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Abstract : In this paper, using the concept of ideal and Orlicz function, we
introduce some new classes of double sequence spaces of fuzzy numbers. We study
different topological properties of these sequence spaces like completeness, solidity,
symmetricity etc. Also we obtain some inclusion relation involving these sequence
spaces.
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1 Introduction

The concept of fuzzy sets and fuzzy set operations were first introduced by
Zadeh [1] in 1965. Later on fuzzy logic became an important area of research
in various branches of mathematics such as metric and topological spaces [2, 3],
theory of functions [4], approximation theory [5] etc. Fuzzy set theory also finds
its applications for modeling, uncertainty and vagueness in various fields of Science
and Engineering, e.g. computer programming [6], nonlinear dynamical systems [7],
population dynamics [8], control of chaos [9], quantum physics [10] etc. It attracted
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workers on sequence spaces to introduce different type of classes of sequences of
fuzzy numbers.

The initial works on double sequences may be found in Bromwich [11]. The
notion of regular convergence of double sequences of real or complex terms is in-
troduced by Hardy [12]. Tripathy and Dutta [13, 14] introduced and investigated
different types of fuzzy real valued double sequence spaces. Generalizing the con-
cept of ordinary convergence for real sequences Kastyrko et al. [15] introduced the
concept of ideal convergence which is a generalization of statistical convergence,
by using the ideal I of the subsets of the set of natural numbers. Some works in
this direction can be found in [16–22].

An Orlicz function M is a function M : [0,∞) → [0,∞) such that it is con-
tinuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and
M(x) → ∞ as x → ∞. An Orlicz function may be bounded or unbounded.
An Orlicz function also satisfies the inequality M(λx) ≤ λM(x) for all λ with
0 < λ < 1. Lindenstrauss and Tzafriri [23] used the idea of Orlicz function to
construct the sequence space

ℓM =

{

(xk) ∈ w :

∞
∑

k=1

M

( |xk|
ρ

)

< ∞, for some ρ > 0

}

,

which becomes a Banach space, with the norm

‖x‖ = inf

{

ρ > 0 :
∞
∑

k=1

M

( |xk|
ρ

)

≤ 1

}

.

The space ℓM is closely related to the space ℓp, which is an Orlicz sequence space
with M(x) = |x|p, for 1 ≤ p < ∞.

Subsequently the notion of Orlicz function was used to define sequence spaces
by many authors such as [20, 24–32]. A fuzzy real number X is a fuzzy set on R,
ie. a mapping X : R → L(= [0, 1]) associating each real number t with its grade of
membership X(t). Every real number r can be expressed as a fuzzy real number
r̄ as follows:

r̄(t) =

{

1 if t=r
0 otherwise.

The α-level set of a fuzzy real number X , 0 < α ≤ 1 denoted by [X ]
α

is defined
as [X ]

α
= {t ∈ R : X(t) ≥ α}. A fuzzy real number X is called convex if

X(t) ≥ X(s) ∧ X(r) = min(X(s), X(r)), where s < t < r. If there exists t0 ∈ R
such that X(t0) = 1,then the fuzzy real number X is called normal.A fuzzy real
number X is said to be upper semi-continuous if for each ǫ > 0,X−1 ([0, a+ǫ)), for
all a ∈ L is open in the usual topology of R. The set of all upper semi continuous,
normal, convex fuzzy number is denoted by R(L).
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Arithmetic operations on R(L) are defined as follows:

(X ⊕ Y ) (t) = sup
s∈R

{X(s) ∧ Y (t − s)}, t ∈ R,

(X ⊖ Y ) (t) = sup
s∈R

{X(s) ∧ Y (s − t)}, t ∈ R,

(X ⊗ Y ) (t) = sup
s∈R

{X(s) ∧ Y (t/s)}, t ∈ R,

(X/Y ) (t) = sup
s∈R

{X(st) ∧ Y (s)}, t ∈ R.

