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Abstract : In the present paper, the sequence spaces o (p), ¢o(p) and ¢(p) of
non-absolute type have been introduced and proved that the spaces oo (p), co(p)
and ¢(p) are linearly isomorphic to the spaces £ (p), co(p) and c¢(p), respectively.
The (- and ~-duals of the spaces oo (p), ¢o(p) and ¢(p) have been computed
and their basis have been constructed. Finally, some matrix mappings from
l5(p), ¢o(p) and ¢(p) to the some sequence spaces of Maddox have been char-

acterized and relationship between the modular o, and the Luxemburg norm on
the sequence space ¢ (p) has been discussed.
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1 Preliminaries, Background and Notation

By w, we shall denote the space of all real valued sequences. Any vector
subspace of w is called as a sequence space. We shall write £, ¢ and ¢ for the
spaces of all bounded, convergent and null sequences, respectively. Also by bs,
cs, 1 and /,; we denote the spaces of all bounded, convergent, absolutely and
p-absolutely convergent series, respectively; where 1 < p < co.
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Assume here and after that (px) be a bounded sequence of strictly positive
real numbers with suppy = H and M = max{l, H}. Then, the linear spaces
ls(p), c(p), co(p) and £(p) were defined by Maddox [1] (see also Simons [2] and
Nakano [3]) as follows:

loo(p) = {x = (zg) € w : sup |z |"* < oo} ,
keN

c(p) = {:1: = (z) Ew: klim |z — I|P* = 0 for some [ € R},

co(p) = {x = (zx) Ew: klim |y [PF = ()}

and

L(p) = {:1:— (zk) 6w:Z|xk|pk <oo}

k

which are the complete spaces paranormed by

1/M
91(z) = sup |z [P/ iff infp, > 0 and go(z) = (Z |xk|pk> ; (1.1)
keN ’

respectively. We shall assume throughout that pgl + (pjc)_l = 1 provided 1 <
inf pr, < H < oo and denote the collection of all finite subsets of N by F, where N
is the set of natural numbers.

Let A, p be any two sequence spaces and A = (anx) be an infinite matrix of
real numbers a,j, where n, k € N. Then, we say that A defines a matrix mapping
from A into p, and we denote it by writing A : A\ — pu, if for every sequence
x = (zx) € A the sequence Az = ((Ax), ), the A-transform of z, is in p; where

(Az)p = > ankar, (n €N). (1.2)
k

For simplicity in notation, here and in what follows, the summation without limits
runs from 0 to co. By (A : u), we denote the class of all matrices A such that
A: X — p. Thus, A € (A: ) if and only if the series on the right side of (1.2)
converges for each n € N and every x € A, and we have Ax = {(Az), }nen € p for
all z € A. A sequence z is said to be A-summable to « if Ax converges to o which
is called as the A-limit of x.

The main purpose of this paper, which is a continuation of Kirigci and Bagar
[4], is to introduce the sequence spaces o (p), Co(p) and ¢(p) of non-absolute
type which is the set of all sequences whose B(r, s)-transforms are in the spaces
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l5(p), co(p) and c(p), respectively; where the generalized difference matrix B(r, s) =
(bni) defined by

k=n,
bpk := s, k=n-—1,
0, 0<k<n-—1lork>n,

for all k, n € N with r, s € R\{0}. Furthermore, the basis of the spaces ¢y(p)
and ¢(p) are constructed and the (- and ~-duals are computed for the space
loo(p), Co(p) and €(p). Besides this, the matrix transformations from the spaces
oo (p), ¢o(p) and ¢(p) to some other sequence spaces are characterized. Finally,
some results related to the modular o, and the Luxemburg norm on the space
Uoo(p) are derived.

2 The Sequence Spaces (. (p), c(p) and &(p) of
Non-absolute Type

In this section, we define the sequence spaces /o (p), Go(p) and ¢(p) and prove
that 0 (p), co(p) and ¢(p) are the complete paranormed linear spaces. Later, we
determine their 8- and y-duals.

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function g : X — R such that g(6) = 0, g(x) = g(—=x)
and scalar multiplication is continuous, i.e., |a, —a| — 0 and g(z, —2) — 0 imply
glanxy, —azx) — 0 for all o’s in R and all 2’s in X, where 6 is the zero vector in
the linear space X.

