Domain of Generalized Difference Matrix $B(r, s)$ on Some Maddox's Spaces

Cafer Aydın ${ }^{\dagger}$ and Bilal Altay ${ }^{\ddagger}$
${ }^{\dagger}$ Kahramanmaraş Sütçü İmam Üniversitesi, Fen-Edebiyat Fakültesi 46100-Kahramanmaraş, Türkiye
e-mail : caydin61@gmail.com
\ddagger İnönü Üniversitesi, Eğitim Fakültesi, İlköğretim Bölümü
44280-Malatya, Türkiye
e-mail : bilal.altay@inonu.edu.tr

Abstract

In the present paper, the sequence spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ of non-absolute type have been introduced and proved that the spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ are linearly isomorphic to the spaces $\ell_{\infty}(p), c_{0}(p)$ and $c(p)$, respectively. The β - and γ-duals of the spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ have been computed and their basis have been constructed. Finally, some matrix mappings from $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ to the some sequence spaces of Maddox have been characterized and relationship between the modular σ_{p} and the Luxemburg norm on the sequence space $\widehat{\ell}_{\infty}(p)$ has been discussed.

Keywords : paranormed sequence space; β - and γ-duals; matrix transformations. 2010 Mathematics Subject Classification : 46A45; 46B45; 46A35.

1 Preliminaries, Background and Notation

By w, we shall denote the space of all real valued sequences. Any vector subspace of w is called as a sequence space. We shall write ℓ_{∞}, c and c_{0} for the spaces of all bounded, convergent and null sequences, respectively. Also by $b s$, $c s, \ell_{1}$ and ℓ_{p}; we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent series, respectively; where $1<p<\infty$.

[^0]Assume here and after that $\left(p_{k}\right)$ be a bounded sequence of strictly positive real numbers with $\sup p_{k}=H$ and $M=\max \{1, H\}$. Then, the linear spaces $\ell_{\infty}(p), c(p), c_{0}(p)$ and $\ell(p)$ were defined by Maddox [1] (see also Simons [2] and Nakano [3]) as follows:

$$
\begin{gathered}
\ell_{\infty}(p)=\left\{x=\left(x_{k}\right) \in w: \sup _{k \in \mathbb{N}}\left|x_{k}\right|^{p_{k}}<\infty\right\} \\
c(p)=\left\{x=\left(x_{k}\right) \in w: \lim _{k \rightarrow \infty}\left|x_{k}-l\right|^{p_{k}}=0 \text { for some } l \in \mathbb{R}\right\} \\
c_{0}(p)=\left\{x=\left(x_{k}\right) \in w: \lim _{k \rightarrow \infty}\left|x_{k}\right|^{p_{k}}=0\right\}
\end{gathered}
$$

and

$$
\ell(p)=\left\{x=\left(x_{k}\right) \in w: \sum_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}
$$

which are the complete spaces paranormed by

$$
\begin{equation*}
g_{1}(x)=\sup _{k \in \mathbb{N}}\left|x_{k}\right|^{p_{k} / M} \operatorname{iff} \inf p_{k}>0 \text { and } g_{2}(x)=\left(\sum_{k}\left|x_{k}\right|^{p_{k}}\right)^{1 / M} \tag{1.1}
\end{equation*}
$$

respectively. We shall assume throughout that $p_{k}^{-1}+\left(p_{k}^{\prime}\right)^{-1}=1$ provided $1<$ $\inf p_{k} \leq H<\infty$ and denote the collection of all finite subsets of \mathbb{N} by \mathcal{F}, where \mathbb{N} is the set of natural numbers.

Let λ, μ be any two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from λ into μ, and we denote it by writing $A: \lambda \rightarrow \mu$, if for every sequence $x=\left(x_{k}\right) \in \lambda$ the sequence $A x=\left((A x)_{n}\right)$, the A-transform of x, is in μ; where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k}, \quad(n \in \mathbb{N}) \tag{1.2}
\end{equation*}
$$

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By $(\lambda: \mu)$, we denote the class of all matrices A such that $A: \lambda \rightarrow \mu$. Thus, $A \in(\lambda: \mu)$ if and only if the series on the right side of (1.2) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $A x=\left\{(A x)_{n}\right\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \lambda$. A sequence x is said to be A-summable to α if $A x$ converges to α which is called as the A-limit of x.

The main purpose of this paper, which is a continuation of Kirişçi and Başar [4], is to introduce the sequence spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ of non-absolute type which is the set of all sequences whose $B(r, s)$-transforms are in the spaces
$\ell_{\infty}(p), c_{0}(p)$ and $c(p)$, respectively; where the generalized difference matrix $B(r, s)=$ $\left(b_{n k}\right)$ defined by

$$
b_{n k}:= \begin{cases}r, & k=n \\ s, & k=n-1 \\ 0, & 0 \leq k<n-1 \text { or } k>n\end{cases}
$$

for all $k, n \in \mathbb{N}$ with $r, s \in \mathbb{R} \backslash\{0\}$. Furthermore, the basis of the spaces $\widehat{c}_{0}(p)$ and $\widehat{c}(p)$ are constructed and the β - and γ-duals are computed for the space $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$. Besides this, the matrix transformations from the spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ to some other sequence spaces are characterized. Finally, some results related to the modular σ_{p} and the Luxemburg norm on the space $\widehat{\ell}_{\infty}(p)$ are derived.

