On the Existence of Positive Solutions for a Class of Infinite Semipositone Systems with Singular Weights ${ }^{1}$

S. H. Rasouli
Department of Mathematics, Faculty of Bacic Sciences
Babol University of Technology, Babol, Iran
e-mail: s.h.rasouli@nit.ac.ir

Abstract : In this paper we consider the existence of positive solutions of infinite semipositone systems with singular weights of the form

$$
\begin{cases}-\operatorname{div}\left(|x|^{-a p}|\nabla u|^{p-2} \nabla u\right)=\lambda|x|^{-(a+1) p+c_{1}}\left(f(v)-\frac{1}{u^{\alpha}}\right), & x \in \Omega \\ -\operatorname{div}\left(|x|^{-b q}|\nabla v|^{q-2} \nabla v\right)=\lambda|x|^{-(b+1) q+c_{2}}\left(g(u)-\frac{1}{v^{\beta}}\right), & x \in \Omega \\ u=0=v, & x \in \partial \Omega\end{cases}
$$

where Ω is a bounded smooth domain of \mathbb{R}^{N} with $0 \in \Omega, 1<p, q<N, 0 \leq$ $a<\frac{N-p}{p}, 0 \leq b<\frac{N-q}{q}, \alpha, \beta \in(0,1)$, and c_{1}, c_{2}, λ are positive parameters. Here $f, g:(0, \infty) \rightarrow(0, \infty)$ are C^{2} functions. Our aim in this paper is to establish the existence of positive solution for λ large. We use the method of sub-super solutions to establish our existence result.

Keywords : positive solutions; infinite semipositone systems; singular weights.
2010 Mathematics Subject Classification : 35J55; 35J65.

[^0]
1 Introduction

We study the existence of positive solutions to infinite semipositone systems with singular weights

$$
\begin{cases}-\operatorname{div}\left(|x|^{-a p}|\nabla u|^{p-2} \nabla u\right)=\lambda|x|^{-(a+1) p+c_{1}}\left(f(v)-\frac{1}{u^{\alpha}}\right), & x \in \Omega \tag{1.1}\\ -\operatorname{div}\left(|x|^{-b q}|\nabla v|^{q-2} \nabla v\right)=\lambda|x|^{-(b+1) q+c_{2}}\left(g(u)-\frac{1}{v^{\beta}}\right), & x \in \Omega \\ u=0=v, & x \in \partial \Omega\end{cases}
$$

where Ω is a bounded smooth domain of \mathbb{R}^{N} with $0 \in \Omega, 1<p, q<N, 0 \leq a<$ $\frac{N-p}{p}, 0 \leq b<\frac{N-q}{q}, \alpha, \beta \in(0,1)$, and c_{1}, c_{2}, λ are positive parameters. Here \bar{f} and g are C^{2} functions in $(0, \infty), f(0)>0, g(0)>0, f^{\prime}>0$, and $g^{\prime}>0$.

Elliptic problems involving more general operator, such as the degenerate quasilinear elliptic operator given by $-\operatorname{div}\left(|x|^{-a p}|\nabla u|^{p-2} \nabla u\right)$, were motivated by the following Caaffarelli, Kohn and Nirenberg's inequality (see [1, 2]). The study of this type of problem is motivated by its various applications, for example, in fluid mechanics, in newtonian fluids, in flow through porous media and in glaciology (see $[3,4]$). So, the study of positive solutions of singular elliptic problems has more practical meanings. We refer to [5-8] for additional results on elliptic problems.

Let $F(h, k)=f(k)-\frac{1}{h^{\alpha}}$, and $G(h, k)=g(h)-\frac{1}{k^{\beta}}$. Then $\lim _{(h, k) \rightarrow(0,0)} F(h, k)=$ $-\infty=\lim _{(h, k) \rightarrow(0,0)} G(h, k)$, and hence we refer to (1) as an infinite semipositone problem. For the regular case, that is, when $a=b=0, c_{1}=p$ and $c_{2}=q$, the quasilinear elliptic equation has been studied by several authors (see [9, 10]). For the single-equation case when $a=0, c_{1}=p=2$, see [11]. In [9], the authors extended the study of [11], to the corresponding systems, including p-Laplacian. Here we focus on further extending the study in [9] for the quasilinear elliptic problem involving singularity. Due to this singularity in the weights, the extensions are challenging and nontrivial. Our approach is based on the method of sub-super solutions, see $[12,13]$.