For a sequence space A, the matriz domain A4 of an infinite matrix A is defined
by

A ={z=(zx) €Ew: Az € \}. (2.1)

Choudhary and Mishra [5] have defined the sequence space £(p) which consists

of all sequences such that S-transforms of them are in £(p), where S = (s,i) is
defined by

|1, 0<k<n,
Snk = 0, k> n,

for all k,n € N. Bagar and Altay [6] have recently examined the space bs(p)
which is formerly defined by Basar in [7] as the set of all series whose sequences
of partial sums are in £ (p). More recently, Aydin and Basar [8] have studied the
space a”(u, p) which is derived from the sequence spaces ¢(p), where A" denotes
the matrix A" = (a,,) defined by

1 k
LA n-:rluk’ OSkS'H,
0, k>n,
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for alln,k € Nand 0 < r < 1. Also, Altay and Bagar [9] have studied the sequence
spaces r(p), rl (p) which are derived from the sequence spaces ¢(p) and £ (p)
of Maddox by the Riesz means, respectively. Altay et al. [10], Mursaleen et al.
[11] have studied the sequence spaces which are derived from the sequence spaces
¢, and £ by the Euler mean of order r. With the notation of (2.1), the spaces

U(p), bs(p), a"(u,p), 7*(p), ' (p), el and e can be redefined by

o0

((p) = [(p)]s, bs(p) = [les(p)]s, a"(u,p) = [l ar, r'(p) = [t(p)] R,

1%(p) = [loo (D), €] = (6) ., € = (o) B, -

Following Choudhary and Mishra [5], Bagar and Altay [6], Altay and Basar [9, 12—
14], Aydin and Bagar [15-17], Mursaleen [18], Malkowsky et al. [19], we introduce

o~

the sequence spaces £ (p), ¢o(p) and ¢(p), as the set of all sequences such that
B(r, s)-transforms of them are in the spaces £ (p), co(p) and ¢(p), respectively,
that is

o~

loo(p) = {x = (z) € w : sup |sz_1 + rap[* < oo} ,
keN

co(p) = {x = (z) €Ew: klim |szr—1 + rog|t = 0}
and

c(p) = {3: = (zp) Ew: klim |sxr—1 +rzg —I[P* =0 for some [ € R} .

With the notation of (2.1), we may redefine the spaces lne (p), ¢o(p) and ¢(p) as
follows:

loo(p) = [loo(P) gy » C0(P) = lc0(P)]p(rsy and Ep) :=[cP)lprsy - (2:2)

Define the sequence y = (yi), which will be frequently used, as the B(r,s)-
transform of a sequence x = (zy), i.e.,

Yk = Sxp—1 +rzg ; (k €N). (2.3)
Now, we may begin with the following theorem which is essential in the text:

Theorem 2.1. U (p), ¢o(p) and &(p) are the complete linear metric spaces para-
normed by g, defined by

g(x) :=sup|szp_1 + m:k|p’“/M .

keN
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Proof. We prove the theorem for the space ¢y(p). The linearity of ¢o(p) with
respect to the co-ordinatewise addition and scalar multiplication follows from the
following inequalities which are satisfied for « € ¢y(p) (see Maddox [20, p. 30])

i ¢ (k1 + 25-1) + r(@x + 2) [
eN

< sup [swp_1 + rae[PM 4 sup [szp_1 + rzPM (2.4)
keN keN

and for any o € R (see [21])
laP* < max{1,|a|™}. (2.5)

It is clear that g(8) = 0 and g(z) = g(—=z) for all x € ¢y(p). Again the inequalities
(2.4) and (2.5) yield the subadditivity of g and

g(ax) < max{1, |al}g(z).

Let {z™} be any sequence of the points ¢y(p) such that g(z™ — z) — 0 and
() also be any sequence of scalars such that «,, — «. Then, since the inequality

g(a") < g(z) + g(«" —x)
holds by subadditivity of g, {g(z™)} is bounded and we thus have

g(ana™ — ax) = sup ‘s(anx}jfl —axg_1) + r(ana} — owck)‘pk/M

keN
<lap —alg(z™) + |a] g(a" — z)

which tends to zero as n — oo. That is to say that the scalar multiplication is
continuous. Hence, g is a paranorm on the space ¢o(p).