2 The Sequence Spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ of Non-absolute Type

In this section, we define the sequence spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ and prove that $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ are the complete paranormed linear spaces. Later, we determine their β - and γ-duals.

A linear topological space X over the real field \mathbb{R} is said to be a paranormed space if there is a subadditive function $g: X \rightarrow \mathbb{R}$ such that $g(\theta)=0, g(x)=g(-x)$ and scalar multiplication is continuous, i.e., $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $g\left(x_{n}-x\right) \rightarrow 0$ imply $g\left(\alpha_{n} x_{n}-\alpha x\right) \rightarrow 0$ for all α 's in \mathbb{R} and all x 's in X, where θ is the zero vector in the linear space X.

For a sequence space λ, the matrix domain λ_{A} of an infinite matrix A is defined by

$$
\begin{equation*}
\lambda_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in \lambda\right\} . \tag{2.1}
\end{equation*}
$$

Choudhary and Mishra [5] have defined the sequence space $\overline{\ell(p)}$ which consists of all sequences such that S-transforms of them are in $\ell(p)$, where $S=\left(s_{n k}\right)$ is defined by

$$
s_{n k}= \begin{cases}1, & 0 \leq k \leq n \\ 0, & k>n\end{cases}
$$

for all $k, n \in \mathbb{N}$. Başar and Altay [6] have recently examined the space $b s(p)$ which is formerly defined by Başar in [7] as the set of all series whose sequences of partial sums are in $\ell_{\infty}(p)$. More recently, Aydın and Başar [8] have studied the space $a^{r}(u, p)$ which is derived from the sequence spaces $\ell(p)$, where A^{r} denotes the matrix $A^{r}=\left(a_{n k}^{r}\right)$ defined by

$$
a_{n k}^{r}= \begin{cases}\frac{1+r^{k}}{n+1} u_{k}, & 0 \leq k \leq n, \\ 0, & k>n,\end{cases}
$$

for all $n, k \in \mathbb{N}$ and $0<r<1$. Also, Altay and Başar [9] have studied the sequence spaces $r^{t}(p), r_{\infty}^{t}(p)$ which are derived from the sequence spaces $\ell(p)$ and $\ell_{\infty}(p)$ of Maddox by the Riesz means, respectively. Altay et al. [10], Mursaleen et al. [11] have studied the sequence spaces which are derived from the sequence spaces $\underline{\ell_{p}}$ and ℓ_{∞} by the Euler mean of order r. With the notation of (2.1), the spaces $\overline{\ell(p)}, b s(p), a^{r}(u, p), r^{t}(p), r_{\infty}^{t}(p), e_{r}^{p}$ and e_{r}^{∞} can be redefined by

$$
\begin{gathered}
\overline{\ell(p)}=[\ell(p)]_{S}, b s(p)=\left[\ell_{\infty}(p)\right]_{S}, a^{r}(u, p)=\left[\ell_{p}\right]_{A^{r}}, r^{t}(p)=[\ell(p)]_{R^{t}}, \\
r_{\infty}^{t}(p)=\left[\ell_{\infty}(p)\right]_{R^{t}}, e_{r}^{p}=\left(\ell_{p}\right)_{E_{r}}, e_{r}^{\infty}=\left(\ell_{\infty}\right)_{E_{r}} .
\end{gathered}
$$

Following Choudhary and Mishra [5], Başar and Altay [6], Altay and Başar [9, 1214], Aydın and Başar [15-17], Mursaleen [18], Malkowsky et al. [19], we introduce the sequence spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$, as the set of all sequences such that $B(r, s)$-transforms of them are in the spaces $\ell_{\infty}(p), c_{0}(p)$ and $c(p)$, respectively, that is

$$
\begin{aligned}
\widehat{\ell}_{\infty}(p) & :=\left\{x=\left(x_{k}\right) \in w: \sup _{k \in \mathbb{N}}\left|s x_{k-1}+r x_{k}\right|^{p_{k}}<\infty\right\}, \\
\widehat{c}_{0}(p) & :=\left\{x=\left(x_{k}\right) \in w: \lim _{k \rightarrow \infty}\left|s x_{k-1}+r x_{k}\right|^{p_{k}}=0\right\}
\end{aligned}
$$

and

$$
\widehat{c}(p):=\left\{x=\left(x_{k}\right) \in w: \lim _{k \rightarrow \infty}\left|s x_{k-1}+r x_{k}-l\right|^{p_{k}}=0 \text { for some } l \in \mathbb{R}\right\} .
$$

