
- (ii) if B is any $T^{-1}(\mathcal{A})$ -measurable set for which $\int_B f d\mu$ exists, we have

$$\int_B f \ d\mu = \int_B E(f) \ d\mu.$$

The conditional expectation operator E has the following properties:

 $E1. E(f \cdot g \circ T) = E(f) \cdot (g \circ T).$

E2. If $f \ge g$ almost everywhere, then $E(f) \ge E(g)$ almost everywhere.

- E3. E(1) = I.
- E4. $|E(fg)|^2 \le E(|f|^2)E(|g|^2).$

E5. For f > o almost everywhere, E(f) > 0 almost everywhere.

For each measurable function f, there exists a measurable function g such that $E(f) = g \circ T$. If we assume that the support of g lies in the support of h, then $E(f) = g \circ T$ for exactly one measurable function.

In particular, $g = E(f) \circ T^{-1}$ is a well defined measurable function.

As an operator on L^p , E is the projection operator onto the closure of the range of the composition operator C_T . This operator plays a vital role in the study of composition and weighted composition operators on various Banach function spaces (see [1] and [7]) and in this paper we present few more applications of this operator. For a deeper study of the properties of expectation operator we refer the paper of Lambert [8].

In the present paper various examples are given to show the proper inclusion amongst the classes described in the beginning. Some properties of the kquasiposinormal operators acting on the Hilbert space \mathcal{H} are discussed. Paper also provides applications of conditional expectation operator E to characterize k-quasiposinormal composition and k-quasiposinormal weighted composition operator acting on L^2 .

2 On Hilbert Space

Motivated by the result [2, Theorem 1] of Douglas, Lee and Lee [5, Theorem 2.2] obtained some characterization for the (p, k)-quasiposinormal operators, $0 and k any natural number, introduced by them. This led us immediately to the following results about a k-quasiposinormal operator A acting on the Hilbert space <math>\mathcal{H}$.

Theorem 2.1. For an operator $A \in \mathfrak{B}(\mathcal{H})$, the following are equivalent:

- 1. A is k-quasiposinormal.
- 2. $Ran(A^{*k}A) \subset Ran(A^{*(k+1)}).$
- 3. There exists $C \in \mathfrak{B}(\mathcal{H})$ satisfying $A^{*k}A = A^{*(k+1)}C$.
- 4. There exists a positive operator $P \in \mathfrak{B}(\mathcal{H})$ satisfying

$$A^{*k}(AA^*)A^k = A^{*(k+1)}PA^{(k+1)}$$

- 5. $Ran(A^{*k}\sqrt{AA^*}) \subset Ran(A^{*k}\sqrt{A^*A}).$
- 6. There exists $\hat{C} \in \mathfrak{B}(\mathcal{H})$ satisfying $A^{*k}\sqrt{AA^*} = A^{*k}\sqrt{A^*A} \hat{C}$.
- 7. There exists a positive operator $\hat{P} \in \mathfrak{B}(\mathcal{H})$ satisfying

$$A^{*k}(AA^*)A^k = A^{*k}\sqrt{A^*A} \ \hat{P}\sqrt{A^*A} \ A^{*k}.$$

Proof. Equivalence of the conditions 1, 5, 6 and 7 follow from [5, Theorem 2.2] on setting p = 1. The equivalence of the conditions 1, 2, 3 and 4 follow along the lines of proof of [2, Theorem 1].

The conditions 5, 6 and 7 are less useful being more difficult than the conditions 2, 3 and 4 to check whether an operator is k-quasiposinormal or not.