It remains to prove the completeness of the space ¢y(p). Let B = B(r, s) and
{2} be any Cauchy sequence in the space ¢y(p), where z* = {:E((f), x§1)7 :Eg), 1
Then, for a given € > 0 there exists a positive integer ng(e) such that

gzt —a7) < e/2
for all 4,5 > ng(e). Using definition of g we obtain for each fixed k that

|(Ba")i, — (Ba )i| < 2u§ |(Ba")i — (Bwj)k’pk/M <ef2, (i,j>nole)) (2.6)

€
which leads us the fact that {(Bz%)k, (Bx')k, (Ba?)k,...} is a Cauchy sequence
of real numbers for every fixed k. Since R is complete, it converges, say (Bz®), —
(Bx)y as i — oo. Using these infinitely many limits (Bz)g, (Bx)1, (Bx)sa,..., we
define the sequence {(Bz)o, (Bx)1, (Bx)s,...}. From (2.6) with j — co we have

|(Ba')i — (Ba)k| <€/2, (i >no(e)) (2.7)
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for every fixed k. Since z* = {3:,(;)} € co(p),
|(Bai) [ < e/2
for all k. Therefore, by (2.7) we obtain that
|(Ba)i ™M < |(Ba)y — (Bxi)k\p’“/M + ](Bxi)k]”/M <e, (i>mnole)). (2.8)

This shows that Bx — 0. Since {xz} was an arbitrary Cauchy sequence, the space
¢o(p) is complete and this terminates the proof. O

Therefore, one can easily check that the absolute property does not hold on the
spaces loo(p), Co(p) and &(p) that is g(x) # g(|z|), and this says that Zue(p), Co(p)
and ¢(p) are the sequence spaces of non-absolute type; where |x| = (Jzg|).

Theorem 2.2. The sequence spaces z\oo(p), co(p) and ¢(p) of non-absolute type
are linearly isomorphic to the spaces lso(p), co(p) and c(p), respectively; where
0<pr <H<o0.

Proof. We establish this for the space oo (p). To prove the theorem, we should
show the existence of a linear bijection between the spaces luo(p) and fug(p) for
1 < pr < H < co. With the notation of (2.3), define the transformation 7' from
lne (p) and loo(p) by x — y = Tx. The linearity of T is trivial. Further, it is
obvious that z = 0 whenever Tz = 0 and hence T is injective.

Let y € oo (p) and define the sequence z = {zx} by

L k—j
= - | — i; (keN).
w=3 1 () wewew
Then, we have

9(@) = sup |szi—s + 7y [P = sup [y kP = gi(y) < o0
S

Thus, we have that = € Zoo(p) and consequently T is surjective. Hence, T is
a linear bijection and this says us that the spaces ?Oo (p) and £ (p) are linearly
isomorphic, as was desired. R

It is clear here that if the spaces £o(p) and ¢ (p) are respectively change by
the spaces ¢y(p) and ¢o(p), ¢(p) and ¢(p), then we obtain the fact that ¢y(p) = co(p)
and ¢(p) = ¢(p). This completes the proof. O

If a sequence space A paranormed by h contains a sequence (bg) with the
property that for every & € A there is a unique sequence of scalars () such that

lim A (:v — Zakbk> =0

k=0
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then (b,) is called a Schauder basis (or briefly basis) for X\. The series ), axby
which has the sum « is then called the expansion of = with respect to (b,) and
written as = ), ayby. Now, we may give the sequence of the points of the
spaces ¢o(p) and ¢(p) which form the Schauder bases for those spaces. Because
of the isomorphism 7', defined in the proof of Theorem 2.2, between the sequence
spaces ¢o(p) and co(p), ¢(p) and ¢(p) is onto, the inverse image of the bases of the
spaces co(p) and ¢(p) are the bases of our new spaces ¢y(p) and ¢(p), respectively.
Therefore, we have:

Theorem 2.3. Let \y = (Bx)y for allk € N and 0 < pp < H < 0o. Define the

sequence b (1, s) = {b%’“)(r, S)}nEN by
0, n <k,
b (r,5) = { U sk (2.9)

for every fized k € N. Then,

(a) The sequence {b®) (1, s)}ren is a basis for the space ¢o(p) and any x € Co(p)
has a unique representation of the form

x = Z Ab® (1, s). (2.10)
k

(b) The set {t, b¥)(r,s)} is a basis for the space ¢(p) and any = € ¢(p) has a
unique representation of the form

z=1t+ Y [ — P (r,s); (2.11)
k

where t = L3770 (%S)k for all k € N, and | = limp_,oo {B(7, $)x} k-
For the sequence spaces A and pu, define the set S(A, u) by
S\, ) ={z=(2) Ew:az = (xpz) € p for all z € \}. (2.12)

With the notation of (2.12), the 8- and v-duals of a sequence space A, which are
respectively denoted by A and \?, are defined by

M =8(\ cs) and A =S(), bs).

Now, we determine the - and y-duals of the sequence spaces Uo (p), ¢o(p) and
¢(p) of non-absolute type. We begin with quoting the lemmas.

Lemma 2.4 ([22, Corollary for Theorem 3)). A € ({x(p) : ¢(q)) if and only if

VL, supz |ang| LYP* < o0, (2.13)
neN "/

qn
J(ag), VL, lim (Z |Gk —ak|L1/1’k> =0. (2.14)

k
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Lemma 2.5 ([22, Theorem 3]). A € ({oo(p) : €oo(q)) if and only if

an
VL, sup Q| LY/P* < 00. 2.15
(? | (2.15)

Lemma 2.6 ([23, Theorem 5.1.9]). A € (co(p) : ¢(q)) if and only if

M, supz |api| M~Y/Pr < o0, (2.16)
"ok
I(ag) CR VL, IM, sup LYY " |ank — | M~HP% < oo, (2.17)
" k
J(ag) CR, lim |an, — ag|™ =0. (2.18)

Lemma 2.7 ([23, Theorem 5.1.13]). A € (co(p) : Loo(q)) if and only if

dn
M, sup <Z|ank|M1/m> < 0. (2.19)

k

Lemma 2.8 ([23, Theorem 5.1.10]). A € (¢(p) : ¢(q)) if and only if (2.16), (2.17),
(2.18) hold and

qdn

=0 (2.20)

lim
n—oo

E Anpk — ¢
k

also holds.

Lemma 2.9 ([23, Theorem 5.1.14)). A € (c(p) : £x(q)) if and only if (2.19) holds
and
an

sup < 0. (2.21)

§ Qnk
k

also holds.

Lemma 2.10 ([12, Theorem 3.1]). Let C = (cpi) be defined via a sequence a =
(ar) € w and the inverse matriz V = (vnk) of the triangle matriz U = (unk) by

_ [ Xiokaivie,  0<k<n,
Cnk = { 0 ko, (2.22)

for all k, € N. Then,
M} ={a=(ar) ew:Ce (X lx)}
and

MY ={a=(ax)cw:Ce\:0)}
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Combining Lemmas 2.4-2.9 with ¢, = 1 (Vn € N) and Lemma 2.10, we have:
Corollary 2.11. Define the sets e*(p), e5*(p), e5*(p), €}*(p), eL*(p), e®(p) and
e7*(p) by

1A/ —s\77F
ey’ (p) = ﬂ a:(ak)Ew:nli_)H;oZ ;Z(%) a; — oy, LYre — ,
k =k

and

eN :
n = j=

er(p) = {a_(ak)Ew:supZ %Z<_TS> a; <OO}'
k=0 k

Then,
(i) {lo(p)}? = €1*(p) N e5*(p).
(i) {loc(p)} = €l(p).
(iii) {Co(p)}’® = e5°(p) N ey (p) Neg*(p).
)

(i) {co(p)}” = e5°(p).
(v) {2p)}’ = e5°(p) Nex*(p) NeL®(p) Neg*(p)-

(vi) {ep)}” = ez(p).
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3 Matrix Mappings on the Spaces o (p), co(p) and
c(p)

In this section, we characterize some matrix mappings on the spaces ZOO (p), co(p)
and ¢(p). Firstly, we may give the following theorem which is useful for deriving
the characterization of the certain matrix clases.

