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Abstract : In the present paper, the sequence spaces ℓ̂∞(p), ĉ0(p) and ĉ(p) of

non-absolute type have been introduced and proved that the spaces ℓ̂∞(p), ĉ0(p)
and ĉ(p) are linearly isomorphic to the spaces ℓ∞(p), c0(p) and c(p), respectively.

The β- and γ-duals of the spaces ℓ̂∞(p), ĉ0(p) and ĉ(p) have been computed
and their basis have been constructed. Finally, some matrix mappings from
ℓ̂∞(p), ĉ0(p) and ĉ(p) to the some sequence spaces of Maddox have been char-
acterized and relationship between the modular σp and the Luxemburg norm on

the sequence space ℓ̂∞(p) has been discussed.
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1 Preliminaries, Background and Notation

By w, we shall denote the space of all real valued sequences. Any vector
subspace of w is called as a sequence space. We shall write ℓ∞, c and c0 for the
spaces of all bounded, convergent and null sequences, respectively. Also by bs,
cs, ℓ1 and ℓp; we denote the spaces of all bounded, convergent, absolutely and
p-absolutely convergent series, respectively; where 1 < p < ∞.
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Assume here and after that (pk) be a bounded sequence of strictly positive
real numbers with sup pk = H and M = max{1, H}. Then, the linear spaces
ℓ∞(p), c(p), c0(p) and ℓ(p) were defined by Maddox [1] (see also Simons [2] and
Nakano [3]) as follows:

ℓ∞(p) =

{
x = (xk) ∈ w : sup

k∈N

|xk|
pk < ∞

}
,

c(p) =

{
x = (xk) ∈ w : lim

k→∞

|xk − l|
pk = 0 for some l ∈ R

}
,

c0(p) =

{
x = (xk) ∈ w : lim

k→∞

|xk|
pk = 0

}

and

ℓ(p) =

{
x = (xk) ∈ w :

∑

k

|xk|
pk < ∞

}

which are the complete spaces paranormed by

g1(x) = sup
k∈N

|xk|
pk/M iff inf pk > 0 and g2(x) =

(
∑

k

|xk|
pk

)1/M

, (1.1)

respectively. We shall assume throughout that p−1
k + (p′k)−1 = 1 provided 1 <

inf pk ≤ H < ∞ and denote the collection of all finite subsets of N by F , where N

is the set of natural numbers.
Let λ, µ be any two sequence spaces and A = (ank) be an infinite matrix of

real numbers ank, where n, k ∈ N. Then, we say that A defines a matrix mapping
from λ into µ, and we denote it by writing A : λ → µ, if for every sequence
x = (xk) ∈ λ the sequence Ax = ((Ax)n), the A-transform of x, is in µ; where

(Ax)n =
∑

k

ankxk, (n ∈ N). (1.2)

For simplicity in notation, here and in what follows, the summation without limits
runs from 0 to ∞. By (λ : µ), we denote the class of all matrices A such that
A : λ → µ. Thus, A ∈ (λ : µ) if and only if the series on the right side of (1.2)
converges for each n ∈ N and every x ∈ λ, and we have Ax = {(Ax)n}n∈N ∈ µ for
all x ∈ λ. A sequence x is said to be A-summable to α if Ax converges to α which
is called as the A-limit of x.

The main purpose of this paper, which is a continuation of Kirişçi and Başar
[4], is to introduce the sequence spaces ℓ̂∞(p), ĉ0(p) and ĉ(p) of non-absolute
type which is the set of all sequences whose B(r, s)-transforms are in the spaces
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ℓ∞(p), c0(p) and c(p), respectively; where the generalized difference matrix B(r, s) =
(bnk) defined by

bnk :=






r, k = n,
s, k = n − 1,
0, 0 ≤ k < n − 1 or k > n,

for all k, n ∈ N with r, s ∈ R\{0}. Furthermore, the basis of the spaces ĉ0(p)
and ĉ(p) are constructed and the β- and γ-duals are computed for the space

ℓ̂∞(p), ĉ0(p) and ĉ(p). Besides this, the matrix transformations from the spaces

ℓ̂∞(p), ĉ0(p) and ĉ(p) to some other sequence spaces are characterized. Finally,
some results related to the modular σp and the Luxemburg norm on the space

ℓ̂∞(p) are derived.