With the notation of (2.1), we may redefine the spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ as follows:

$$
\begin{equation*}
\widehat{\ell}_{\infty}(p):=\left[\ell_{\infty}(p)\right]_{B(r, s)}, \widehat{c}_{0}(p):=\left[c_{0}(p)\right]_{B(r, s)} \quad \text { and } \quad \widehat{c}(p):=[c(p)]_{B(r, s)} . \tag{2.2}
\end{equation*}
$$

Define the sequence $y=\left(y_{k}\right)$, which will be frequently used, as the $B(r, s)$ transform of a sequence $x=\left(x_{k}\right)$, i.e.,

$$
\begin{equation*}
y_{k}:=s x_{k-1}+r x_{k} ; \quad(k \in \mathbb{N}) . \tag{2.3}
\end{equation*}
$$

Now, we may begin with the following theorem which is essential in the text:
Theorem 2.1. $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ are the complete linear metric spaces paranormed by g, defined by

$$
g(x):=\sup _{k \in \mathbb{N}}\left|s x_{k-1}+r x_{k}\right|^{p_{k} / M} .
$$

Proof. We prove the theorem for the space $\widehat{c}_{0}(p)$. The linearity of $\widehat{c}_{0}(p)$ with respect to the co-ordinatewise addition and scalar multiplication follows from the following inequalities which are satisfied for $x \in \widehat{c}_{0}(p)$ (see Maddox [20, p. 30])

$$
\begin{align*}
\sup _{k \in \mathbb{N}} \mid s\left(x_{k-1}+z_{k-1}\right)+ & \left.r\left(x_{k}+z_{k}\right)\right|^{p_{k} / M} \\
& \leq \sup _{k \in \mathbb{N}}\left|s x_{k-1}+r x_{k}\right|^{p_{k} / M}+\sup _{k \in \mathbb{N}}\left|s z_{k-1}+r z_{k}\right|^{p_{k} / M} \tag{2.4}
\end{align*}
$$

and for any $\alpha \in \mathbb{R}$ (see [21])

$$
\begin{equation*}
|\alpha|^{p_{k}} \leq \max \left\{1,|\alpha|^{M}\right\} \tag{2.5}
\end{equation*}
$$

It is clear that $g(\theta)=0$ and $g(x)=g(-x)$ for all $x \in \widehat{c}_{0}(p)$. Again the inequalities (2.4) and (2.5) yield the subadditivity of g and

$$
g(\alpha x) \leq \max \{1,|\alpha|\} g(x)
$$

Let $\left\{x^{n}\right\}$ be any sequence of the points $\widehat{c}_{0}(p)$ such that $g\left(x^{n}-x\right) \rightarrow 0$ and $\left(\alpha_{n}\right)$ also be any sequence of scalars such that $\alpha_{n} \rightarrow \alpha$. Then, since the inequality

$$
g\left(x^{n}\right) \leq g(x)+g\left(x^{n}-x\right)
$$

holds by subadditivity of $g,\left\{g\left(x^{n}\right)\right\}$ is bounded and we thus have

$$
\begin{aligned}
g\left(\alpha_{n} x^{n}-\alpha x\right) & =\sup _{k \in \mathbb{N}}\left|s\left(\alpha_{n} x_{k-1}^{n}-\alpha x_{k-1}\right)+r\left(\alpha_{n} x_{k}^{n}-\alpha x_{k}\right)\right|^{p_{k} / M} \\
& \leq\left|\alpha_{n}-\alpha\right| g\left(x^{n}\right)+|\alpha| g\left(x^{n}-x\right)
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$. That is to say that the scalar multiplication is continuous. Hence, g is a paranorm on the space $\widehat{c}_{0}(p)$.

It remains to prove the completeness of the space $\widehat{c}_{0}(p)$. Let $B=B(r, s)$ and $\left\{x^{i}\right\}$ be any Cauchy sequence in the space $\widehat{c}_{0}(p)$, where $x^{i}=\left\{x_{0}^{(i)}, x_{1}^{(i)}, x_{2}^{(i)}, \ldots\right\}$. Then, for a given $\varepsilon>0$ there exists a positive integer $n_{0}(\varepsilon)$ such that

$$
g\left(x^{i}-x^{j}\right)<\varepsilon / 2
$$

for all $i, j>n_{0}(\varepsilon)$. Using definition of g we obtain for each fixed k that

$$
\begin{equation*}
\left|\left(B x^{i}\right)_{k}-\left(B x^{j}\right)_{k}\right| \leq \sup _{k \in \mathbb{N}}\left|\left(B x^{i}\right)_{k}-\left(B x^{j}\right)_{k}\right|^{p_{k} / M}<\varepsilon / 2, \quad\left(i, j \geq n_{0}(\varepsilon)\right) \tag{2.6}
\end{equation*}
$$