Theorem 3.1 ([4, Theorem 4.1]). Let A be an FK-space, U be a triangle, V be its
inverse and p be arbitrary subset of w. Then we have A € (\y : u) if and only if

o = (052,1) €(A:c) forallneN (3.1)
and
C = (car) € (A1 p), (3.2)
where
) { ZT:;C QnjUjk, 0<k<m,
mk 0, k> m,
and

oo
Cnk = Z an;vjr for all k,m,n € N.
=k

Now, we may quote our theorems on the characterization of some matrix clases
concerning with the sequence spaces £(p) and £ (p). The necessary and sufficient
conditions characterizing the matrix mappings between the sequence spaces £(p)
and {o(p) of Maddox are determined by Grosse-Erdmann [23]. Let N and K
denote the finite subset of N, L and M also denote the natural numbers and
define the sets K1 and Ko by K1 = {k € N:p, <1} Ko ={k € N: p; > 1} and
Py, = px/(pr — 1) for k € K,. Prior to giving the theorems, let us suppose that
(¢n) is a non-decreasing bounded sequence of positive numbers and consider the
following conditions:

1 =5\ 7"
iR (F) e 5

Jj=k

m 1 m s j—k
VL. i - _° A rl/pe — 1/pk i
) mgnooz rZ(r) anj| L Z|an|L : (3.4)
k=0|" j=k k
1 m _s j—k
li — — ni — Cnk| =0, f 1 k, 3.5
mgnoo r Z ( r > nj Cnk ora ( )
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m |y N J—k
JM, supz —Z <—S> nj M~VPE < oo,
meN =, Tj:k r
vn 30, s S PSS (52) e 22 < o,
meN ;= Tj:k r

VL, supZ|cn;€|L1/’”c < 00,
neN "

lim ¢, = ag, for all k,

n—oo

VL, lim Y ek VP =" fag| LMPE,
k k

YL, lim > |eni| LVPr =0,
k

an
M, sup (Z |cnk|M_1/p"> < o0,

neN ke K

lim |cu,|™ =0, for all k,

VL, IM, sup Y |enk| L9 M~HPE < oo,
neN ©

lim |eur — ax|™ =0, for all k,

M, supZ|cnk|M_1/pk < o0,
neN "y

VL, 3M, sup Y |enk — ag| LY MHPE < oo,
neN I

(3.7)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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dn
sup chk < o0, (3.19)
neN &
dn
lim |» | =0, (3.20)
n—oo k
dn
lim |» cpr —a| =0 (3.21)
k

Theorem 3.2.
(i) A€ (lso(p) : lso) if and only if (3.3), (3.4) and (3.9) hold.
(ii) A€ (los(p) : ¢) if and only if (3.3), (5.4), (3.10) and (3.11) hold.
(iii) A€ (loo(p) : co) if and only if (3.3), (3.4) and (3.12) hold.
Theorem 3.3.
(i) A€ (@(p): loo(q)) if and only if (3.5), (3.6), (5.7) and (3.13) hold.

(i) A€ (co(p):co(q)) if and only if (3.5), (3.6), (3.7), (3.14) and (3.15) hold.
(iii) A € (¢o(p) : ¢(q)) if and only if (3.5), (3.6), (3.7), (3.16), (5.17) and (3.18)
hold.
Theorem 3.4.
(i) leed(&\(p) 1 loo(q)) if and only if (3.5), (3.6), (3.7), (3.8), (3-13) and (3.19)
(i) A € (€(p) : co(q)) if and only if (3.5), (5.6), (3.7), (3.8), (3.14), (3.15) and
(3.20) hold.

(iii) A € (élp) : c¢(q)) if and only if (3.5), (3.6), (3.7), (3.8), (3.16), (3.17),
(3.18) and (3.21) hold.

4 The Modular 0, and The Luxemburg Norm on
The Sequence Space (. (p)

Banach spaces have many geometric features. For details, the reader may refer
to [24-26].