2 The Sequence Spaces ℓ̂∞(p), ĉ0(p) and ĉ(p) of

Non-absolute Type

In this section, we define the sequence spaces ℓ̂∞(p), ĉ0(p) and ĉ(p) and prove

that ℓ̂∞(p), ĉ0(p) and ĉ(p) are the complete paranormed linear spaces. Later, we
determine their β- and γ-duals.

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x)
and scalar multiplication is continuous, i.e., |αn−α| → 0 and g(xn−x) → 0 imply
g(αnxn − αx) → 0 for all α’s in R and all x’s in X , where θ is the zero vector in
the linear space X .

For a sequence space λ, the matrix domain λA of an infinite matrix A is defined
by

λA =
{
x = (xk) ∈ w : Ax ∈ λ

}
. (2.1)

Choudhary and Mishra [5] have defined the sequence space ℓ(p) which consists
of all sequences such that S-transforms of them are in ℓ(p), where S = (snk) is
defined by

snk =

{
1, 0 ≤ k ≤ n,
0, k > n,

for all k, n ∈ N. Başar and Altay [6] have recently examined the space bs(p)
which is formerly defined by Başar in [7] as the set of all series whose sequences
of partial sums are in ℓ∞(p). More recently, Aydın and Başar [8] have studied the
space ar(u, p) which is derived from the sequence spaces ℓ(p), where Ar denotes
the matrix Ar = (ar

nk) defined by

ar
nk =

{
1+rk

n+1 uk, 0 ≤ k ≤ n,

0, k > n,



90 Thai J. Math. 11 (2013)/ C. Aydın and B. Altay

for all n, k ∈ N and 0 < r < 1. Also, Altay and Başar [9] have studied the sequence
spaces rt(p), rt

∞
(p) which are derived from the sequence spaces ℓ(p) and ℓ∞(p)

of Maddox by the Riesz means, respectively. Altay et al. [10], Mursaleen et al.
[11] have studied the sequence spaces which are derived from the sequence spaces
ℓp and ℓ∞ by the Euler mean of order r. With the notation of (2.1), the spaces

ℓ(p), bs(p), ar(u, p), rt(p), rt
∞

(p), ep
r and e∞r can be redefined by

ℓ(p) = [ℓ(p)]S , bs(p) = [ℓ∞(p)]S , ar(u, p) = [ℓp]Ar , rt(p) = [ℓ(p)]Rt ,

rt
∞

(p) = [ℓ∞(p)]Rt , ep
r = (ℓp)Er

, e∞r = (ℓ∞)Er
.

Following Choudhary and Mishra [5], Başar and Altay [6], Altay and Başar [9, 12–
14], Aydın and Başar [15–17], Mursaleen [18], Malkowsky et al. [19], we introduce

the sequence spaces ℓ̂∞(p), ĉ0(p) and ĉ(p), as the set of all sequences such that
B(r, s)-transforms of them are in the spaces ℓ∞(p), c0(p) and c(p), respectively,
that is

ℓ̂∞(p) :=

{
x = (xk) ∈ w : sup

k∈N

|sxk−1 + rxk|
pk < ∞

}
,

ĉ0(p) :=

{
x = (xk) ∈ w : lim

k→∞

|sxk−1 + rxk|
pk = 0

}

and

ĉ(p) :=

{
x = (xk) ∈ w : lim

k→∞

|sxk−1 + rxk − l|
pk = 0 for some l ∈ R

}
.

