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Abstract : In this paper we consider the existence of positive solutions of infinite
semipositone systems with singular weights of the form

—div (|| [Vulp=2 Vu) = a0 (fo) — L)z en,
—div(|x| 7% | V|72 Vo) = A |a:|’(b+1)q+‘32 (g(u) — viﬁ , T €,

u=0=wv, x € 09,

where € is a bounded smooth domain of RY with 0 € , 1 < p,¢g < N, 0 <
a < %, 0<b< %, a, B € (0,1), and ¢1, c2, A are positive parameters. Here
f,9:(0,00) — (0,00) are C? functions. Our aim in this paper is to establish the
existence of positive solution for A large. We use the method of sub-super solutions
to establish our existence result.
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1 Introduction

We study the existence of positive solutions to infinite semipositone systems
with singular weights

div((a~ (Va2 Vu) = Afa] e (f0) — 1),z e,
—div(|z|7 | V|92 Vo) = X |z|~CtDate (g(u) — ULB), T €, (1.1)

u=0=wv, x € 09,

where (Q is a bounded smooth domain of RY with 0 € Q, 1 <p,g < N,0<a <
%, 0<b< %, a,f € (0,1), and c1, ca, A are positive parameters. Here f and
g are C? functions in (0,00), f(0) > 0, g(0) > 0, f' >0, and ¢’ > 0.

Elliptic problems involving more general operator, such as the degenerate qua-
silinear elliptic operator given by —div(|z|~% |Vu[P~2 Vu), were motivated by the
following Caaffarelli, Kohn and Nirenberg’s inequality (see [1, 2]). The study of
this type of problem is motivated by its various applications, for example, in fluid
mechanics, in newtonian fluids, in flow through porous media and in glaciology (see
[3, 4]). So, the study of positive solutions of singular elliptic problems has more
practical meanings. We refer to [5-8] for additional results on elliptic problems.

Let F(h,k) = f(k)—#=,and G(h, k) = g(h)— 7. Then lim, 1) (0,0) F(h, k) =
—o00 = lim(y, k)—(0,0y G(h, k), and hence we refer to (1) as an infinite semipositone
problem. For the regular case, that is, when a = b = 0, ¢; = p and ¢y = ¢, the
quasilinear elliptic equation has been studied by several authors (see [9, 10]). For
the single-equation case when a = 0, ¢; = p = 2, see [11]. In [9], the authors
extended the study of [11], to the corresponding systems, including p-Laplacian.
Here we focus on further extending the study in [9] for the quasilinear elliptic
problem involving singularity. Due to this singularity in the weights, the extensions
are challenging and nontrivial. Our approach is based on the method of sub-super
solutions, see [12, 13].

2 Preliminaries and Existence Result

In this paper, we denote Wol’p(Q, |z|~%P), the completion of C§° (), with re-
spect to the norm ul| = (J, |:C|_‘”’|Vu|pdx)%. To precisely state our existence
result we consider the eigenvalue problem

—div(|z| 7 [V 2 Vo) = Na| =TI g 20, €, 51
¢ =0, x € 0. (2.1)
For r = p, s = a and t = ¢, let ¢1, be the eigenfunction corresponding to the
first eigenvalue A, of (2.1) such that ¢ ,(z) > 0 in Q, and ||¢1p|/cc = 1 and
for r = ¢, s = b and t = ¢y, let ¢1 4 be the eigenfunction corresponding to the
first eigenvalue A1, of (2.1) such that ¢1 4(x) > 0 in Q, and ||¢1 4/lcc = 1 (see

[14, 15]). It can be shown that % < 0 on 09 for r = p, q. Here n is the outward



On the Existence of Positive Solutions for a Class of Infinite ... 105

normal. This result is well known and hence, depending on €2, there exist positive
constants ¢, 9, 0p, 04 such that

|z| " |V " > €,  x€Qy, (2.2)

¢1,r Zoru :EEQO:Q\Q(% (23)

with 7 = p,q; s = a,b; t = ¢1,¢2 and Q5 = {x € Q | d(z,00Q) < 5} (see [14]). We
will also consider the unique solution (¢, (z), ¢, (z)) € Wo (€, |2|~9P) x W (£, |z|~b9)
for the system