2 Preliminaries and Existence Result

In this paper, we denote $W_{0}^{1, p}\left(\Omega,|x|^{-a p}\right)$, the completion of $C_{0}^{\infty}(\Omega)$, with respect to the norm $\|u\|=\left(\int_{\Omega}|x|^{-a p}|\nabla u|^{p} d x\right)^{\frac{1}{p}}$. To precisely state our existence result we consider the eigenvalue problem

$$
\begin{cases}-\operatorname{div}\left(|x|^{-s r}|\nabla \phi|^{r-2} \nabla \phi\right)=\lambda|x|^{-(s+1) r+t}|\phi|^{r-2} \phi, & x \in \Omega \tag{2.1}\\ \phi=0, & x \in \partial \Omega\end{cases}
$$

For $r=p, s=a$ and $t=c_{1}$, let $\phi_{1, p}$ be the eigenfunction corresponding to the first eigenvalue $\lambda_{1, p}$ of (2.1) such that $\phi_{1, p}(x)>0$ in Ω, and $\left\|\phi_{1, p}\right\|_{\infty}=1$ and for $r=q, s=b$ and $t=c_{2}$, let $\phi_{1, q}$ be the eigenfunction corresponding to the first eigenvalue $\lambda_{1, q}$ of (2.1) such that $\phi_{1, q}(x)>0$ in Ω, and $\left\|\phi_{1, q}\right\|_{\infty}=1$ (see $[14,15])$. It can be shown that $\frac{\partial \phi_{1, r}}{\partial n}<0$ on $\partial \Omega$ for $r=p, q$. Here n is the outward
normal. This result is well known and hence, depending on Ω, there exist positive constants $\epsilon, \delta, \sigma_{p}, \sigma_{q}$ such that

$$
\begin{gather*}
|x|^{-s r}\left|\nabla \phi_{1, r}\right|^{r} \geq \epsilon, \quad x \in \bar{\Omega}_{\delta}, \tag{2.2}\\
\phi_{1, r} \geq \sigma_{r}, \quad x \in \Omega_{0}=\Omega \backslash \bar{\Omega}_{\delta} \tag{2.3}
\end{gather*}
$$

with $r=p, q ; s=a, b ; t=c_{1}, c_{2}$ and $\bar{\Omega}_{\delta}=\{x \in \Omega \mid d(x, \partial \Omega) \leq \delta\}$ (see [14]). We will also consider the unique solution $\left(\zeta_{p}(x), \zeta_{q}(x)\right) \in W_{0}\left(\Omega,|x|^{-a p}\right) \times W_{0}\left(\Omega,|x|^{-b q}\right)$ for the system

$$
\begin{cases}-\operatorname{div}\left(|x|^{-a p}\left|\nabla \zeta_{p}\right|^{p-2} \nabla \zeta_{p}\right)=|x|^{-(a+1) p+c_{1}}, & x \in \Omega \\ -\operatorname{div}\left(|x|^{-b q}\left|\nabla \zeta_{q}\right|^{-2} \nabla \zeta_{p}\right)=|x|^{-(b+1) q+c_{2}}, & x \in \Omega \\ u=v=0, & x \in \partial \Omega\end{cases}
$$

to discuss our existence result. It is known that $\zeta_{r}(x)>0$ in Ω and $\frac{\partial \zeta_{r}(x)}{\partial n}<0$ on $\partial \Omega$, for $r=p, q$ (see [14]).