With the notation of (2.1), we may redefine the spaces ℓ̂∞(p), ĉ0(p) and ĉ(p) as
follows:

ℓ̂∞(p) := [ℓ∞(p)]B(r,s) , ĉ0(p) := [c0(p)]B(r,s) and ĉ(p) := [c(p)]B(r,s) . (2.2)

Define the sequence y = (yk), which will be frequently used, as the B(r, s)-
transform of a sequence x = (xk), i.e.,

yk := sxk−1 + rxk ; (k ∈ N). (2.3)

Now, we may begin with the following theorem which is essential in the text:

Theorem 2.1. ℓ̂∞(p), ĉ0(p) and ĉ(p) are the complete linear metric spaces para-
normed by g, defined by

g(x) := sup
k∈N

|sxk−1 + rxk|
pk/M .
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Proof. We prove the theorem for the space ĉ0(p). The linearity of ĉ0(p) with
respect to the co-ordinatewise addition and scalar multiplication follows from the
following inequalities which are satisfied for x ∈ ĉ0(p) (see Maddox [20, p. 30])

sup
k∈N

|s(xk−1 + zk−1) + r(xk + zk)|
pk/M

≤ sup
k∈N

|sxk−1 + rxk|
pk/M

+ sup
k∈N

|szk−1 + rzk|
pk/M

(2.4)

and for any α ∈ R (see [21])

|α|pk ≤ max{1, |α|M}. (2.5)

It is clear that g(θ) = 0 and g(x) = g(−x) for all x ∈ ĉ0(p). Again the inequalities
(2.4) and (2.5) yield the subadditivity of g and

g(αx) ≤ max{1, |α|}g(x).

Let {xn} be any sequence of the points ĉ0(p) such that g(xn − x) → 0 and
(αn) also be any sequence of scalars such that αn → α. Then, since the inequality

g(xn) ≤ g(x) + g(xn − x)

holds by subadditivity of g, {g(xn)} is bounded and we thus have

g(αnxn − αx) = sup
k∈N

∣∣s(αnxn
k−1 − αxk−1) + r(αnxn

k − αxk)
∣∣pk/M

≤ |αn − α| g(xn) + |α| g(xn − x)

which tends to zero as n → ∞. That is to say that the scalar multiplication is
continuous. Hence, g is a paranorm on the space ĉ0(p).

It remains to prove the completeness of the space ĉ0(p). Let B = B(r, s) and

{xi} be any Cauchy sequence in the space ĉ0(p), where xi = {x
(i)
0 , x

(i)
1 , x

(i)
2 , . . . }.

Then, for a given ε > 0 there exists a positive integer n0(ε) such that

g(xi − xj) < ε/2

for all i, j > n0(ε). Using definition of g we obtain for each fixed k that

∣∣(Bxi)k − (Bxj)k

∣∣ ≤ sup
k∈N

∣∣(Bxi)k − (Bxj)k

∣∣pk/M
< ε/2, (i, j ≥ n0(ε)) (2.6)

which leads us the fact that
{
(Bx0)k, (Bx1)k, (Bx2)k, . . .

}
is a Cauchy sequence

of real numbers for every fixed k. Since R is complete, it converges, say (Bxi)k →
(Bx)k as i → ∞. Using these infinitely many limits (Bx)0, (Bx)1, (Bx)2, . . . , we
define the sequence {(Bx)0, (Bx)1, (Bx)2, . . . }. From (2.6) with j → ∞ we have

∣∣(Bxi)k − (Bx)k

∣∣ ≤ ε/2, (i ≥ n0(ε)) (2.7)
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for every fixed k. Since xi = {x
(i)
k } ∈ ĉ0(p),

∣∣(Bxi)k

∣∣pk/M
< ε/2

for all k. Therefore, by (2.7) we obtain that

|(Bx)k|
pk/M ≤

∣∣(Bx)k − (Bxi)k

∣∣pk/M
+
∣∣(Bxi)k

∣∣pk/M
< ε, (i ≥ n0(ε)). (2.8)

This shows that Bx → 0. Since
{
xi
}

was an arbitrary Cauchy sequence, the space
ĉ0(p) is complete and this terminates the proof.

Therefore, one can easily check that the absolute property does not hold on the
spaces ℓ̂∞(p), ĉ0(p) and ĉ(p) that is g(x) 6= g(|x|), and this says that ℓ̂∞(p), ĉ0(p)
and ĉ(p) are the sequence spaces of non-absolute type; where |x| = (|xk|).

Theorem 2.2. The sequence spaces ℓ̂∞(p), ĉ0(p) and ĉ(p) of non-absolute type
are linearly isomorphic to the spaces ℓ∞(p), c0(p) and c(p), respectively; where
0 < pk ≤ H < ∞.