—div(|x|% |V (P2 V) = |z|~letrta 4 e,
—div(|z| 7P |V, |92 V() = |x| "t Date: 4 e Q)
u=1v=0, x € 0N,

to discuss our existence result. It is known that ¢.(z) > 0 in  and 8{5_7(11) <0Oon

o, for r = p, q (see [14]).
A pair of nonnegative functions (¢1,%2), (21, 22) are called a subsolution and
supersolution of (1) if they satisfy (11,12) = (0,0) = (21, 22) on 9 and

1

/ || =% |Vap1 P2 Ve, - Vwda < )\/ ||~ @t DPFer (f(yhy) — W)wd:c,
Q Q 1
1

/Q 2]~ [V 72 Vi - Y dz < A / I (o) — g il
2

Q

1
/ || 7 |V 21 [P72 V 21 - Vwdz > A |3:|7(a+1)7”+‘21 (f(z2) — Z—a)wda:,
Q Q 1

B8
22

1
el 19002 20 Gwdo = [ Jal O (g(a1) - ) w
a2 Q

for all w € W = {w € Cg°(Q)|w > 0,z € 2}. Then the following result holds:

Lemma 2.1 (See [14]). Suppose there exist sub and super- solutions (11,2) and
(21, z2) respectively of (1.1) such that (1,12) < (21,22). Then (1.1) has a solution
(u,v) such that (u,v) € [(¢1,¢2), (71, 22)].

We make the following assumptions:
(A.1) f and g are C? functions in (0, 00), f(0) > 0, g(0) > 0, f’ > 0, and ¢’ > 0.

(A.2) lims_.o g(s) = o0 and for all M > 0

oy FMa()77)

$§—00 517—1

=0.
We establish:

Theorem 2.2. Assume (H.1) and (H.2) hold. Then there exists positive constant
A« such that (1.1) has a positive solution for A > A.
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Proof. Choose n > 0 such that n < min{|z|~(etDPter |g|=(C+ate2l in Q5. For

fixed r; € (p_lﬁ, ﬁ) and rg € (m, q_%), we shall verify that

(Y10, P20) = </\r177p11 (p—l%) o7 =it e nq%l (#) bi 1+5)

is a sub-solution of (1.1). Let w € W. Then a calculation shows that

1 sirte 1 A
Vit = A7t 67T Ve, oy = N2 07T o7 77 Ve,
and

/ ||~ |Vapy 2 [P 72 Viby x Vw da
L a-a)p-1) ,
)\7‘1(17 ) / |:Z?| ap d)l p—1l+a |v¢17p|p7 V¢17p dex
ri(p—1) —a —2 % %
=\ / || p|V(l51,p|p Voi,p [ <¢1 it ) (V¢1 Pt ) w] dx
JQ

p(p—1) _ -|
— \rie—1) n / IV)\LP |x|f(a+1)P+01 ¢f’;1+a _ |x|*ap (1 a)ip—1) |V¢1 P| w de.
Q —1+a o7 =Tra J

Similarly,

/ |2| 7% |Vpa 1|92 Vo \ Vw dae
Q

— \2(a—1) n / Mg |I|*(b+1)q+02 ¢12(§++1ﬁ)3 _ |$|7bq 1-B@-1 |V¢1 q|q w de.
Q ’ g—1+p o, (=

First we consider the case when z € Q5. We have |z|~% [V, [P > € and
|| ~b4 Vo1 4]9 > eon 5. Since r1(p—1) > 1 —ary and ro(g — 1) > 1 — Bra, we

can find A > 0 such that
L—a)(p—1) [Vor,P
p— 1 + « (bpfalﬁ

1p

_ )\Tl(p—l)n|x|—ap (

< Aaf (et | 1 ,

T (B2 9" SET

and

B)(g — )|V¢1q|q
g—1+p o7, PR

1-—
)\rg(q 1)n|x| bq(

< Alz|(FDptea |
s (S50
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for all 2 € Qs and for all A > \. Also since 71 (p—1) < 1 and r5(qg—1) < 1, we can
choose A > 0 so that

p(p—1)
N A | T PR < a7 £ (0)