Now, it is evident that every invertible operator is k-quasiposinormal for each positive integer k and if $A \in \mathfrak{B}(\mathcal{H})$ is k-quasiposinormal then αA is kquasiposinormal, for each $\alpha \in \mathbb{C}$. It is also apparent that if $A \in \mathfrak{B}(\mathcal{H})$ is kquasiposinormal and $V \in \mathfrak{B}(\mathcal{H})$ is an isometry then VAV^* is k-quasiposinormal. The next result can be obtained along the computations made in [5, Theorem 2.6] with p = 1. On k-Quasiposinormal Weighted Composition Operators

Theorem 2.2. If $A \in \mathfrak{B}(\mathcal{H})$ is k-quasiposinormal then there exists c > 0 such that

 $||A^{k-1}x|| ||A^{k+1}x|| \ge c ||A^kx||^2$

for all $x \in H$.

Corollary 2.3. If $A \in \mathfrak{B}(\mathcal{H})$ is k-quasiposinormal then $Ker(A^n) = Ker(A^k)$ for all $n \geq k$.

Corollary 2.4. If $A \in \mathfrak{B}(\mathcal{H})$ is k-quasiposinormal and $A^n = 0$ for some $n \ge k$, then $A^k = 0$.

Now we discuss few examples which make the relevance of the study.

Example 2.5. Consider the Hilbert space l^2 with orthonormal basis $\{e_n | n \ge 0\}$. Let A be the unilateral weighted shift with weight sequence $\langle \alpha_n \rangle_{n>0}$, where

$$\alpha_n = \begin{cases} 3 & \text{if } n = 0\\ 2 & \text{if } n = 1\\ 1 & \text{if } n \ge 2 \end{cases}$$

Then $||A^*Ae_0||^2 = 81$, $||A^2e_0||^2 = 36$ and $Ran(A^*A) \subset Ran(A^{*2})$. Hence A is not quasihyponormal but is quasiposinormal. This justifies that the inclusion quasihyponormal \subseteq quasiposinormal is strict.

Example 2.6. Through this example, we show that the inclusion in k-quasihyponormal \subseteq k-quasiposinormal is also strict. For, let A be the unilateral weighted shift with a positive weight sequence $\langle \alpha_n \rangle_{n\geq 0}$ with $\alpha_{k-1} > \alpha_k$ and $\alpha_k \leq \alpha_{k+1} \leq \alpha_{k+2} \leq$ \cdots . Then one can see that, $||A^*A^k e_0|| > ||A^{k+1}e_0||$ and if $\alpha_{k-1} \leq c\alpha_k$ for some c > 1 then

$$||A^*A^kx|| \le c||A^{k+1}x||$$

for all $x \in H$. Hence, A is not k-quasihyponormal but is k-quasiposinormal.

Next, we show that the inclusion k-quasiposinormal $\subseteq k'$ -quasiposinormal, where k < k', is also strict.

Example 2.7. Let A be the unilateral weighted shift with a weight sequence $\langle \alpha_n \rangle_{n \geq 0}$, where $\alpha_k = 0$ and $\alpha_n = 1$ for each $n \neq k$. Then A is (k+1)-quasiposinormal but not k-quasiposinormal.

It is easy to verify that unilateral shift operator U on the Hilbert space l^2 satisfies the condition (3) of the Theorem 2.1 with $C = U^2$ and is k-quasiposinormal, whereas U^* is not k-quasiposinormal.

The class of k-quasiposinormal operators is not translation invariant i.e. if A is k-quasiposinormal then $(A + \alpha I)$ may not be k-quasiposinormal for $\alpha \in \mathbb{C}$. It can be verified by the fact that $A = (U^* - 2I)$ is k-quasiposinormal being invertible

but $A + 2I = U^*$ is not k-quasiposinormal. This also ensures that the sum of two k-quasiposinormal operators need not be k-quasiposinormal.

In general, the product of two k-quasiposinormal operators need not be kquasiposinormal. This can be checked by considering the unilateral shift operator A and the diagonal operator B with diagonal entries $\alpha_0 = 1$, $\alpha_1 = 0$ and $\alpha_n = 1$ for $n \ge 2$. Then A and B both are quasiposinormal and AB is a unilateral weighted shift operator with weight sequence $\langle \beta_n \rangle_{n\ge 0}$, where $\beta_k = 0$, $\beta_1 = 0$ and $\beta_n = 1$ for $n \ge 2$. Hence AB is not quasiposinormal. It is worth noticing that these operators A and B do not commute. It is yet not known, whether the product of two commuting k-quasiposinormal operators is a k-quasiposinormal operator or not. However, the next result present some affirmative answer under certain situations.