which leads us the fact that $\left\{\left(B x^{0}\right)_{k},\left(B x^{1}\right)_{k},\left(B x^{2}\right)_{k}, \ldots\right\}$ is a Cauchy sequence of real numbers for every fixed k. Since \mathbb{R} is complete, it converges, say $\left(B x^{i}\right)_{k} \rightarrow$ $(B x)_{k}$ as $i \rightarrow \infty$. Using these infinitely many limits $(B x)_{0},(B x)_{1},(B x)_{2}, \ldots$, we define the sequence $\left\{(B x)_{0},(B x)_{1},(B x)_{2}, \ldots\right\}$. From (2.6) with $j \rightarrow \infty$ we have

$$
\begin{equation*}
\left|\left(B x^{i}\right)_{k}-(B x)_{k}\right| \leq \varepsilon / 2, \quad\left(i \geq n_{0}(\varepsilon)\right) \tag{2.7}
\end{equation*}
$$

for every fixed k. Since $x^{i}=\left\{x_{k}^{(i)}\right\} \in \widehat{c}_{0}(p)$,

$$
\left|\left(B x^{i}\right)_{k}\right|^{p_{k} / M}<\varepsilon / 2
$$

for all k. Therefore, by (2.7) we obtain that

$$
\begin{equation*}
\left|(B x)_{k}\right|^{p_{k} / M} \leq\left|(B x)_{k}-\left(B x^{i}\right)_{k}\right|^{p_{k} / M}+\left|\left(B x^{i}\right)_{k}\right|^{p_{k} / M}<\varepsilon, \quad\left(i \geq n_{0}(\varepsilon)\right) \tag{2.8}
\end{equation*}
$$

This shows that $B x \rightarrow 0$. Since $\left\{x^{i}\right\}$ was an arbitrary Cauchy sequence, the space $\widehat{c}_{0}(p)$ is complete and this terminates the proof.

Therefore, one can easily check that the absolute property does not hold on the spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ that is $g(x) \neq g(|x|)$, and this says that $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ are the sequence spaces of non-absolute type; where $|x|=\left(\left|x_{k}\right|\right)$.

Theorem 2.2. The sequence spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ of non-absolute type are linearly isomorphic to the spaces $\ell_{\infty}(p), c_{0}(p)$ and $c(p)$, respectively; where $0<p_{k} \leq H<\infty$.

Proof. We establish this for the space $\widehat{\ell}_{\infty}(p)$. To prove the theorem, we should show the existence of a linear bijection between the spaces $\widehat{\ell}_{\infty}(p)$ and $\ell_{\infty}(p)$ for $1 \leq p_{k} \leq H<\infty$. With the notation of (2.3), define the transformation T from $\widehat{\ell}_{\infty}(p)$ and $\ell_{\infty}(p)$ by $x \mapsto y=T x$. The linearity of T is trivial. Further, it is obvious that $x=0$ whenever $T x=0$ and hence T is injective.

Let $y \in \ell_{\infty}(p)$ and define the sequence $x=\left\{x_{k}\right\}$ by

$$
x_{k}=\sum_{j=0}^{k} \frac{1}{r}\left(\frac{-s}{r}\right)^{k-j} y_{j} ; \quad(k \in \mathbb{N}) .
$$

Then, we have

$$
g(x)=\sup _{k \in \mathbb{N}}\left|s x_{k-1}+r x_{k}\right|^{p_{k} / M}=\sup _{k \in \mathbb{N}}\left|y_{k}\right|^{p_{k} / M}=g_{1}(y)<\infty
$$

Thus, we have that $x \in \widehat{\ell}_{\infty}(p)$ and consequently T is surjective. Hence, T is a linear bijection and this says us that the spaces $\widehat{\ell}_{\infty}(p)$ and $\ell_{\infty}(p)$ are linearly isomorphic, as was desired.

It is clear here that if the spaces $\widehat{\ell}_{\infty}(p)$ and $\ell_{\infty}(p)$ are respectively change by the spaces $\widehat{c}_{0}(p)$ and $c_{0}(p), \widehat{c}(p)$ and $c(p)$, then we obtain the fact that $\widehat{c}_{0}(p) \cong c_{0}(p)$ and $\widehat{c}(p) \cong c(p)$. This completes the proof.

If a sequence space λ paranormed by h contains a sequence $\left(b_{k}\right)$ with the property that for every $x \in \lambda$ there is a unique sequence of scalars $\left(\alpha_{k}\right)$ such that

$$
\lim _{n \rightarrow \infty} h\left(x-\sum_{k=0}^{n} \alpha_{k} b_{k}\right)=0
$$

then $\left(b_{n}\right)$ is called a Schauder basis (or briefly basis) for λ. The series $\sum_{k} \alpha_{k} b_{k}$ which has the sum x is then called the expansion of x with respect to $\left(b_{n}\right)$ and written as $x=\sum_{k} \alpha_{k} b_{k}$. Now, we may give the sequence of the points of the spaces $\widehat{c}_{0}(p)$ and $\widehat{c}(p)$ which form the Schauder bases for those spaces. Because of the isomorphism T, defined in the proof of Theorem 2.2, between the sequence spaces $\widehat{c}_{0}(p)$ and $c_{0}(p), \widehat{c}(p)$ and $c(p)$ is onto, the inverse image of the bases of the spaces $c_{0}(p)$ and $c(p)$ are the bases of our new spaces $\widehat{c}_{0}(p)$ and $\widehat{c}(p)$, respectively. Therefore, we have:

Theorem 2.3. Let $\lambda_{k}=(B x)_{k}$ for all $k \in \mathbb{N}$ and $0<p_{k} \leq H<\infty$. Define the sequence $b^{(k)}(r, s)=\left\{b_{n}^{(k)}(r, s)\right\}_{n \in \mathbb{N}}$ by

$$
b_{n}^{(k)}(r, s)= \begin{cases}0, & n<k \tag{2.9}\\ \frac{1}{r}\left(-\frac{s}{r}\right)^{n}, & n \geq k\end{cases}
$$

for every fixed $k \in \mathbb{N}$. Then,
(a) The sequence $\left\{b^{(k)}(r, s)\right\}_{k \in \mathbb{N}}$ is a basis for the space $\widehat{c}_{0}(p)$ and any $x \in \widehat{c}_{0}(p)$ has a unique representation of the form

$$
\begin{equation*}
x=\sum_{k} \lambda_{k} b^{(k)}(r, s) \tag{2.10}
\end{equation*}
$$

(b) The set $\left\{t, b^{(k)}(r, s)\right\}$ is a basis for the space $\widehat{c}(p)$ and any $x \in \widehat{c}(p)$ has a unique representation of the form

$$
\begin{equation*}
x=l t+\sum_{k}\left[\lambda_{k}-l\right] b^{(k)}(r, s) \tag{2.11}
\end{equation*}
$$

where $t=\frac{1}{r} \sum_{k=0}^{n}\left(\frac{-s}{r}\right)^{k}$ for all $k \in \mathbb{N}$, and $l=\lim _{k \rightarrow \infty}\{B(r, s) x\}_{k}$.
For the sequence spaces λ and μ, define the set $S(\lambda, \mu)$ by

$$
\begin{equation*}
S(\lambda, \mu)=\left\{z=\left(z_{k}\right) \in w: x z=\left(x_{k} z_{k}\right) \in \mu \text { for all } x \in \lambda\right\} \tag{2.12}
\end{equation*}
$$

With the notation of (2.12), the β - and γ-duals of a sequence space λ, which are respectively denoted by λ^{β} and λ^{γ}, are defined by

$$
\lambda^{\beta}=S(\lambda, c s) \quad \text { and } \quad \lambda^{\gamma}=S(\lambda, b s)
$$

Now, we determine the β - and γ-duals of the sequence spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$ of non-absolute type. We begin with quoting the lemmas.
Lemma 2.4 ([22, Corollary for Theorem 3]). $A \in\left(\ell_{\infty}(p): c(q)\right)$ if and only if

$$
\begin{gather*}
\forall L, \sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right| L^{1 / p_{k}}<\infty \tag{2.13}\\
\exists\left(\alpha_{k}\right), \forall L, \lim _{n \rightarrow \infty}\left(\sum_{k}\left|a_{n k}-\alpha_{k}\right| L^{1 / p_{k}}\right)^{q_{n}}=0 . \tag{2.14}
\end{gather*}
$$

Lemma 2.5 ([22, Theorem 3]). $A \in\left(\ell_{\infty}(p): \ell_{\infty}(q)\right)$ if and only if

$$
\begin{equation*}
\forall L, \sup _{n \in \mathbb{N}}\left(\sum_{k}\left|a_{n k}\right| L^{1 / p_{k}}\right)^{q_{n}}<\infty \tag{2.15}
\end{equation*}
$$

Lemma 2.6 ([23, Theorem 5.1.9]). $A \in\left(c_{0}(p): c(q)\right)$ if and only if

$$
\begin{equation*}
\exists M, \quad \sup _{n} \sum_{k}\left|a_{n k}\right| M^{-1 / p_{k}}<\infty \tag{2.16}
\end{equation*}
$$

$$
\begin{gather*}
\exists\left(\alpha_{k}\right) \subset \mathbb{R} \forall L, \exists M, \sup _{n} L^{1 / q_{n}} \sum_{k}\left|a_{n k}-\alpha_{k}\right| M^{-1 / p_{k}}<\infty, \tag{2.17}\\
\exists\left(\alpha_{k}\right) \subset \mathbb{R}, \lim _{n \rightarrow \infty}\left|a_{n k}-\alpha_{k}\right|^{q_{n}}=0 . \tag{2.18}
\end{gather*}
$$

Lemma 2.7 ([23, Theorem 5.1.13]). $A \in\left(c_{0}(p): \ell_{\infty}(q)\right)$ if and only if

$$
\begin{equation*}
\exists M, \sup _{n}\left(\sum_{k}\left|a_{n k}\right| M^{-1 / p_{k}}\right)^{q_{n}}<\infty \tag{2.19}
\end{equation*}
$$