— —a
< Ao~ (Hrre (A”nﬁ (—q =L ) ¢f,;”ﬂ)7

and

q(g—1)
A\2(a=1) N Aiq |x|*(b+1)q+62 (blq;zlﬂﬁ <A |x|*(b+1)q+02 g(0)

— P R
<afaf e (gt (2R g )

for all € Qs and for all A > . Let \g = max{j\,)v\}. Hence, for all z € Qs and
for all A > A,

/ |z| =P |[Vep1 A P72 Vb1 » Vw dz
Qs

S)\/ |x|*(a+1)p+01
Jas

— R —
x| f ()\ani_l <#) ¢f’;1+ﬁ> _ - 1 > = | wdzx
()\7‘1 nﬁ(l’*;‘f’a) p—1+a)

1,p
_ —(a+1)p+ecy 1
=XA [ |z f(Wan) — — | wdz,
Jas YTa

and similarly

1
[ |2 7% |Vaho £ |972 Vipa y - Vwda < A[ ||~ (b Dates (9(7/11)\) — ¢T> wdz.
Qs ¢

25 2,2

On the other hand, on Q\ Qs, we have @1, > oy, for some 0 < 0, < 1, and

for = p,q. Since r(p — 1) < 1 and 7(¢ — 1) < 1 we can find A > 0 such that

p(p—1)
r(p—1) —(a+1)p+c —1to
A 77)‘14’ |ZL’| ! (vblp,p

1

— — 9
S )\|x|7(a+1)p+61 f <)\'rnqj(q 1 +ﬁ)o_qq—l+ﬁ) _ 1
q

P «@ ’
(Arnfil(—”*”“)ﬁ“*“)
p

and

a(g—1)
r(g—1) —(b+1)p+c —1+8
A N A1,q |2 2oy

_ . .1 p—1 —r 1
< )\|13| (b+1)ptca g <)\r Wil (p p+ a)0571+a) _ 7
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for all z € Q\ Qs and for all A > \. Hence

p(p—1) _ -|
)\7"(1)71)77 / _ IV)\I’p |x|7(a+1)p+C1 (Hi;l*_a _ |m|7ap (1 )1( 1) |V¢1 p| wdz
Ja\Q; —l+a o7, S J

1 p(p—1)
SN0y [ el e G T wde
O\ Qs

YR
Q\ Q5
% f<)\rnq%1 (ﬂ) od- +B>_ 1 1 _ | wds
q <)\rnﬁ(P*;‘Fﬂ) p—1+a)

< )\/ |x|*(a+1)P+cl (f(¢2 A) 1 ) wdz.
Q\ Qs ¢1,A

and similarly

alg=1) 1 — — q
)\r(q—l),'7 / i )‘1,11 |$| (b+1)g+c2 (bq 1+ﬁ _ | | bq ( ﬁ)( ) |v¢1 q|
Q\Qs -1+ ¢q 1+B

w dx

1
< )\/ e[V { g )) — —— | wda,
Q\Qs (S

Let A, = max{\o, \}. Hence

1
/ |I|7ap |V1/)1,A|p72 VU)LA - Vwdz < |x|7(a+1)p+¢:1 (f(‘/’ZA) — s ) wdx,
Q 1,

Q

and
1
/ |I|—bq |V¢27)\|q—2 Vi y - Vwdr < / |$|—(b+1)p+c2 g(‘/’LA) - — wdz,
Q Q ¢2,A
i.e., (¢1,x,%21) is a sub-solution of (1) for all A > A,.
Now, we will prove there exists a N large enough so that
_1
(21, 22) = (N G (@), Mg (N 1) 77 ¢ (@)
is a super-solution of (1), where I, = ||(]lco; 7 = P, ¢- A calculation shows that:

/ |z| = |V21|P~2 V2 Vwdr = NP1 / |z| =% |V (|2 YV, Vw dr
Q Q

= NPt / ||~ (@t DPFen o dy,
Q
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By monotonicity condition on f and (A.2), we can choose N large enough so that