Proof. We establish this for the space ℓ̂∞(p). To prove the theorem, we should

show the existence of a linear bijection between the spaces ℓ̂∞(p) and ℓ∞(p) for
1 ≤ pk ≤ H < ∞. With the notation of (2.3), define the transformation T from

ℓ̂∞(p) and ℓ∞(p) by x 7→ y = Tx. The linearity of T is trivial. Further, it is
obvious that x = 0 whenever Tx = 0 and hence T is injective.

Let y ∈ ℓ∞(p) and define the sequence x = {xk} by

xk =

k∑

j=0

1

r

(
−s

r

)k−j

yj ; (k ∈ N).

Then, we have

g(x) = sup
k∈N

|sxk−1 + rxk |
pk/M = sup

k∈N

|yk|
pk/M = g1(y) < ∞

Thus, we have that x ∈ ℓ̂∞(p) and consequently T is surjective. Hence, T is

a linear bijection and this says us that the spaces ℓ̂∞(p) and ℓ∞(p) are linearly
isomorphic, as was desired.

It is clear here that if the spaces ℓ̂∞(p) and ℓ∞(p) are respectively change by
the spaces ĉ0(p) and c0(p), ĉ(p) and c(p), then we obtain the fact that ĉ0(p) ∼= c0(p)
and ĉ(p) ∼= c(p). This completes the proof.

If a sequence space λ paranormed by h contains a sequence (bk) with the
property that for every x ∈ λ there is a unique sequence of scalars (αk) such that

lim
n→∞

h

(
x −

n∑

k=0

αkbk

)
= 0
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then (bn) is called a Schauder basis (or briefly basis) for λ. The series
∑

k αkbk

which has the sum x is then called the expansion of x with respect to (bn) and
written as x =

∑
k αkbk. Now, we may give the sequence of the points of the

spaces ĉ0(p) and ĉ(p) which form the Schauder bases for those spaces. Because
of the isomorphism T , defined in the proof of Theorem 2.2, between the sequence
spaces ĉ0(p) and c0(p), ĉ(p) and c(p) is onto, the inverse image of the bases of the
spaces c0(p) and c(p) are the bases of our new spaces ĉ0(p) and ĉ(p), respectively.
Therefore, we have:

Theorem 2.3. Let λk = (Bx)k for all k ∈ N and 0 < pk ≤ H < ∞. Define the

sequence b(k)(r, s) =
{
b
(k)
n (r, s)

}
n∈N

by

b(k)
n (r, s) =

{
0, n < k,
1
r

(
− s

r

)n
, n ≥ k,

(2.9)

for every fixed k ∈ N. Then,

(a) The sequence {b(k)(r, s)}k∈N is a basis for the space ĉ0(p) and any x ∈ ĉ0(p)
has a unique representation of the form

x =
∑

k

λkb(k)(r, s). (2.10)

(b) The set
{
t, b(k)(r, s)

}
is a basis for the space ĉ(p) and any x ∈ ĉ(p) has a

unique representation of the form

x = lt +
∑

k

[λk − l]b(k)(r, s); (2.11)

where t = 1
r

∑n
k=0

(
−s
r

)k
for all k ∈ N, and l = limk→∞{B(r, s)x}k.

For the sequence spaces λ and µ, define the set S(λ, µ) by

S(λ, µ) =
{
z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x ∈ λ

}
. (2.12)

With the notation of (2.12), the β- and γ-duals of a sequence space λ, which are
respectively denoted by λβ and λγ , are defined by

λβ = S(λ, cs) and λγ = S(λ, bs).

Now, we determine the β- and γ-duals of the sequence spaces ℓ̂∞(p), ĉ0(p) and
ĉ(p) of non-absolute type. We begin with quoting the lemmas.