A pair of nonnegative functions $\left(\psi_{1}, \psi_{2}\right),\left(z_{1}, z_{2}\right)$ are called a subsolution and supersolution of (1) if they satisfy $\left(\psi_{1}, \psi_{2}\right)=(0,0)=\left(z_{1}, z_{2}\right)$ on $\partial \Omega$ and

$$
\begin{aligned}
& \int_{\Omega}|x|^{-a p}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \cdot \nabla w d x \leq \lambda \int_{\Omega}|x|^{-(a+1) p+c_{1}}\left(f\left(\psi_{2}\right)-\frac{1}{\psi_{1}^{\alpha}}\right) w d x \\
& \int_{\Omega}|x|^{-b q}\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \cdot \nabla w d x \leq \lambda \int_{\Omega}|x|^{-(b+1) q+c_{2}}\left(g\left(\psi_{1}\right)-\frac{1}{\psi_{2}^{\beta}}\right) w d x \\
& \int_{\Omega}|x|^{-a p}\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \cdot \nabla w d x \geq \lambda \int_{\Omega}|x|^{-(a+1) p+c_{1}}\left(f\left(z_{2}\right)-\frac{1}{z_{1}^{\alpha}}\right) w d x \\
& \int_{\Omega}|x|^{-b q}\left|\nabla z_{2}\right|^{q-2} \nabla z_{2} \cdot \nabla w d x \geq \lambda \int_{\Omega}|x|^{-(b+1) q+c_{2}}\left(g\left(z_{1}\right)-\frac{1}{z_{2}^{\beta}}\right) w d x
\end{aligned}
$$

for all $w \in W=\left\{w \in C_{0}^{\infty}(\Omega) \mid w \geq 0, x \in \Omega\right\}$. Then the following result holds:
Lemma 2.1 (See [14]). Suppose there exist sub and super- solutions $\left(\psi_{1}, \psi_{2}\right)$ and $\left(z_{1}, z_{2}\right)$ respectively of (1.1) such that $\left(\psi_{1}, \psi_{2}\right) \leq\left(z_{1}, z_{2}\right)$. Then (1.1) has a solution (u, v) such that $(u, v) \in\left[\left(\psi_{1}, \psi_{2}\right),\left(z_{1}, z_{2}\right)\right]$.

We make the following assumptions:
(A.1) f and g are C^{2} functions in $(0, \infty), f(0)>0, g(0)>0, f^{\prime}>0$, and $g^{\prime}>0$.
(A.2) $\lim _{s \rightarrow \infty} g(s)=\infty$ and for all $M>0$

$$
\lim _{s \rightarrow \infty} \frac{f\left(M g(s)^{\frac{1}{q-1}}\right)}{s^{p-1}}=0
$$

We establish:
Theorem 2.2. Assume (H.1) and (H.2) hold. Then there exists positive constant λ_{*} such that (1.1) has a positive solution for $\lambda>\lambda_{*}$.

Proof. Choose $\eta>0$ such that $\eta \leq \min \left\{|x|^{-(a+1) p+c_{1}},|x|^{-(b+1) q+c_{2}}\right\}$, in $\bar{\Omega}_{\delta}$. For fixed $r_{1} \in\left(\frac{1}{p-1+\alpha}, \frac{1}{p-1}\right)$ and $r_{2} \in\left(\frac{1}{q-1+\beta}, \frac{1}{q-1}\right)$, we shall verify that

$$
\left(\psi_{1, \lambda}, \psi_{2, \lambda}\right)=\left(\lambda^{r_{1}} \eta^{\frac{1}{p-1}}\left(\frac{p-1+\alpha}{p}\right) \phi_{1, p}^{\frac{p}{p-1+\alpha}}, \lambda^{r_{2}} \eta^{\frac{1}{q-1}}\left(\frac{q-1+\beta}{q}\right) \phi_{1, q}^{\frac{q}{q-1+\beta}}\right)
$$