The absolute value of X ∈ R(L) is defined as (one may refer to Kaleva and Seikkla
[33])

|X(t)| =

{

max{X(t), X(−t)}, for t ≥ 0
0 otherwise.

Let D be the set of all closed bounded intervals X=[XL, XR]. Then X≤ Y if
and only if XL≤ Y L and XR≤ Y R. Also d(X, Y ) = max

(∣

∣XL − Y L
∣

∣ ,
∣

∣XR − Y R
∣

∣

)

.
Then (D, d) is a complete metric space. Let d̄ : R(L) × R(L) → R be defined by

d̄(X, Y ) = sup
0≤α≤1

d([X ]α, [Y ]α), forX, Y ∈ R(L).

Then d̄ defines a metric on R(L).

In this paper, we study some new double sequence spaces of fuzzy numbers
defined by an Orlicz function. The spaces defined here are much more general
than the existing ones and gives many of them as special cases.

2 Definition and Preliminaries

Let X be a non empty set. A non-void class I ⊆ 2X(power set of X) is called
an ideal if I is additive (i.e.A, B ∈ I ⇒ A∪B ∈ I) and hereditary (i.e. A ∈ I and
B ⊆ A ⇒ B ∈ I). A non-empty family of sets F ⊆ 2X is said to be a filter on X
if ∅ /∈ F ; A, B ∈ F ⇒ A ∩ B ∈ F and A ∈ F , A ⊆ B ⇒ B ∈ F . For each ideal I
there is a filter F (I) given by F (I) = {K ⊆ N : N \ K ∈ I}.

A subset E of N is said to have density δ(E) if

δ(E) = lim
n→∞

1

n

n
∑

k=1

χE(k)

exists, where χE(k) is the characteristic function of E. Throughout the ideals of 2N

and 2N×N will be denoted by I and I2 respectively. Let us consider I2(ρ) ⊂ 2N×N

i.e. the class of all subsets of N × N of zero natural density. Then I2(ρ) is an
ideal of 2N×N . For a detailed account of different types of ideals of 2N×N , one
may refer to Tripathy and Tripathy [21].

Throughout a fuzzy real valued double sequence is denoted by (Xnk) i.e. a
double infinite array of fuzzy real numbers Xnk for all n, k ∈ N .
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A double sequence (Xnk) is said to be convergent in Pringsheim’s sense to the
fuzzy real number X0, if for every ǫ > 0, there exists n0 = n0(ǫ), k0 = k0(ǫ) ∈ N
such that d̄(Xnk, X0) < ǫ for all n ≥ n0, k ≥ k0. A double sequence (Xnk) is said
to be I-convergent to the fuzzy number X0, if for all ǫ > 0, the set {(n, k) ∈ N2 :
d̄(Xnk, X0) ≥ ǫ} ∈ I2. We write I2 − limXnk = X0.

Throughout the article 2w
F , 2ℓ

F
∞, 2c

F , 2c
I(F ) and 2c

I(F )
0 denote the classes

of all, bounded, convergent, I-convergent and I-null fuzzy real number double
sequences respectively.

A double sequence space EF is said to be solid if (Ynk) ∈ EF , whenever
d̄(Ynk, 0̄) ≤ d̄(Xnk, 0̄) for all n, k ∈ N and (Xnk) ∈ EF . A double sequence
EF is said to be monotone if EF contains the canonical pre-image of all its step
spaces. A double sequence EF is said to be symmetric if

(

Xπ(n,k)

)

∈ EF , whenever
(Xnk) ∈ EF , where π is a permutation of N ×N . A double sequence EF is said to
be sequence algebra if (Xnk ⊗ Ynk) ∈ EF , whenever (Xnk) , (Ynk) ∈ EF . A double
sequence EF is said to be convergence free if (Ynk) ∈ EF , whenever (Xnk) ∈ EF

and Xnk = 0̄ implies Ynk = 0̄.
Let M be an Orlicz function and p = (pnk) be a double sequence of bounded

strictly positive real numbers. We introduce the following double sequence spaces:

2c
I(F )(M, p) =

{

X = (Xnk) : I2 − lim

[

M

(

d̄(Xnk, X0)

ρ

)]pnk

= 0,

for some ρ > 0 and X0 ∈ R(L)
}

,

2c
I(F )
0 (M, p) =

{

X = (Xnk) : I2 − lim

[

M

(

d̄(Xnk, 0̄)

ρ

)]pnk

= 0, for some ρ > 0
}

,

2ℓ
(F )
∞ (M, p) =

{

X = (Xnk) : sup
nk

[

M

(

d̄(Xnk, 0̄)

ρ

)]pnk

< ∞, for some ρ > 0
}

,

2ℓ
I(F )
∞

(M, p) =
n

X = (Xnk) : there exists a real number µ > 0 such that the setn
(n, k) ∈ N × N :

�
M

�
d̄(Xnk, 0̄)

ρ

��pnk

> µ
o
∈ I2, for some ρ > 0

o
.

Also we write

2m
I(F )(M, p) =2 cI(F )(M, p) ∩2 ℓ(F )

∞ (M, p),

2m
I(F )
0 (M, p) =2 c

I(F )
0 (M, p) ∩2 ℓ(F )

∞ (M, p).

Let Z denote any one of 2c
I(F ), 2c

I(F )
0 and 2ℓ

I(F )
∞ . On giving particular values to

M and p, we get the following sequence spaces from the above sequence spaces:

(i) If pnk = 1, for all n, k ∈ N , then we obtain Z(M) instead of Z(M, p).
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(ii) If M(x) = x, then Z(M, p) becomes Z(p).

(iii) If M(x) = x, pnk = 1 for all n, k ∈ N , then we obtain Z instead of Z(M, p).

Lemma 2.1. If a sequence space EF is solid, then it is monotone.

For the crisp set case, one may refer to Kamthan and Gupta [34], p. 53.

Lemma 2.2 ([17]). For two sequences p = (pnk) and q = (qnk) we have (c
I(F )
0 )BP

2 (p)

⊇ (c
I(F )
0 )BP

2 (q) if and only if

lim inf
n,k∈K

(

pnk

qnk

)

> 0, where K ∈ F (I2).

3 Main Results

The proof of the following result is easy, so omitted.

Theorem 3.1. Let M be an Orlicz function and p = (pnk) be a double sequence
of bounded strictly positive numbers. Then the class of sequences 2m

I(F )(M, p),

2m
I(F )
0 (M, p) and 2ℓ

I(F )
∞ (M, p) are closed under the operations of addition and

scalar multiplication.

Theorem 3.2. Let the double sequence (pnk) be bounded. Then 2c
I(F )
0 (M, p)

⊂2c
I(F )(M, p) ⊂ 2ℓ

I(F )
∞ (M, p) and the inclusions are strict.

Proof. The inclusion 2c
I(F )
0 (M, p) ⊂ 2c

I(F )(M, p) ⊂ 2ℓ
I(F )
∞ (M, p) is obvious. Only

to show that the inclusion 2c
I(F )(M, p) ⊂ 2ℓ

I(F )
∞ (M, p) is strict, we consider the

following example.

Example 3.3. Let I2(P ) denote the class of all subsets of N × N such that
A ∈ I2(P ) implies that there exists n0, k0 ∈ N such that A ⊆ N × N − {(n, k) ∈
N × N : n ≥ n0, k ≥ k0}. Let M(x) = x2 and n0, k0 ∈ N be fixed such that

pnk =

{

1
2 if 1 ≤ n ≤ n0, 1 ≤ k ≤ k0

2 otherwise.