Theorem 2.8. If A and B are k-quasiposinormal operators such that A commutes with B and B^* both then AB is k-quasiposinormal.

Proof. We can assume that

$$A^{*k}(AA^*)A^k < cA^{*(k+1)}A^{(k+1)}$$

and

$$B^{*k}(BB^*)B^k < cB^{*(k+1)}B^{(k+1)}$$

for some c > 0. As the positive operators $(cA^{*(k+1)}A^{(k+1)} - A^{*k}(AA^*)A^k)$ and $(cB^{*(k+1)}B^{(k+1)} - B^{*k}(BB^*)B^k)$ commute, hence

$$\left(cA^{*(k+1)}A^{(k+1)} - A^{*k}(AA^{*})A^{k}\right)\left(cB^{*(k+1)}B^{(k+1)} + B^{*k}(BB^{*})B^{k}\right) \ge 0 \quad (2.1)$$

By the similar argument, we have

$$\left(cA^{*(k+1)}A^{(k+1)} + A^{*k}(AA^{*})A^{k}\right)\left(cB^{*(k+1)}B^{(k+1)} - B^{*k}(BB^{*})B^{k}\right) \ge 0 \quad (2.2)$$

Using (2.1) and (2.2), we find that

$$((AB)^{*k}(AB)(AB)^{*}(AB)^{k}) = (A^{*k}(AA^{*})A^{k})(B^{*k}(BB^{*})B^{k})$$

$$\leq c^{2}(A^{*(k+1)}A^{(k+1)})(B^{*(k+1)}B^{(k+1)})$$

$$= c^{2}(AB)^{*(k+1)}(AB)^{(k+1)}).$$

Hence AB is k-quasiposinormal.

Corollary 2.9. If A is a k-quasiposinormal and B is a normal operator such that A commutes with B then AB is k-quasiposinormal.

Proof. As B is a normal operator, by Fuglede-Putnam theorem, A commutes with B^* . Hence the result.

3 Weighted Composition Operators

Let $(\Omega, \mathcal{A}, \mu)$ be a σ - finite measure space and $T : \Omega \to \Omega$ be a measurable transformation inducing composition operator $C_T(f \mapsto f \circ T)$ on L^2 . For the non-singular transformation $T : \Omega \mapsto \Omega$ and a positive integer k, we mean by T^k the composition $\underline{T \circ T \circ \cdots \circ T}(k \text{ times})$. Let $T^0 = I$ and for $k \ge 1$, define the measure μT^{-k} on the measure space $(\Omega, \mathcal{A}, \mu)$ as

$$\mu T^{-k}(B) = \mu T^{-(k-1)}(T^{-1}(B)) \text{ for } B \in \mathcal{A}.$$

Then

$$\mu T^{-k} \ll \mu T^{-(k-1)} \ll \cdots \ll \mu T^{-2} \ll \mu T^{-1} \ll \mu.$$

We denote the Radon Nikodym derivative of μT^{-k} with respect to μ by h_k and the Radon Nikodym derivative of $\mu T^{-(k+1)}$ with respect to μT^{-k} by \tilde{h}_k . We assume that $h_0 = 1$ and $h_1 = h$. It can be seen that $h_k = h \cdot h \circ T^{-1} \cdot h \circ T^{-2} \cdots h \circ T^{-(k-1)}$. These notations help us to present the following facts, which are either known or obtained by simple computations. For $f \in L^2$,

- 1. $C_T^* f = h \cdot E(f) \circ T^{-1}$.
- 2. For any positive integer k, $C_T^k f = f \circ T^k$ and $C_T^{*k} f = h_k \cdot E(f) \circ T^{-k}$, where $h_k = d\mu T^{-k}/d\mu$.
- 3. $C_T^* C_T f = h \cdot f$.
- 4. $C_T C_T^* f = (h \circ T) \cdot E(f).$
- 5. E is the identity operator on L^2 if and only if $T^{-1}(\mathcal{A}) = \mathcal{A}$.