Lemma 2.8 ([23, Theorem 5.1.10]). $A \in(c(p): c(q))$ if and only if (2.16), (2.17), (2.18) hold and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\sum_{k} a_{n k}-\alpha\right|^{q_{n}}=0 \tag{2.20}
\end{equation*}
$$

also holds.
Lemma 2.9 ([23, Theorem 5.1.14]). $A \in\left(c(p): \ell_{\infty}(q)\right)$ if and only if (2.19) holds and

$$
\begin{equation*}
\sup _{n}\left|\sum_{k} a_{n k}\right|^{q_{n}}<\infty \tag{2.21}
\end{equation*}
$$

also holds.
Lemma 2.10 ([12, Theorem 3.1]). Let $C=\left(c_{n k}\right)$ be defined via a sequence $a=$ $\left(a_{k}\right) \in w$ and the inverse matrix $V=\left(v_{n k}\right)$ of the triangle matrix $U=\left(u_{n k}\right)$ by

$$
c_{n k}= \begin{cases}\sum_{j=k}^{n} a_{j} v_{j k}, & 0 \leq k \leq n \tag{2.22}\\ 0, & k>n\end{cases}
$$

for all $k, \in \mathbb{N}$. Then,

$$
\left\{\lambda_{U}\right\}^{\gamma}=\left\{a=\left(a_{k}\right) \in w: C \in\left(\lambda: \ell_{\infty}\right)\right\}
$$

and

$$
\left\{\lambda_{U}\right\}^{\beta}=\left\{a=\left(a_{k}\right) \in w: C \in(\lambda: c)\right\}
$$

Combining Lemmas 2.4-2.9 with $q_{n}=1(\forall n \in \mathbb{N})$ and Lemma 2.10, we have:
Corollary 2.11. Define the sets $e_{1}^{r s}(p), e_{2}^{r s}(p), e_{3}^{r s}(p), e_{4}^{r s}(p), e_{5}^{r s}(p), e_{6}^{r s}(p)$ and $e_{7}^{r s}(p)$ by

$$
\begin{aligned}
& e_{1}^{r s}(p)=\bigcap_{L>1}\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}} \sum_{k=0}^{n}\left|\frac{1}{r} \sum_{j=k}^{n}\left(\frac{-s}{r}\right)^{j-k} a_{j}\right| L^{1 / p_{k}}<\infty\right\} \\
& e_{2}^{r s}(p)=\bigcap_{L>1}\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k}\left|\frac{1}{r} \sum_{j=k}^{n}\left(\frac{-s}{r}\right)^{j-k} a_{j}-\alpha_{k}\right| L^{1 / p_{k}}=0\right\}, \\
& e_{3}^{r s}(p)=\bigcup_{M>1}\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}} \sum_{k}\left|\frac{1}{r} \sum_{j=k}^{n}\left(\frac{-s}{r}\right)^{j-k} a_{j}\right| M^{-1 / p_{k}}<\infty\right\} \\
& e_{4}^{r s}(p)=\bigcup_{M>1}\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}} \sum_{k}\left|\frac{1}{r} \sum_{j=k}^{n}\left(\frac{-s}{r}\right)^{j-k} a_{j}-\alpha_{k}\right| M^{-1 / p_{k}}<\infty\right\} \\
& e_{5}^{r s}(p)=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty}\left|\frac{1}{r} \sum_{j=k}^{n}\left(\frac{-s}{r}\right)^{j-k} a_{j}-\alpha_{k}\right|=0\right\} \\
& e_{6}^{r s}(p)=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k}\left|\frac{1}{r} \sum_{j=k}^{n}\left(\frac{-s}{r}\right)^{j-k} a_{j}-\alpha\right|=0\right\}
\end{aligned}
$$

and

$$
e_{7}^{r s}(p)=\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}} \sum_{k=0}^{n}\left|\frac{1}{r} \sum_{j=k}^{n}\left(\frac{-s}{r}\right)^{j-k} a_{j}\right|<\infty\right\}
$$

Then,
(i) $\left\{\hat{\ell}_{\infty}(p)\right\}^{\beta}=e_{1}^{r s}(p) \cap e_{2}^{r s}(p)$.
(ii) $\left\{\widehat{\ell}_{\infty}(p)\right\}^{\gamma}=e_{1}^{r s}(p)$.
(iii) $\left\{\widehat{c}_{0}(p)\right\}^{\beta}=e_{3}^{r s}(p) \cap e_{4}^{r s}(p) \cap e_{5}^{r s}(p)$.
(iv) $\left\{\widehat{c}_{0}(p)\right\}^{\gamma}=e_{3}^{r s}(p)$.
(v) $\{\widehat{c}(p)\}^{\beta}=e_{3}^{r s}(p) \cap e_{4}^{r s}(p) \cap e_{5}^{r s}(p) \cap e_{6}^{r s}(p)$.
(vi) $\{\widehat{c}(p)\}^{\gamma}=e_{7}(p)$.

3 Matrix Mappings on the Spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$

In this section, we characterize some matrix mappings on the spaces $\widehat{\ell}_{\infty}(p), \widehat{c}_{0}(p)$ and $\widehat{c}(p)$. Firstly, we may give the following theorem which is useful for deriving the characterization of the certain matrix clases.