is a sub-solution of (1.1). Let $w \in W$. Then a calculation shows that

$$
\nabla \psi_{1, \lambda}=\lambda^{r_{1}} \eta^{\frac{1}{p-1}} \phi_{1, p}^{\frac{1-\alpha}{p-1+\alpha}} \nabla \phi_{1, p}, \psi_{2, \lambda}=\lambda^{r_{2}} \eta^{\frac{1}{q-1}} \phi_{1, q}^{\frac{1-\beta}{q-1+\beta}} \nabla \phi_{1, q}
$$

and

$$
\begin{aligned}
& \int_{\Omega}|x|^{-a p}\left|\nabla \psi_{1, \lambda}\right|^{p-2} \nabla \psi_{1, \lambda} \nabla w d x \\
& =\lambda^{r_{1}(p-1)} \eta \int_{\Omega}|x|^{-a p} \phi_{1, p}^{\frac{(1-\alpha)(p-1)}{p-1+\alpha}}\left|\nabla \phi_{1, p}\right|^{p-2} \nabla \phi_{1, p} \nabla w d x \\
& =\lambda^{r_{1}(p-1)} \eta \int_{\Omega}|x|^{-a p}\left|\nabla \phi_{1, p}\right|^{p-2} \nabla \phi_{1, p}\left[\nabla\left(\phi_{1, p}^{\frac{(1-\alpha)(p-1)}{p-1+\alpha}} w\right)-\left(\nabla \phi_{1, p}^{\frac{(1-\alpha)(p-1)}{p-1+\alpha}}\right) w\right] d x \\
& =\lambda^{r_{1}(p-1)} \eta \int_{\Omega}\left[\lambda_{1, p}|x|^{-(a+1) p+c_{1}} \phi_{1, p}^{\frac{p(p-1)}{p-1+\alpha}}-|x|^{-a p} \frac{(1-\alpha)(p-1)}{p-1+\alpha} \frac{\mid \nabla \phi_{1, p}^{p}}{\phi_{1, p}^{p-1+\alpha}}\right] w d x .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \int_{\Omega}|x|^{-b q}\left|\nabla \psi_{2, \lambda}\right|^{q-2} \nabla \psi_{2, \lambda} \nabla w d x \\
& =\lambda^{r_{2}(q-1)} \eta \int_{\Omega}\left[\lambda_{1, q}|x|^{-(b+1) q+c_{2}} \phi_{1, q}^{\frac{q(q-1)}{q-1+\beta}}-|x|^{-b q} \frac{(1-\beta)(q-1)}{q-1+\beta} \frac{\left|\nabla \phi_{1, q}\right|^{q}}{\frac{\beta q}{\beta_{1}^{q-1+\beta}}}\right] w d x
\end{aligned}
$$

First we consider the case when $x \in \bar{\Omega}_{\delta}$. We have $|x|^{-a p}\left|\nabla \phi_{1, p}\right|^{p} \geq \epsilon$ and $|x|^{-b q}\left|\nabla \phi_{1, q}\right|^{q} \geq \epsilon$ on $\bar{\Omega}_{\delta}$. Since $r_{1}(p-1) \geq 1-\alpha r_{1}$ and $r_{2}(q-1) \geq 1-\beta r_{2}$, we can find $\hat{\lambda}>0$ such that

$$
\begin{aligned}
& -\lambda^{r_{1}(p-1)} \eta|x|^{-a p} \frac{(1-\alpha)(p-1)}{p-1+\alpha} \frac{\left|\nabla \phi_{1, p}\right|^{p}}{\phi_{1, p}^{\frac{\alpha p}{p-1+\alpha}}} \\
& \qquad \quad \leq \lambda|x|^{-(a+1) p+c_{1}}\left(-\frac{1}{\left[\lambda^{r_{1}} \eta^{\frac{1}{p-1}}\left(\frac{p-1+\alpha}{p}\right) \phi_{1, p}^{\frac{p}{p-1+\alpha}}\right]^{\alpha}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& -\lambda^{r_{2}(q-1)} \eta|x|^{-b q} \frac{(1-\beta)(q-1)}{q-1+\beta} \frac{\left|\nabla \phi_{1, q}\right|^{q}}{\phi_{1, q}^{\frac{\beta q}{q-1+\beta}}} \\
& \qquad \quad \leq \lambda|x|^{-(b+1) p+c_{2}}\left(-\frac{1}{\left[\lambda^{r_{2}} \eta^{\frac{1}{q-1}}\left(\frac{q-1+\beta}{q}\right) \phi_{1, q}^{\frac{q}{q-1+\beta}}\right]^{\beta}}\right)
\end{aligned}
$$