Let X be a real vector space. A functional o : X — [0, oo is called a modular
if

(i) o(xz) =0 if and only if x = 6,
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(ii) o(ax) = o(x) for all scalars o with |a| = 1;

(ii) o(ax + By) <o(z)+o(y) forall z, y € X and o, >0 with o+ 5= 1.
The modular o is called convex if

(iv) o(az+py) < ac(z)+ PBo(y) forall z, y € X and o, > 0 with a+ 3 = 1.
A modular ¢ on X is called

(a) Right continuous if lim, .1+ o(ax) = o(z) for all z € X,,

(b) Left continuous if lim, ;- o(az) = o(z) for all x € X,

(¢) Continuous if it is both right and left continuous;

where

Xg:{:veX: lim U(OéLL'):O}.

a—0t
For (o (p), we define

op(x) = sup |[szr_1 + rag | .
keN

If p > 1 for all k € N, by the convexity of the function ¢ — [t|P* for each k € N,
we have that o, is a convex modular on the sequence space £ (p). We consider
the sequence space £ (p) equipped with the Luxemburg norm given by

]| :mf{a>o:ap(f) < 1}. (4.1)
@
Now, we may establish some basic properties for modular o,,.

Theorem 4.1. The modular o, on the sequence space 200 (p) satisfies the following
properties:

(i) If 0 < a <1, then aMo, (z/a) < op(x) and op(ax) < aoy(z).
(ii) If a > 1, then o,(z) < oMoy, (z/a).
(iii) If a > 1, then op(x) > ao, (z/a).
(iv) The modular o, is continuous on the sequence space loo (p).

Proof. (i) We have for any z € {5 (p) and a € (0, 1] that

op(x) = sup |szr_1 + rog| P
keN

a(srr_1 +rzg) 7"

= sup
keN @
Pk
STr—1 + 1Tk x
Zonsup Q :aMUp (—)
keN « «
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Since py > 1 for all k and 0 < a < 1, we have a?* < « for all k, hence o,(ax) <
aop(x).

(ii) If & > 1, then 1/a < 1. From (i), we have

() o= () (22) o 2

and hence o,(z) < oMo, (z/a).

(iii) If we apply the second part of (i) with § =1/« < 1, then it is immediate
that

aoy (2) = aop(0z) < afop(x) = op(x),

as expected.

(iv) By (ii) and (iii) of the present theorem, we have for o > 1 that
op(2) < aoy(z) < op(ax) < oMo, (x). (4.2)

By passing to limit as & — 1% in (4.2), we have lim,_,;+ o,(az) = o,(x). Hence,
op is right continuous. If 0 < ae < 1, by (i) of the present theorem, we have

oMo, () < oplax) < aoy(z). (4.3)

Also by letting o — 1~ in (4.3), we observe that lim, .- o,(ax) = op(z) and
hence o), is left continuous. These two consequences give us the desired fact that
op is continuous. o

Now, we may give some relationship between the modular o, and the Luxem-

burg norm on the sequence space £ (p).
Theorem 4.2. Let x € (oo (p). Then, the following statements hold:

i) If ol < 1, then ay(z) < |z

(ii) If x|l > 1, then op(x) = |||

(it1) ||z|| =1 if and only if op(x) = 1.

() |z|| <1 if and only if op(z) < 1.

(v) ||z|| > 1 if and only if op(z) > 1.

Proof. (i) Let € > 0 such that 0 < € < 1 — ||z||. By the definition of || - ||, there
exists an a > 0 such that ||z|| + & > « and o,(x) < 1. From Theorem 4.1 (i) and
(ii), we have

op(@) < o [(llall + )2 ] < (lall +2)op (2) < flall +e.
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Since ¢ is arbitrary, we have (i).

(ii) If we choose € > 0 such that 0 < ¢ < 1—1/||z||, then 1 < (1 —¢)|z|| < ||z
Combining the definition of the Luxemburg norm given by (4.1) and Theorem
4.1(i), we have

x 1
(1—- €)||:1:|} = (1— E)Hx”ap(x)’

1<Up|:

so (1 —e)||lz|]| < op(x) for all € € (0,1 — 1/||z||). This implies that ||z| < op(z).
Since oy, is continuous, (iii) directly follows from Theorem 1.4 of [26].

(iv) follows from (i) and (iii).

(v) follows from (iii) and (iv). O
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