Theorem 3.1 ([4, Theorem 4.1]). Let λ be an FK-space, U be a triangle, V be its inverse and μ be arbitrary subset of w. Then we have $A \in\left(\lambda_{U}: \mu\right)$ if and only if

$$
\begin{equation*}
C^{(n)}=\left(c_{m k}^{(n)}\right) \in(\lambda: c) \text { for all } n \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
C=\left(c_{n k}\right) \in(\lambda: \mu), \tag{3.2}
\end{equation*}
$$

where

$$
c_{m k}^{(n)}= \begin{cases}\sum_{j=k}^{m} a_{n j} v_{j k}, & 0 \leq k \leq m, \\ 0, & k>m,\end{cases}
$$

and

$$
c_{n k}=\sum_{j=k}^{\infty} a_{n j} v_{j k} \quad \text { for all } k, m, n \in \mathbb{N}
$$

Now, we may quote our theorems on the characterization of some matrix clases concerning with the sequence spaces $\widehat{\ell}(p)$ and $\widehat{\ell}_{\infty}(p)$. The necessary and sufficient conditions characterizing the matrix mappings between the sequence spaces $\ell(p)$ and $\ell_{\infty}(p)$ of Maddox are determined by Grosse-Erdmann [23]. Let N and K denote the finite subset of \mathbb{N}, L and M also denote the natural numbers and define the sets K_{1} and K_{2} by $K_{1}=\left\{k \in \mathbb{N}: p_{k} \leq 1\right\} K_{2}=\left\{k \in \mathbb{N}: p_{k}>1\right\}$ and $p_{k}^{\prime}=p_{k} /\left(p_{k}-1\right)$ for $k \in K_{2}$. Prior to giving the theorems, let us suppose that $\left(q_{n}\right)$ is a non-decreasing bounded sequence of positive numbers and consider the following conditions:

$$
\begin{gather*}
\lim _{m \rightarrow \infty} \frac{1}{r} \sum_{j=k}^{m}\left(\frac{-s}{r}\right)^{j-k} a_{n j}=c_{n k} \tag{3.3}\\
\forall L, \lim _{m \rightarrow \infty} \sum_{k=0}^{m}\left|\frac{1}{r} \sum_{j=k}^{m}\left(\frac{-s}{r}\right)^{j-k} a_{n j}\right| L^{1 / p_{k}}=\sum_{k}\left|c_{n k}\right| L^{1 / p_{k}}, \tag{3.4}\\
\lim _{m \rightarrow \infty}\left|\frac{1}{r} \sum_{j=k}^{m}\left(\frac{-s}{r}\right)^{j-k} a_{n j}-c_{n k}\right|=0, \text { for all } \mathrm{k} \tag{3.5}
\end{gather*}
$$

$$
\begin{gather*}
\exists M, \sup _{m \in \mathbb{N}} \sum_{k=0}^{m}\left|\frac{1}{r} \sum_{j=k}^{m}\left(\frac{-s}{r}\right)^{j-k} a_{n j}\right| M^{-1 / p_{k}}<\infty, \tag{3.6}\\
\forall L, \exists M, \sup _{m \in \mathbb{N}} \sum_{k=0}^{m}\left|\frac{1}{r} \sum_{j=k}^{m}\left(\frac{-s}{r}\right)^{j-k} a_{n j}-c_{n k}\right| L^{1 / q_{n}} M^{-1 / p_{k}}<\infty, \tag{3.7}\\
\lim _{m \rightarrow \infty} \sum_{k}\left|\frac{1}{r} \sum_{j=k}^{m}\left(\frac{-s}{r}\right)^{j-k} a_{n j}-\alpha\right|=0, \tag{3.8}\\
\forall L, \sup _{n \in \mathbb{N}} \sum_{k}\left|c_{n k}\right| L^{1 / p_{k}}<\infty, \tag{3.9}\\
\lim _{n \rightarrow \infty} c_{n k}=\alpha_{k}, \text { for all } \mathrm{k}, \tag{3.10}\\
\forall L, \lim _{n \rightarrow \infty} \sum_{k}\left|c_{n k}\right| L^{1 / p_{k}}=\sum_{k}\left|\alpha_{k}\right| L^{1 / p_{k}}, \tag{3.11}\\
\forall L, \lim _{n \rightarrow \infty} \sum_{k}\left|c_{n k}\right| L^{1 / p_{k}}=0, \tag{3.12}\\
\exists M, \sup _{n \in \mathbb{N}}\left(\sum_{k \in K}\left|c_{n k}\right| M^{-1 / p_{k}}\right)^{q_{n}}<\infty, \tag{3.13}\\
\lim _{n \rightarrow \infty}\left|c_{n k}\right|^{q_{n}}=0, \text { for all } \mathrm{k}, \tag{3.14}\\
\forall L, \tag{3.15}\\
\exists M, \sup _{n \in \mathbb{N}} \sum_{k}\left|c_{n k}\right| L^{1 / q_{n}} M^{-1 / p_{k}}<\infty, \tag{3.16}\\
\lim _{n \rightarrow \infty}\left|c_{n k}-\alpha_{k}\right|^{q_{n}}=0, \text { for all } \mathrm{k}, \tag{3.17}\\
\exists M, \sup _{n \in \mathbb{N}} \sum_{k}\left|c_{n k}\right| M^{-1 / p_{k}}<\infty, \tag{3.18}\\
\forall M, \sup _{n \in \mathbb{N}} \sum_{k}\left|c_{n k}-\alpha_{k}\right| L^{1 / q_{n}} M^{-1 / p_{k}}<\infty, \\
\forall L
\end{gather*}
$$