Lemma 2.4 ([22, Corollary for Theorem 3]). A ∈ (ℓ∞(p) : c(q)) if and only if

∀L, sup
n∈N

∑

k

|ank|L
1/pk < ∞, (2.13)

∃(αk), ∀L, lim
n→∞

(
∑

k

|ank − αk|L
1/pk

)qn

= 0. (2.14)
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Lemma 2.5 ([22, Theorem 3]). A ∈ (ℓ∞(p) : ℓ∞(q)) if and only if

∀L, sup
n∈N

(
∑

k

|ank|L
1/pk

)qn

< ∞. (2.15)

Lemma 2.6 ([23, Theorem 5.1.9]). A ∈ (c0(p) : c(q)) if and only if

∃M, sup
n

∑

k

|ank|M
−1/pk < ∞, (2.16)

∃(αk) ⊂ R ∀L, ∃M, sup
n

L1/qn

∑

k

|ank − αk|M
−1/pk < ∞, (2.17)

∃(αk) ⊂ R, lim
n→∞

|ank − αk|
qn = 0. (2.18)

Lemma 2.7 ([23, Theorem 5.1.13]). A ∈ (c0(p) : ℓ∞(q)) if and only if

∃M, sup
n

(
∑

k

|ank|M
−1/pk

)qn

< ∞. (2.19)

Lemma 2.8 ([23, Theorem 5.1.10]). A ∈ (c(p) : c(q)) if and only if (2.16), (2.17),
(2.18) hold and

lim
n→∞

∣∣∣∣∣
∑

k

ank − α

∣∣∣∣∣

qn

= 0 (2.20)

also holds.

Lemma 2.9 ([23, Theorem 5.1.14]). A ∈ (c(p) : ℓ∞(q)) if and only if (2.19) holds
and

sup
n

∣∣∣∣∣
∑

k

ank

∣∣∣∣∣

qn

< ∞. (2.21)

also holds.

Lemma 2.10 ([12, Theorem 3.1]). Let C = (cnk) be defined via a sequence a =
(ak) ∈ w and the inverse matrix V = (vnk) of the triangle matrix U = (unk) by

cnk =

{ ∑n
j=k ajvjk, 0 ≤ k ≤ n,

0, k > n,
(2.22)

for all k, ∈ N. Then,

{λU}
γ = {a = (ak) ∈ w : C ∈ (λ : ℓ∞)}

and

{λU}
β = {a = (ak) ∈ w : C ∈ (λ : c)}.
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Combining Lemmas 2.4-2.9 with qn = 1 (∀n ∈ N) and Lemma 2.10, we have:

Corollary 2.11. Define the sets ers
1 (p), ers

2 (p), ers
3 (p), ers

4 (p), ers
5 (p), ers

6 (p) and
ers
7 (p) by

ers
1 (p) =

⋂

L>1




a = (ak) ∈ w : sup
n∈N

n∑

k=0

∣∣∣∣∣∣
1

r

n∑

j=k

(
−s

r

)j−k

aj

∣∣∣∣∣∣
L1/pk < ∞




 ,

ers
2 (p) =

⋂

L>1




a = (ak) ∈ w : lim
n→∞

∑

k

∣∣∣∣∣∣
1

r

n∑

j=k

(
−s

r

)j−k

aj − αk

∣∣∣∣∣∣
L1/pk = 0




 ,

ers
3 (p) =

⋃

M>1




a = (ak) ∈ w : sup
n∈N

∑

k

∣∣∣∣∣∣
1

r

n∑

j=k

(
−s

r

)j−k

aj

∣∣∣∣∣∣
M−1/pk < ∞




 ,

ers
4 (p) =

⋃

M>1




a = (ak) ∈ w : sup
n∈N

∑

k

∣∣∣∣∣∣
1

r

n∑

j=k

(
−s

r

)j−k

aj − αk

∣∣∣∣∣∣
M−1/pk < ∞




 ,

ers
5 (p) =




a = (ak) ∈ w : lim
n→∞

∣∣∣∣∣∣
1

r

n∑

j=k

(
−s

r

)j−k

aj − αk

∣∣∣∣∣∣
= 0




 ,

ers
6 (p) =




a = (ak) ∈ w : lim
n→∞

∑

k

∣∣∣∣∣∣
1

r

n∑

j=k

(
−s

r

)j−k

aj − α

∣∣∣∣∣∣
= 0




 ,

and

ers
7 (p) =




a = (ak) ∈ w : sup
n∈N

n∑

k=0

∣∣∣∣∣∣
1

r

n∑

j=k

(
−s

r

)j−k

aj

∣∣∣∣∣∣
< ∞




 .