for all $x \in \bar{\Omega}_{\delta}$ and for all $\lambda \geq \hat{\lambda}$. Also since $r_{1}(p-1)<1$ and $r_{2}(q-1)<1$, we can choose $\check{\lambda}>0$ so that

$$
\begin{aligned}
\lambda^{r_{1}(p-1)} \eta \lambda_{1, p}|x|^{-(a+1) p+c_{1}} \phi_{1, p}^{\frac{p(p-1)}{p-1+\alpha}} & \leq \lambda|x|^{-(a+1) p+c_{1}} f(0) \\
& \leq \lambda|x|^{-(a+1) p+c_{1}} f\left(\lambda^{r_{2}} \eta^{\frac{1}{q-1}}\left(\frac{q-1+\beta}{q}\right) \phi_{1, q}^{\frac{q}{q-1+\beta}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda^{r_{2}(q-1)} \eta \lambda_{1, q}|x|^{-(b+1) q+c_{2}} \phi_{1, q}^{\frac{q(q-1)}{q-1+\beta}} & \leq \lambda|x|^{-(b+1) q+c_{2}} g(0) \\
& \leq \lambda|x|^{-(b+1) q+c_{2}} g\left(\lambda^{r_{1}} \eta^{\frac{1}{p-1}}\left(\frac{p-1+\alpha}{p}\right) \phi_{1, p}^{\frac{p}{p-1+\alpha}}\right)
\end{aligned}
$$

for all $x \in \bar{\Omega}_{\delta}$ and for all $\lambda \geq \check{\lambda}$. Let $\lambda_{0}=\max \{\hat{\lambda}, \check{\lambda}\}$. Hence, for all $x \in \bar{\Omega}_{\delta}$ and for all $\lambda \geq \lambda_{0}$,

$$
\begin{aligned}
& \int_{\bar{\Omega}_{\delta}}|x|^{-a p}\left|\nabla \psi_{1, \lambda}\right|^{p-2} \nabla \psi_{1, \lambda} \nabla w d x \\
& \leq \lambda \int_{\bar{\Omega}_{\delta}}|x|^{-(a+1) p+c_{1}} \\
& \quad \times\left[f\left(\lambda^{r} \eta^{\frac{1}{q-1}}\left(\frac{q-1+\beta}{q}\right) \phi_{1, q}^{\frac{q}{q-1+\beta}}\right)-\frac{1}{\left(\lambda^{r_{1}} \eta^{\frac{1}{p-1}}\left(\frac{p-1+\alpha}{q}\right) \phi_{1, p}^{\frac{p}{p-1+\alpha}}\right)^{\alpha}}\right] w d x \\
& \quad\left[\begin{array}{l}
\quad\left[\int_{\bar{\Omega}_{\delta}}|x|^{-(a+1) p+c_{1}}\left(f\left(\psi_{2, \lambda}\right)-\frac{1}{\psi_{1, \lambda}^{\alpha}}\right) w d x\right.
\end{array}\right.
\end{aligned}
$$

and similarly

$$
\int_{\bar{\Omega}_{\delta}}|x|^{-b q}\left|\nabla \psi_{2, \lambda}\right|^{q-2} \nabla \psi_{2, \lambda} \cdot \nabla w d x \leq \lambda \int_{\bar{\Omega}_{\delta}}|x|^{-(b+1) q+c_{2}}\left(g\left(\psi_{1, \lambda}\right)-\frac{1}{\psi_{2, \lambda}^{\beta}}\right) w d x
$$