Theorem 3.1. Let $C_T \in \mathfrak{B}(L^2)$. Then the following are equivalent:

- 1. C_T is quasiposinormal.
- 2. $||h \cdot f|| \le c ||\sqrt{h_2} \cdot f||$ for each $f \in L^2$. 3. $||h \cdot f|| \le c ||\sqrt{h \cdot E(h) \circ T^{-1}} \cdot f||$ for each $f \in L^2$. 4. $h \le c^2 \tilde{h}_1$, where $\tilde{h}_1 = d\mu T^{-2}/d\mu T^{-1}$. 5. $h \le c^2 E(h) \circ T^{-1}$.

Proof. $(1) \equiv (2)$:

$$(1) \iff C_T^*(C_T C_T^*)C_T \le c^2 C_T^{*2} C_T^2$$

$$\iff (C_T^* C_T)^2 \le c^2 C_T^{*2} C_T^2$$

$$\iff \langle h^2 f, f \rangle \le c^2 \int |f \circ T^2|^2 d\mu = c^2 \int |f|^2 h_2 d\mu \text{ for each } f \in L^2$$

$$\iff \langle h^2 f, f \rangle \le \langle c^2 h_2 f, f \rangle \text{ for each } f \in L^2$$

$$\iff ||h \cdot f|| \le c ||\sqrt{h_2} \cdot f|| \text{ for each } f \in L^2.$$

(2) \equiv (3): This part of the Theorem follows by using the observation that for each $f \in L^2$,

which yields that $h_2 = h \cdot E(h) \circ T^{-1}$.

(1) = (4): (1) $\iff \langle h^2 f, f \rangle \leq \langle c^2 h_2 f, f \rangle$ for each $f \in L^2$. As a consequence of this, (1) $\iff h^2 \leq c^2 h_2$. The result follows from here by using the fact that $h_2 = d\mu T^{-2}/d\mu = (d\mu T^{-2}/d\mu T^{-1}) \cdot (d\mu T^{-1}/d\mu) = h \cdot \tilde{h}_1$.

(1) \equiv (5): This follows by replacing the value of h_2 by $h \cdot E(h) \circ T^{-1}$ in the above arguments. Hence the Theorem.

It is interesting to see that $h_2 = h \cdot E(h) \circ T^{-1} = h \cdot \tilde{h}_1$, so that $\tilde{h}_1 = E(h) \circ T^{-1}$ a.e. on the support of h.

Corollary 3.2. If $T^{-1}(\mathcal{A}) = \mathcal{A}$ then C_T is quasiposinormal if and only if $h \leq c^2 h \circ T^{-1}$.

Theorem 3.3. Let $C_T \in \mathfrak{B}(L^2)$. Then the following are equivalent:

1. C_T is k-quasiposinormal. 2. $\|\sqrt{h_k \cdot h \circ T^{-(k-1)}}f\| \le c\|\sqrt{h_k \cdot E(h) \circ T^{-k}}f\|$ for each $f \in L^2$. 3. $h_k \cdot h \circ T^{-(k-1)} \le c^2 h_k \cdot E(h) \circ T^{-k}$, where $h_k = d\mu T^{-k}/d\mu$. 4. $h_{k-1} \cdot (h \circ T^{-(k-1)})^2 \le c^2 h_{k-1} \cdot h \circ T^{-(k-1)} \cdot E(h) \circ T^{-k}$. 5. $h_{k-1} \circ T^{-1} \cdot h \circ T^{-(k-1)} \le c^2 h_{k-1} \circ T^{-1} \cdot E(h) \circ T^{-k}$.