Consider the sequence (Xnk) defined by: Xnk = 1̄, for 1 ≤ n ≤ n0, 1 ≤ k ≤ k0.
For n > n0, k > k0 and (n + k) even,

Xnk(t) =







nt−2n+1
n+1 for 2 − n−1 ≤ t ≤ 3

4 − t for 3 < t ≤ 4
0 otherwise.

Otherwise

Xnk(t) =







nt−1
2n−1 for n−1 ≤ t ≤ 2

3 − t for 2 < t ≤ 3
0 otherwise.

Then (Xnk) ∈ 2ℓ
I(F )
∞ (M, p), but (Xnk) /∈ 2c

I(F )(M, p).
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The following two results can be proved easily using simple technique.

Theorem 3.4. The class of sequences 2m
I(F )(M, p) and 2m

I(F )
0 (M, p) are com-

plete metric spaces with respect to the metric τ defined by

τ(X, Y ) = inf

{

ρ
pnk

J > 0 : sup
nk

M

(

d̄ (Xnk, Ynk)

ρ

)

≤ 1, ρ > 0

}

where J = max(1, H), H = supnk pnk.

Theorem 3.5. Let M1 and M2 be two Orlicz functions, then

(i) Z(M1, p) ∩ Z(M2, p) ⊆ Z(M1 + M2, p);

(ii) Z(M2, p) ⊆ Z(M1 ◦ M2, p), for Z = 2m
I(F )
0 , 2m

I(F ), 2ℓ
I(F )
∞ .

We state the following result in view of Lemma 2.2.

Theorem 3.6. For two sequences p = (pnk) and t = (tnk) we have 2m
I(F )
0 (M, p)

⊇ 2m
I(F )
0 (M, t) if

lim inf
n,k∈K

(

pnk

tnk

)

> 0, where K ∈ F (I2).

Theorem 3.7. The class of sequences 2m
I(F )
0 (M, p) is solid as well as monotone.

Proof. Let (Xnk) ∈ 2m
I(F )
0 (M, p) and (Ynk) be such that d̄(Ynk, 0̄) ≤ d̄(Xnk, 0̄)

for each n, k ∈ N . Let ǫ > 0 be given. Then the solidness of 2m
I(F )
0 (M, p) follows

from the following relation: {(n, k) ∈ N ×N :
[

M
(

d̄(Xnk,0̄)
ρ

)]pnk

≥ ǫ} ⊇ {(n, k) ∈

N × N :
[

M
(

d̄(Ynk,0̄)
ρ

)]pnk

≥ ǫ}. Also by Lemma 2.1, it follows that the space is

monotone.

Corollary 3.8. The class of sequences 2m
I(F )(M, p) is neither monotone nor

solid.

Proof. The result follows from the following example.

Example 3.9. Let I2(ρ) ⊂ 2N×N denote the class of all subsets of N ×N of zero
natural density. Let I2 = I2(ρ) and A ∈ I2, pnk = 1 for all n, k ∈ N , M(x) = x2.
Consider the sequence (Xnk) defined by: For (n, k) /∈ A

Xnk(t) =







1 + (n + k)(t − 1) for 1 − 1
n+k

≤ t ≤ 1

1 − (n + k)(t − 1) for 1 < t ≤ 1 + 1
n+k

0 otherwise.
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Otherwise Xnk = 1̄. Then (Xnk) ∈ 2m
I(F )(M, p). Let K = {2i : i ∈ N}. We

define the sequence (Ynk) as follows :

Ynk =

{

Xnk if (n + k) ∈ K
0̄ otherwise.

Then (Ynk) belongs to the canonical pre-image of K step space of 2m
I(F )(M, p).

But (Ynk) /∈ 2m
I(F )(M, p). Hence the space 2m

I(F )(M, p) is not monotone. So by
Lemma 2.1, 2m

I(F )(M, p) is not solid.

Theorem 3.10. The class of sequences 2m
I(F )(M, p) and 2m

I(F )
0 (M, p) are not

symmetric in general.