On the other hand, on $\Omega \backslash \bar{\Omega}_{\delta}$, we have $\phi_{1, r} \geq \sigma_{r}$, for some $0<\sigma_{p}<1$, and for $r=p, q$. Since $r(p-1)<1$ and $r(q-1)<1$ we can find $\tilde{\lambda}>0$ such that

$$
\begin{aligned}
& \lambda^{r(p-1)} \eta \lambda_{1, p}|x|^{-(a+1) p+c_{1}} \phi_{1, p}^{\frac{p(p-1)}{p-1+\alpha}} \\
& \leq \lambda|x|^{-(a+1) p+c_{1}}\left[f\left(\lambda^{r} \eta^{\frac{1}{q-1}}\left(\frac{q-1+\beta}{q}\right) \sigma_{q}^{\frac{q}{q-1+\beta}}\right)-\frac{1}{\left(\lambda^{r} \eta^{\frac{1}{p-1}}\left(\frac{p-1+\alpha}{p}\right) \sigma_{p}^{\frac{p}{p-1+\alpha}}\right)^{\alpha}}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda^{r(q-1)} \eta \lambda_{1, q}|x|^{-(b+1) p+c_{2}} \phi_{1, q}^{\frac{q(q-1)}{q-1+\beta}} \\
& \leq \lambda|x|^{-(b+1) p+c_{2}}\left[g\left(\lambda^{r} \eta^{\frac{1}{p-1}}\left(\frac{p-1+\alpha}{p}\right) \sigma_{p}^{\frac{p}{p-1+\alpha}}\right)-\frac{1}{\left(\lambda^{r} \eta^{\frac{1}{q-1}}\left(\frac{q-1+\beta}{q}\right) \sigma_{q}^{\frac{q}{q-1+\beta}}\right)^{\beta}}\right]
\end{aligned}
$$

for all $x \in \Omega \backslash \bar{\Omega}_{\delta}$ and for all $\lambda \geq \tilde{\lambda}$. Hence

$$
\begin{aligned}
& \lambda^{r(p-1)} \eta \int_{\Omega \backslash \bar{\Omega}_{\delta}}\left[\lambda_{1, p}|x|^{-(a+1) p+c_{1}} \phi_{1, p}^{\frac{p(p-1)}{p-1+\alpha}}-|x|^{-a p} \frac{(1-\alpha)(p-1)}{p-1+\alpha} \frac{\mid \nabla \phi_{1, p}^{p}}{\phi_{1, p}^{\frac{\alpha p}{p+\alpha}}}\right] w d x \\
& \quad \leq \lambda^{r(p-1)} \eta \int_{\Omega \backslash \bar{\Omega}_{\delta}} \lambda_{1, p}|x|^{-(a+1) p+c_{1}} \phi_{1, p}^{\frac{p(p-1)}{p-1+\alpha}} w d x \\
& \quad \leq \lambda \int_{\Omega \backslash \bar{\Omega}_{\delta}}|x|^{-(a+1) p+c_{1}} \\
& \quad \times\left[f\left(\lambda^{r} \eta^{\frac{1}{q-1}}\left(\frac{q-1+\beta}{q}\right) \sigma_{q}^{\frac{q}{q-1+\beta}}\right)-\frac{1}{\left(\lambda^{r} \eta^{\left.\frac{1}{p-1}\left(\frac{p-1+\alpha}{p}\right) \sigma_{p}^{\frac{p}{p-1+\alpha}}\right)^{\alpha}}\right] w d x}\right] \\
& \quad \leq \lambda \int_{\Omega \backslash \bar{\Omega}_{\delta}}|x|^{-(a+1) p+c_{1}}\left(f\left(\psi_{2, \lambda}\right)-\frac{1}{\psi_{1, \lambda}^{\alpha}}\right) w d x .
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& \lambda^{r(q-1)} \eta \int_{\Omega \backslash \bar{\Omega}_{\delta}}\left[\lambda_{1, q}|x|^{-(b+1) q+c_{2}} \phi_{1, q}^{\frac{q(q-1)}{q-q+\beta}}-|x|^{-b q} \frac{(1-\beta)(q-1)}{q-1+\beta} \frac{\left|\nabla \phi_{1, q}\right|^{q}}{\phi_{1, q}^{\frac{\beta, q}{q-1+\beta}}}\right] w d x \\
& \leq \lambda \int_{\Omega \backslash \bar{\Omega}_{\delta}}|x|^{-(b+1) q+c_{2}}\left(g\left(\psi_{1, \lambda}\right)-\frac{1}{\psi_{2, \lambda}^{\beta}}\right) w d x .
\end{aligned}
$$