Then,

(i) {ℓ̂∞(p)}β = ers
1 (p) ∩ ers

2 (p).

(ii) {ℓ̂∞(p)}γ = ers
1 (p).

(iii) {ĉ0(p)}β = ers
3 (p) ∩ ers

4 (p) ∩ ers
5 (p).

(iv) {ĉ0(p)}γ = ers
3 (p).

(v) {ĉ(p)}β = ers
3 (p) ∩ ers

4 (p) ∩ ers
5 (p) ∩ ers

6 (p).

(vi) {ĉ(p)}γ = e7(p).
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3 Matrix Mappings on the Spaces ℓ̂∞(p), ĉ0(p) and

ĉ(p)

In this section, we characterize some matrix mappings on the spaces ℓ̂∞(p), ĉ0(p)
and ĉ(p). Firstly, we may give the following theorem which is useful for deriving
the characterization of the certain matrix clases.

Theorem 3.1 ([4, Theorem 4.1]). Let λ be an FK-space, U be a triangle, V be its
inverse and µ be arbitrary subset of w. Then we have A ∈ (λU : µ) if and only if

C(n) = (c
(n)
mk) ∈ (λ : c) for all n ∈ N (3.1)

and

C = (cnk) ∈ (λ : µ), (3.2)

where

c
(n)
mk =

{ ∑m
j=k anjvjk, 0 ≤ k ≤ m,

0, k > m,

and

cnk =

∞∑

j=k

anjvjk for all k, m, n ∈ N.

Now, we may quote our theorems on the characterization of some matrix clases
concerning with the sequence spaces ℓ̂(p) and ℓ̂∞(p). The necessary and sufficient
conditions characterizing the matrix mappings between the sequence spaces ℓ(p)
and ℓ∞(p) of Maddox are determined by Grosse-Erdmann [23]. Let N and K
denote the finite subset of N, L and M also denote the natural numbers and
define the sets K1 and K2 by K1 = {k ∈ N : pk ≤ 1} K2 = {k ∈ N : pk > 1} and
p′k = pk/(pk − 1) for k ∈ K2. Prior to giving the theorems, let us suppose that
(qn) is a non-decreasing bounded sequence of positive numbers and consider the
following conditions:

lim
m→∞

1

r

m∑

j=k

(
−s

r

)j−k

anj = cnk, (3.3)

∀L, lim
m→∞

m∑

k=0

∣∣∣∣∣∣
1

r

m∑

j=k

(
−s

r

)j−k

anj

∣∣∣∣∣∣
L1/pk =

∑

k

|cnk|L
1/pk , (3.4)

lim
m→∞

∣∣∣∣∣∣
1

r

m∑

j=k

(
−s

r

)j−k

anj − cnk

∣∣∣∣∣∣
= 0, for all k, (3.5)
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∃M, sup
m∈N

m∑

k=0

∣∣∣∣∣∣
1

r

m∑

j=k

(
−s

r

)j−k

anj

∣∣∣∣∣∣
M−1/pk < ∞, (3.6)

∀L, ∃M, sup
m∈N

m∑

k=0

∣∣∣∣∣∣
1

r

m∑

j=k

(
−s

r

)j−k

anj − cnk

∣∣∣∣∣∣
L1/qnM−1/pk < ∞, (3.7)

lim
m→∞

∑

k

∣∣∣∣∣∣
1

r

m∑

j=k

(
−s

r

)j−k

anj − α

∣∣∣∣∣∣
= 0, (3.8)

∀L, sup
n∈N

∑

k

|cnk|L
1/pk < ∞, (3.9)

lim
n→∞

cnk = αk, for all k, (3.10)

∀L, lim
n→∞

∑

k

|cnk|L
1/pk =

∑

k

|αk|L
1/pk , (3.11)

∀L, lim
n→∞

∑

k

|cnk|L
1/pk = 0, (3.12)

∃M, sup
n∈N

(
∑

k∈K

|cnk|M
−1/pk

)qn

< ∞, (3.13)

lim
n→∞

|cnk|
qn = 0, for all k, (3.14)