Proof. Using the observations,

$$(C_T^{*k}(C_T C_T^*)C_T^k)f = C_T^{*k}(C_T C_T^*)(f \circ T^k)$$

= $C_T^{*k}(h \circ T \cdot f \circ T^k)$
= $h_k \cdot E(h \circ T \cdot f \circ T^k) \circ T^{-k}$
= $h_k \cdot h \circ T^{-(k-1)} \cdot f$

and

$$C_T^{*(k+1)}C_T^{(k+1)}f = (C_T^{*k}(h \cdot f \circ T^k))$$
$$= h_k \cdot E(h \cdot f \circ T^k) \circ T^{-k}$$
$$= h_k \cdot E(h) \circ T^{-k} \cdot f,$$

138

we conclude that C_T is k-quasiposinormal if and only if for each $f \in L^2$,

$$\left\langle C_T^{*(k+1)} C_T^{(k+1)} f, f \right\rangle \le c^2 \left\langle (C_T^{*k} (C_T C_T^*) C_T^k) f, f \right\rangle$$

equivalently for each $f \in L^2$,

$$\left\|\sqrt{h_k \cdot h \circ T^{-(k-1)}}f\right\| \le c \left\|\sqrt{h_k \cdot E(h) \circ T^{-k}}f\right\|$$

or

$$h_k \cdot h \circ T^{-(k-1)} \le c^2 h_k \cdot E(h) \circ T^{-k}.$$

Hence, we have $(1) \iff (2) \iff (3)$. Now $(3) \iff (4) \iff (5)$ follows by using the observations $h_k = h_{k-1} \cdot h \circ T^{-(k-1)}$ being

$$\mu T^{-k}(B) = \mu T^{-1}(T^{-(k-1)}(B))$$
$$= \int_{T^{-(k-1)}(B)} h d\mu$$
$$= \int_{B} h_{k-1} \cdot h \circ T^{-(k-1)} d\mu$$

and $h_k = h_{(k-1)} \circ T^{-1} \cdot h$ being

$$\mu T^{-k}(B) = \mu T^{-(k-1)}(T^{-1}(B))$$
$$= \int_{T^{-(1)}(B)} h_{k-1}d\mu$$
$$= \int_{B} h \cdot h_{k-1} \circ T^{-1}d\mu$$

for each $B \in \mathcal{A}$.

Corollary 3.4. If $T^{-1}(\mathcal{A}) = \mathcal{A}$ then C_T is k-quasiposinormal if and only if $h_k \cdot h \circ T^{-(k-1)} \leq c^2 h_k \cdot h \circ T^{-k}$.

Corollary 3.5. If $T^{-1}(\mathcal{A}) = \mathcal{A}$ then C_T is quasiposinormal if and only if $h \leq c^2 h \circ T^{-1}$.

Theorem 3.6. Let $C_T \in \mathfrak{B}(L^2)$. A necessary and sufficient condition for C_T^* to be k-quasiposinormal is that for each $f \in L^2$

$$\langle h \circ T^k \cdot h_k \circ T^k \cdot E(f), f \rangle \le c^2 \langle h_{k+1} \circ T^{(k+1)} \cdot E(f), f \rangle$$

Proof. As $C_T^{*k} f = h_k \cdot E(f) \circ T^{-k}$, we see that, for each $f \in L^2$,

$$(C_T^k(C_T^*C_T)C_T^{*k})f = h \circ T^k \cdot h_k \circ T^k \cdot E(f)$$

and

$$(C_T^k(C_T C_T^*) C_T^{*k}) f = C_T^{(k+1)}(C_T^{*(k+1)} f) = h_{k+1} \circ T^{(k+1)} \cdot E(f).$$

Hence the result.

139

Corollary 3.7. If $T^{-1}(\mathcal{A}) = \mathcal{A}$ then C_T^* is k-quasiposinormal if and only if

$$\left\|\sqrt{h \circ T^k \cdot h_k \circ T^k} \cdot f\right\| \le c \left\|\sqrt{h_{k+1} \circ T^{(k+1)}} \cdot f\right\|$$

for each $f \in L^2$.