Let $\lambda_{*}=\max \left\{\lambda_{0}, \tilde{\lambda}\right\}$. Hence

$$
\int_{\Omega}|x|^{-a p}\left|\nabla \psi_{1, \lambda}\right|^{p-2} \nabla \psi_{1, \lambda} \cdot \nabla w d x \leq \int_{\Omega}|x|^{-(a+1) p+c_{1}}\left(f\left(\psi_{2, \lambda}\right)-\frac{1}{\psi_{1, \alpha}^{\alpha}}\right) w d x,
$$

and

$$
\int_{\Omega}|x|^{-b q}\left|\nabla \psi_{2, \lambda}\right|^{q-2} \nabla \psi_{2, \lambda} \cdot \nabla w d x \leq \int_{\Omega}|x|^{-(b+1) p+c_{2}}\left(g\left(\psi_{1, \lambda}\right)-\frac{1}{\psi_{2, \lambda}^{\beta}}\right) w d x
$$

i.e., $\left(\psi_{1, \lambda}, \psi_{2, \lambda}\right)$ is a sub-solution of (1) for all $\lambda \geq \lambda_{*}$.

Now, we will prove there exists a N large enough so that

$$
\left(z_{1}, z_{2}\right)=\left(N \zeta_{p}(x),\left[\lambda g\left(N l_{p}\right)\right]^{\frac{1}{q-1}} \zeta_{q}(x)\right),
$$

is a super-solution of (1), where $l_{r}=\left\|\zeta_{r}\right\|_{\infty} ; r=p, q$. A calculation shows that:

$$
\begin{aligned}
\int_{\Omega}|x|^{-a p}\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \nabla w d x & =N^{p-1} \int_{\Omega}|x|^{-a p}\left|\nabla \zeta_{p}\right|^{p-2} \nabla \zeta_{p} \nabla w d x \\
& =N^{p-1} \int_{\Omega}|x|^{-(a+1) p+c_{1}} w d x .
\end{aligned}
$$

By monotonicity condition on f and (A.2), we can choose N large enough so that

$$
\begin{aligned}
N^{p-1} & \geq \lambda f\left(\left[\lambda g\left(N l_{p}\right)\right]^{\frac{1}{q-1}} l_{q}\right) \\
& \geq \lambda f\left(\left[\lambda g\left(N l_{p}\right)\right]^{\frac{1}{q-1}} \zeta_{q}(x)\right) \\
& =\lambda f\left(z_{2}\right) \\
& \geq \lambda\left(f\left(z_{2}\right)-\frac{1}{z^{\alpha}}\right) .
\end{aligned}
$$

Hence

$$
\int_{\Omega}|x|^{-a p}\left|\nabla z_{1}\right|^{p-2}\left|\nabla z_{1}\right| \cdot \nabla w d x \geq \lambda \int_{\Omega}|x|^{-(a+1) p+c_{1}}\left(f\left(z_{2}\right)-\frac{1}{z^{\alpha}}\right) w d x .
$$