Proof. The result follows from the following example.

Example 3.11. Let I2(ρ) ⊂ 2N×N denote the class of all subsets of N × N of
zero natural density. Let I2 = I2(ρ), M(x) = x2 and

pnk =

{

1 for n even and all k ∈ N
2 otherwise.

Consider the sequence (Xnk) defined by: For n = i2, i ∈ N and for all k ∈ N

Xnk(t) =







1 + t
2
√

n−1
for 1 − 2

√
n ≤ t ≤ 0

1 − t
2
√

n−1
for 0 < t ≤ 2

√
n − 1

0 otherwise.

Otherwise Xnk = 0̄. Then (Xnk) ∈ Z(M, p) for Z= 2m
I(F ), 2m

I(F )
0 . Consider

the rearrangement (Ynk) of (Xnk) defined by: For k odd and for all n ∈ N ,

Ynk(t) =







1 + t
2n−1 for 1 − 2n ≤ t ≤ 0

1 − t
2n−1 for 0 < t ≤ 2n − 1

0 otherwise.

Otherwise Ynk = 0̄. Then (Ynk) /∈ Z(M, p) for Z= 2m
I(F ), 2m

I(F )
0 . Hence the

class of sequences 2m
I(F )(M, p) and 2m

I(F )
0 (M, p) are not symmetric.

Theorem 3.12. The class of sequences 2m
I(F )(M, p) and 2m

I(F )
0 (M, p) are not

convergence free.

Proof. The result follows from the following example.
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Example 3.13. Let I2(ρ) ⊂ 2N×N denote the class of all subsets of N ×N of zero
natural density. Let I2 = I2(ρ) and A ∈ I2, pnk = 1

3 for all n, k ∈ N , M(x) = x.
Consider the sequence (Xnk) defined by: For (n, k) /∈ A

Xnk(t) =







1 + 2(n + k)t for − 1
2(n+k) ≤ t ≤ 0

1 − 2(n + k)t for 0 < t ≤ 1
2(n+k)

0 otherwise.

Otherwise Xnk = 0̄. Then (Xnk) ∈ Z(M, p) for Z = 2m
I(F ), 2m

I(F )
0 . Consider

the sequence (Ynk) defined by: For (n, k) /∈ A

Ynk(t) =







1 + 2t
n+k

for −n+k
2 ≤ t ≤ 0

1 − 2t
n+k

for 0 < t ≤ n+k
2

0 otherwise.

Otherwise Ynk = 0̄. Then (Ynk) /∈ Z(M, p) for Z= 2m
I(F ), 2m

I(F )
0 . Hence the

class of sequences 2m
I(F )(M, p) and 2m

I(F )
0 (M, p) are not convergence free.

Theorem 3.14. The class of sequences 2m
I(F )(M, p) and 2m

I(F )
0 (M, p) are se-

quence algebras.

Proof. We consider the space 2m
I(F )
0 (M, p). Let (Xnk) , (Ynk) ∈ 2m

I(F )
0 (M, p) and

0 < ǫ < 1. Then the result follows from the following inclusion relation: {(n, k) ∈
N × N : M

(

d̄(Xnk⊗Ynk,0̄)
ρ

)pnk

< ǫ} ⊃ {(n, k) ∈ N × N : M
(

d̄(Xnk,0̄)
ρ

)pnk

<

ǫ}∩ {(n, k) ∈ N ×N : M
(

d̄(Ynk,0̄)
ρ

)pnk

< ǫ}. Similarly we can prove the result for

other case.

4 Conclusion

In this article, we introduced some classes of fuzzy real valued double sequences
defined by Orlicz function. We have proved the completeness of the introduced
sequence spaces and studied some other properties like solidness, symmetricity
sequence algebra etc. We have also proved some inclusion results.

Acknowledgement : The authors thank the referees for the careful reading of
the manuscript and for their valuable comments and suggestions.
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