Corollary 3.8. C_T^* is quasiposinormal if and only if for each $f \in L^2$

$$\langle (h \circ T)^2 \cdot E(f), f \rangle \le c^2 \langle h_2 \circ T^2 \cdot E(f), f \rangle.$$

Corollary 3.9. If $T^{-1}(\mathcal{A}) = \mathcal{A}$, then the following are equivalent:

- 1. C_T^* is quasiposinormal.
- 2. $||h \circ T \cdot f|| \leq c ||\sqrt{h_2 \circ T^2} \cdot f||$, for each $f \in L^2$.
- 3. $(h \circ T)^2 \leq c^2 h_2 \circ T^2 = c^2 h \circ T^2 \cdot h \circ T.$

Now we deal with the weighted composition operator $W = W_{(u,T)} \in \mathfrak{B}(L^2)$, $(f \mapsto u \cdot f \circ T)$ induced by the complex-valued measurable mapping u on Ω and the measurable transformation $T : \Omega \mapsto \Omega$. It is known that W^* is given by

$$W^*f = h \cdot E(u \cdot f) \circ T^{-1}$$

for each $f \in L^2$.

For a positive integer k, we put $u_k = u \cdot (u \circ T) \cdot (u \circ T^2) \cdots (u \circ T^{(k-1)})$ and $\hat{u}_k = (u \circ T^{-1}) \cdot (u \circ T^{-2}) \cdots (u \circ T^{-k})$. Then, $u_k \circ T^{-k} = \hat{u}_k$. For k = 0, we denote $u_k = \hat{u}_k = 1$ and $W^k = I$. However, h_k is used to denote the Radon Nikodym derivative of μT^{-k} with respect to μ and $h_1 = h$. For $f \in L^2$, $W^k f = u_k \cdot f \circ T^k$ so that $W^{*k}f = h_k \cdot E(u_k \cdot f) \circ T^{-k}$. The following simple computations,

$$\begin{split} W^*W^k f &= h \cdot E(u^2) \cdot T^{-1} \cdot W^{(k-1)} f; \\ W^{*(k+1)} f &= h_{k+1} \cdot E(u_{(k+1)} \cdot f) \circ T^{-(k+1)} = h_{k+1} \cdot E(u \cdot f) \circ T^{-(k+1)} \cdot \hat{u}_k; \\ W^{*k} (WW^*) W^k f &= h_k \cdot h \circ T^{-(k-1)} \cdot (E(u^2) \circ T^{-k})^2 \cdot \hat{u}_{k-1}^2 \cdot f; \\ W^{*(k+1)} W^{(k+1)} f &= h_{k+1} \cdot E(u_{k+1}^2) \circ T^{-(k+1)} \cdot f; \end{split}$$

help us to conclude the following:

Theorem 3.10. Let $W \in \mathfrak{B}(L^2)$. Then W^* is k-quasiposinormal if and only if

$$\left\| u \cdot h_k \circ T \cdot E(u_k \cdot f) \circ T^{-(k-1)} \right\| \le c \left\| h_{k+1} \cdot E(u_{k+1} \cdot f) \circ T^{-(k+1)} \right\|$$

for each $f \in L^2$.

Corollary 3.11. W^* is quasiposinormal if and only if

 $\|u \cdot h \circ T \cdot E(u \cdot f)\| \le c \|h_2 \cdot E(u_2 \cdot f) \circ T^{-2}\|$

for each $f \in L^2$.

On k-Quasiposinormal Weighted Composition Operators

Corollary 3.12. If $T^{-1}(\mathcal{A}) = \mathcal{A}$ then W^* is quasiposinormal if and only if

$$\left\| u^{2} \cdot h \circ T \cdot f \right\| \leq c \left\| h_{2} \cdot \hat{u}_{2} \cdot f \circ T^{-2} \right\|$$

for each $f \in L^2$.