Next, we have

$$
\begin{aligned}
\int_{\Omega}|x|^{-b q}\left|\nabla z_{2}\right|^{q-2} \nabla z_{2} \nabla w d x & =\lambda g\left(N l_{p}\right) \int_{\Omega}|x|^{-b q}\left|\nabla \zeta_{q}\right|^{q-2} \nabla \zeta_{q} \nabla w d x \\
& =\lambda g\left(N l_{p}\right) \int_{\Omega}|x|^{-(b+1) q+c_{2}} w d x \\
& \geq \lambda \int_{\Omega}|x|^{-(b+1) q+c_{2}} g\left(N \zeta_{p}(x)\right) w d x \\
& =\lambda \int_{\Omega}|x|^{-(b+1) q+c_{2}} g\left(z_{1}\right) w d x \\
& \geq \lambda \int_{\Omega}|x|^{-(b+1) q+c_{2}}\left(g\left(z_{1}\right)-\frac{1}{z_{2}^{\beta}}\right) w d x
\end{aligned}
$$

i.e. $\left(z_{1}, z_{2}\right)$ is a super-solution of (1) with $z_{i} \geq \psi_{i}$ for M large, $i=1,2$. Thus, by [14] there exists a positive solution (u, v) of (1) such that $(\psi, \psi) \leq(u, v) \leq\left(z_{1}, z_{2}\right)$. This completes the proof.

Acknowledgement : The author wishes to express his gratitude to the anonymous referee for reading the original manuscript carefully and making several corrections and remarks.

References

[1] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights, Compos. Math. 53 (1984) 259-275.
[2] B. Xuan, The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights, Nonlinear Anal. 62 (2005) 703-725.
[3] C. Atkinson, K. El Kalli. Some boundary value problems for the Bingham model, J. Non-Newtonian Fluid Mech. 41 (1992) 339-363.
[4] F. Cirstea, D. Motreanu, V. Radulescu, Weak solutions of quasilinear problems with nonlinear boundary condition, Nonlinear Anal. 43 (2001) 623-636.
[5] S.H. Rasouli, G.A. Afrouzi, The Nehari manifold for a class of concaveconvex elliptic systems involving the p-Laplacian and nonlinear boundary condition, Nonlinear Anal. 73 (2010) 3390-3401.
[6] P. Drabek, S.H. Rasouli, A quasilinear eigenvalue problem with Robin conditions on the non smooth domain of finite measure, Zeitschrift fur Analysis und ihre Anwendungen. 29 (4) (2010) 469-485.
[7] H. Bueno, G. Ercole, W. Ferreira, A. Zumpano, Existence and multiplicity of positive solutions for the p-Laplacian with nonlocal coefficient, J. Math. Anal. Appl. 343 (2008) 151-158.
[8] F. Fang, S. Liu, Nontrivial solutions of superlinear p-Laplacian equations, J. Math. Anal. Appl. 351 (2009) 138-146.
[9] E.K. Lee, R. Shivaji, J. Ye, Clases of infinite semipositone $n \times n$ systems, Diff. Int. Eqs. 24 (3-4) (2011) 361-370.
[10] E.K. Lee, R. Shivaji, J. Ye, Clases of infinite semipositone systems, Proc. Roy. Soc. Edinburgh 139A (2009) 853-865.
[11] M. Ramaswamy, R. Shivaji, J. Ye, Positive solutions for a clases of infinite semipositone problems, Diff. Int. Eqs. 20 (12) (2007) 1423-1433.
[12] A. Canada, P. Drabek, J.L. Gamez, Existence of positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc. 349 (1997) 42314249.
[13] P. Drabek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem, Nonlinear Anal. 44 (2) (2001) 189-204.
[14] O.H. Miyagaki, R.S. Rodrigues, On positive solutions for a class of singular quasilinear elliptic systems, J. Math. Anal. Appl. 334 (2007) 818-833.
[15] B. Xuan, The eigenvalue problem for a singular quasilinear elliptic equation, Electronic J. Differential Equations 2004 (16) (2004) 1-11.
(Received 3 September 2011)
(Accepted 12 April 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ This research was supported by the Iran's National elites Foundation.
 Copyright (c) 2013 by the Mathematical Association of Thailand. All rights reserved.