∀L, ∃M, sup
n∈N

∑

k

|cnk|L
1/qnM−1/pk < ∞, (3.15)

lim
n→∞

|cnk − αk|
qn = 0, for all k, (3.16)

∃M, sup
n∈N

∑

k

|cnk|M
−1/pk < ∞, (3.17)

∀L, ∃M, sup
n∈N

∑

k

|cnk − αk|L
1/qnM−1/pk < ∞, (3.18)
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sup
n∈N

∣∣∣∣∣
∑

k

cnk

∣∣∣∣∣

qn

< ∞, (3.19)

lim
n→∞

∣∣∣∣∣
∑

k

cnk

∣∣∣∣∣

qn

= 0, (3.20)

lim
n→∞

∣∣∣∣∣
∑

k

cnk − α

∣∣∣∣∣

qn

= 0. (3.21)

Theorem 3.2.

(i) A ∈ (ℓ̂∞(p) : ℓ∞) if and only if (3.3), (3.4) and (3.9) hold.

(ii) A ∈ (ℓ̂∞(p) : c) if and only if (3.3), (3.4), (3.10) and (3.11) hold.

(iii) A ∈ (ℓ̂∞(p) : c0) if and only if (3.3), (3.4) and (3.12) hold.

Theorem 3.3.

(i) A ∈ (ĉ0(p) : ℓ∞(q)) if and only if (3.5), (3.6), (3.7) and (3.13) hold.

(ii) A ∈ (ĉ0(p) : c0(q)) if and only if (3.5), (3.6), (3.7), (3.14) and (3.15) hold.

(iii) A ∈ (ĉ0(p) : c(q)) if and only if (3.5), (3.6), (3.7), (3.16), (3.17) and (3.18)
hold.

Theorem 3.4.

(i) A ∈ (ĉ(p) : ℓ∞(q)) if and only if (3.5), (3.6), (3.7), (3.8), (3.13) and (3.19)
hold.

(ii) A ∈ (ĉ(p) : c0(q)) if and only if (3.5), (3.6), (3.7), (3.8), (3.14), (3.15) and
(3.20) hold.

(iii) A ∈ (ĉ(p) : c(q)) if and only if (3.5), (3.6), (3.7), (3.8), (3.16), (3.17),
(3.18) and (3.21) hold.

4 The Modular σp and The Luxemburg Norm on

The Sequence Space ℓ̂∞(p)

Banach spaces have many geometric features. For details, the reader may refer
to [24–26].

Let X be a real vector space. A functional σ : X → [0, ∞] is called a modular
if

(i) σ(x) = 0 if and only if x = θ;
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(ii) σ(αx) = σ(x) for all scalars α with |α| = 1;

(iii) σ(αx + βy) ≤ σ(x) + σ(y) for all x, y ∈ X and α, β ≥ 0 with α + β = 1.

The modular σ is called convex if

(iv) σ(αx + βy) ≤ ασ(x) + βσ(y) for all x, y ∈ X and α, β > 0 with α + β = 1.

A modular σ on X is called

(a) Right continuous if limα→1+ σ(αx) = σ(x) for all x ∈ Xσ,

(b) Left continuous if limα→1− σ(αx) = σ(x) for all x ∈ Xσ,

(c) Continuous if it is both right and left continuous;

where

Xσ =

{
x ∈ X : lim

α→0+
σ(αx) = 0

}
.

For ℓ̂∞(p), we define

σp(x) = sup
k∈N

|sxk−1 + rxk|
pk .

If pk ≥ 1 for all k ∈ N, by the convexity of the function t 7→ |t|pk for each k ∈ N,

we have that σp is a convex modular on the sequence space ℓ̂∞(p). We consider

the sequence space ℓ̂∞(p) equipped with the Luxemburg norm given by

‖x‖ = inf
{
α > 0 : σp

(x

α

)
≤ 1
}

. (4.1)

Now, we may establish some basic properties for modular σp.

Theorem 4.1. The modular σp on the sequence space ℓ̂∞(p) satisfies the following
properties:

(i) If 0 < α ≤ 1, then αMσp (x/α) ≤ σp(x) and σp(αx) ≤ ασp(x).