NP 2 A f (Ng(N ) 7T )
> M (g )T Gy(x)
= Af(z2)

Hence

1
/ 2|~ |V 21 P72 |V 21| - Vwdz > /\/ ||~ (e Dpter <f(z2) - —a) wdz.
Q Q

z
Next, we have
/Q |2| 7|V 22|92V 2o Vw de = A g(N1,) /Q |2| 72|V (|92 V¢, Vw dx
= Ag(Nlip) /Q ||~ T DaFez 4 dy
> [ [l TN G o) do

:)\/ ||~ CFDaFe g (2w dae
Q

1
> /\/ ||~ (O Dates <g(21) - ‘ﬁ) wdx
Q 25

i.e. (21,22) is a super-solution of (1) with z; > v; for M large, i = 1,2. Thus, by
[14] there exists a positive solution (u,v) of (1) such that (¢, ¢) < (u,v) < (21, z2).
This completes the proof. O

Acknowledgement : The author wishes to express his gratitude to the
anonymous referee for reading the original manuscript carefully and making several
corrections and remarks.

References

[1] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities
with weights, Compos. Math. 53 (1984) 259-275.

[2] B. Xuan, The solvability of quasilinear Brezis-Nirenberg-type problems with
singular weights, Nonlinear Anal. 62 (2005) 703-725.



110

3]
[4]

[5]

Thai J. Math. 11 (2013)/ S.H. Rasouli

C. Atkinson, K. El Kalli. Some boundary value problems for the Bingham
model, J. Non-Newtonian Fluid Mech. 41 (1992) 339-363.

F. Cirstea, D. Motreanu, V. Radulescu, Weak solutions of quasilinear prob-
lems with nonlinear boundary condition, Nonlinear Anal. 43 (2001) 623-636.

S.H. Rasouli, G.A. Afrouzi, The Nehari manifold for a class of concaveconvex
elliptic systems involving the p-Laplacian and nonlinear boundary condition,
Nonlinear Anal. 73 (2010) 3390-3401.

P. Drabek, S.H. Rasouli, A quasilinear eigenvalue problem with Robin con-
ditions on the non smooth domain of finite measure, Zeitschrift fur Analysis
und ihre Anwendungen. 29 (4) (2010) 469-485.

H. Bueno, G. Ercole, W. Ferreira, A. Zumpano, Existence and multiplicity
of positive solutions for the p-Laplacian with nonlocal coefficient, J. Math.
Anal. Appl. 343 (2008) 151-158.

F. Fang, S. Liu, Nontrivial solutions of superlinear p-Laplacian equations, J.
Math. Anal. Appl. 351 (2009) 138-146.

E.K. Lee, R. Shivaji, J. Ye, Clases of infinite semipositone n x n systems,
Diff. Int. Egs. 24 (3-4) (2011) 361-370.

E.K. Lee, R. Shivaji, J. Ye, Clases of infinite semipositone systems, Proc.
Roy. Soc. Edinburgh 139A (2009) 853-865.

M. Ramaswamy, R. Shivaji, J. Ye, Positive solutions for a clases of infinite
semipositone problems, Diff. Int. Egs. 20 (12) (2007) 1423-1433.

A. Canada, P. Drabek, J.L. Gamez, Existence of positive solutions for some
problems with nonlinear diffusion, Trans. Amer. Math. Soc. 349 (1997) 4231—
4249.

P. Drabek, J. Hernandez, Existence and uniqueness of positive solutions for
some quasilinear elliptic problem, Nonlinear Anal. 44 (2) (2001) 189-204.

O.H. Miyagaki, R.S. Rodrigues, On positive solutions for a class of singular
quasilinear elliptic systems, J. Math. Anal. Appl. 334 (2007) 818-833.

B. Xuan, The eigenvalue problem for a singular quasilinear elliptic equation,
Electronic J. Differential Equations 2004 (16) (2004) 1-11.

(Received 3 September 2011)
(Accepted 12 April 2012)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th