Theorem 3.13. Let $W \in \mathfrak{B}(L^2)$. Then the following are equivalent:

- $1. \ W \ is \ k-quasiposinormal.$
- 2. $||h \cdot E(u^2) \circ T^{-1} \cdot W^{(k-1)}f|| \le c||u_{k+1} \cdot f \circ T^{(k+1)}||$ for each $f \in L^2$. 3. $||\sqrt{h_{k-1}} \cdot h \circ T^{-(k-1)} \cdot \hat{u}_{k-1} \cdot E(u^2) \circ T^{-k}f|| \le c||\sqrt{h_{k+1}} \cdot \hat{u}_{k+1} \cdot f||$ for each $f \in L^2$.

$$\begin{aligned} & 4. \ h_k \cdot h \circ T^{-(k-1)} \cdot (E(u^2) \circ T^{-k})^2 \cdot \hat{u}_{k-1}^2 \leq c^2 h_{k+1} \cdot E(u^2) \circ T^{-(k+1)} \cdot \hat{u}_k^2 = \\ & c^2 h_k \cdot \tilde{h}_k \cdot \hat{u}_k^2 \cdot E(u^2) \circ T^{-(k+1)}, \ where \ \tilde{h}_k = d\mu T^{-(k+1)}/d\mu T^{-k}. \end{aligned}$$

Corollary 3.14. Let $W \in \mathfrak{B}(L^2)$. Then the following are equivalent:

- 1. W is quasiposinormal.
- 2. $||h \cdot E(u^2) \circ T^{-1} \cdot f|| \le c ||u_2 \cdot f \circ T^2||$ for each $f \in L^2$.
- 3. $\|h \cdot E(u^2) \circ T^{-1}f\| \leq c \|\sqrt{h_2} \cdot \hat{u}_2 \cdot f\|$ for each $f \in L^2$.
- 4. $h^2 \cdot (E(u^2) \circ T^{-1})^2 \leq c^2 h_2 \cdot E(u^2) \circ T^{-2} \cdot \hat{u}_1^2$
- 5. $h \cdot (E(u^2) \circ T^{-1})^2 \leq c^2 \tilde{h}_1 \cdot E(u^2) \circ T^{-2} \cdot \hat{u}_1^2$, where $\tilde{h}_1 = d\mu T^{-2}/d\mu T^{-1}$.

Corollary 3.15. If $T^{-1}(\mathcal{A}) = \mathcal{A}$ then W is quasiposinormal if and only if $h \cdot \hat{u}_1^4 \leq c^2 \tilde{h}_1 \cdot \hat{u}_2^2$.

Acknowledgement : Author gratefully acknowledges the suggestions and comments of the referee(s) for the improvement of the paper.

References

- J.T. Campbell, W.E. Hornor, Seminormal composition operators, J. Operator Theory 29 (1993) 323–343.
- [2] R.G. Douglas, On Majoriation, factorization and range inclusion of operators on Hilbert Spaces, Proc. Amer. Math. Soc. 173 (1966) 413–415.
- [3] S.M. Patel, On classes of non-hyponormal operators, Math. Nachr. 73 (1975) 147–150.
- [4] H.C. Rhaly, Posinormal operators, Jr. Math. Soc. Japan 46 (1994) 587-605.
- [5] M.Y. Lee, S.H. Lee, On (p, k)-quasiposinormal operators, Jr. Appl. Math and Computing 19 (1) (2005) 573–578.

- [6] S.K. Berberian, Introduction to Hilbert space, Chelsea Publishing Company, New York, (1961).
- [7] S.C. Arora, G. Datt, Compact weighted composition operators on Orlicz-Lorentz spaces, Acta Scientiarum Mathematicarum (Szeged) 77 (4) (2011) 567–578.
- [8] A. Lambert, Localising sets for sigma-algebras and related point transformations, Proc. Royal Soc. Edinburgh (Series A) 118 (1991) 111–118.

(Received 29 October 2011) (Accepted 23 March 2012)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th