(ii) If α ≥ 1, then σp(x) ≤ αMσp (x/α).

(iii) If α ≥ 1, then σp(x) ≥ ασp (x/α).

(iv) The modular σp is continuous on the sequence space ℓ̂∞(p).

Proof. (i) We have for any x ∈ ℓ̂∞(p) and α ∈ (0, 1] that

σp(x) = sup
k∈N

|sxk−1 + rxk |
pk

= sup
k∈N

∣∣∣∣
α(sxk−1 + rxk)

α

∣∣∣∣
pk

≥ αM sup
k∈N

∣∣∣∣
(sxk−1 + rxk)

α

∣∣∣∣
pk

= αMσp

(x

α

)
.
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Since pk ≥ 1 for all k and 0 < α ≤ 1, we have αpk ≤ α for all k, hence σp(αx) ≤
ασp(x).

(ii) If α ≥ 1, then 1/α ≤ 1. From (i), we have

(
1

α

)M

σp(x) =

(
1

α

)M

σp

(
x/α

1/α

)
≤ σp

(x

α

)

and hence σp(x) ≤ αMσp (x/α).

(iii) If we apply the second part of (i) with β = 1/α ≤ 1, then it is immediate
that

ασp

(x

α

)
= ασp(βx) ≤ αβσp(x) = σp(x),

as expected.

(iv) By (ii) and (iii) of the present theorem, we have for α > 1 that

σp(x) ≤ ασp(x) ≤ σp(αx) ≤ αMσp(x). (4.2)

By passing to limit as α → 1+ in (4.2), we have limα→1+ σp(αx) = σp(x). Hence,
σp is right continuous. If 0 < α < 1, by (i) of the present theorem, we have

αMσp(x) ≤ σp(αx) ≤ ασp(x). (4.3)

Also by letting α → 1− in (4.3), we observe that limα→1− σp(αx) = σp(x) and
hence σp is left continuous. These two consequences give us the desired fact that
σp is continuous.

Now, we may give some relationship between the modular σp and the Luxem-

burg norm on the sequence space ℓ̂∞(p).

Theorem 4.2. Let x ∈ ℓ̂∞(p). Then, the following statements hold:

(i) If ‖x‖ < 1, then σp(x) ≤ ‖x‖.

(ii) If ‖x‖ > 1, then σp(x) ≥ ‖x‖.

(iii) ‖x‖ = 1 if and only if σp(x) = 1.

(iv) ‖x‖ < 1 if and only if σp(x) < 1.

(v) ‖x‖ > 1 if and only if σp(x) > 1.

Proof. (i) Let ε > 0 such that 0 < ε < 1 − ‖x‖. By the definition of ‖ · ‖, there
exists an α > 0 such that ‖x‖ + ε > α and σp(x) ≤ 1. From Theorem 4.1 (i) and
(ii), we have

σp(x) ≤ σp

[
(‖x‖ + ε)

x

α

]
≤ (‖x‖ + ε)σp

(x

α

)
≤ ‖x‖ + ε.
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Since ε is arbitrary, we have (i).

(ii) If we choose ε > 0 such that 0 < ε < 1−1/‖x‖, then 1 < (1−ε)‖x‖ < ‖x‖.
Combining the definition of the Luxemburg norm given by (4.1) and Theorem
4.1(i), we have

1 < σp

[
x

(1 − ε)‖x‖

]
≤

1

(1 − ε)‖x‖
σp(x),

so (1 − ε)‖x‖ < σp(x) for all ε ∈ (0, 1 − 1/‖x‖). This implies that ‖x‖ < σp(x).
Since σp is continuous, (iii) directly follows from Theorem 1.4 of [26].

(iv) follows from (i) and (iii).

(v) follows from (iii) and (iv).
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[15] C. Aydın, F. Başar, On the new sequence spaces which include the spaces c0

and c, Hokkaido Math. J. 33 (2) (2004) 383–398.

[16] C. Aydın, F. Başar, Some new paranormed sequence spaces, Inform. Sci. 160
(1-4) (2004) 27–40.
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