$$
\begin{align*}
& \sup _{n \in \mathbb{N}}\left|\sum_{k} c_{n k}\right|^{q_{n}}<\infty \tag{3.19}\\
& \lim _{n \rightarrow \infty}\left|\sum_{k} c_{n k}\right|^{q_{n}}=0, \tag{3.20}\\
& \lim _{n \rightarrow \infty}\left|\sum_{k} c_{n k}-\alpha\right|^{q_{n}}=0 . \tag{3.21}
\end{align*}
$$

Theorem 3.2.

(i) $A \in\left(\widehat{\ell}_{\infty}(p): \ell_{\infty}\right)$ if and only if (3.3), (3.4) and (3.9) hold.
(ii) $A \in\left(\widehat{\ell}_{\infty}(p): c\right)$ if and only if (3.3), (3.4), (3.10) and (3.11) hold.
(iii) $A \in\left(\widehat{\ell}_{\infty}(p): c_{0}\right)$ if and only if (3.3), (3.4) and (3.12) hold.

Theorem 3.3.

(i) $A \in\left(\widehat{c}_{0}(p): \ell_{\infty}(q)\right)$ if and only if (3.5), (3.6), (3.7) and (3.13) hold.
(ii) $A \in\left(\widehat{c}_{0}(p): c_{0}(q)\right)$ if and only if (3.5), (3.6), (3.7), (3.14) and (3.15) hold.
(iii) $A \in\left(\widehat{c}_{0}(p): c(q)\right)$ if and only if (3.5), (3.6), (3.7), (3.16), (3.17) and (3.18) hold.

Theorem 3.4.

(i) $A \in\left(\widehat{c}(p): \ell_{\infty}(q)\right)$ if and only if (3.5), (3.6), (3.7), (3.8), (3.13) and (3.19) hold.
(ii) $A \in\left(\widehat{c}(p): c_{0}(q)\right)$ if and only if (3.5), (3.6), (3.7), (3.8), (3.14), (3.15) and (3.20) hold.
(iii) $A \in(\widehat{c}(p): c(q))$ if and only if (3.5), (3.6), (3.7), (3.8), (3.16), (3.17), (3.18) and (3.21) hold.

4 The Modular σ_{p} and The Luxemburg Norm on The Sequence Space $\widehat{\ell}_{\infty}(p)$

Banach spaces have many geometric features. For details, the reader may refer to $[24-26]$.

Let X be a real vector space. A functional $\sigma: X \rightarrow[0, \infty]$ is called a modular if
(i) $\sigma(x)=0$ if and only if $x=\theta$;
(ii) $\sigma(\alpha x)=\sigma(x)$ for all scalars α with $|\alpha|=1$;
(iii) $\sigma(\alpha x+\beta y) \leq \sigma(x)+\sigma(y)$ for all $x, y \in X$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$.

The modular σ is called convex if
(iv) $\sigma(\alpha x+\beta y) \leq \alpha \sigma(x)+\beta \sigma(y)$ for all $x, y \in X$ and $\alpha, \beta>0$ with $\alpha+\beta=1$.

A modular σ on X is called
(a) Right continuous if $\lim _{\alpha \rightarrow 1^{+}} \sigma(\alpha x)=\sigma(x)$ for all $x \in X_{\sigma}$,
(b) Left continuous if $\lim _{\alpha \rightarrow 1^{-}} \sigma(\alpha x)=\sigma(x)$ for all $x \in X_{\sigma}$,
(c) Continuous if it is both right and left continuous;
where

$$
X_{\sigma}=\left\{x \in X: \lim _{\alpha \rightarrow 0^{+}} \sigma(\alpha x)=0\right\}
$$

For $\widehat{\ell}_{\infty}(p)$, we define

$$
\sigma_{p}(x)=\sup _{k \in \mathbb{N}}\left|s x_{k-1}+r x_{k}\right|^{p_{k}}
$$

If $p_{k} \geq 1$ for all $k \in \mathbb{N}$, by the convexity of the function $t \mapsto|t|^{p_{k}}$ for each $k \in \mathbb{N}$, we have that σ_{p} is a convex modular on the sequence space $\widehat{\ell}_{\infty}(p)$. We consider the sequence space $\widehat{\ell}_{\infty}(p)$ equipped with the Luxemburg norm given by

$$
\begin{equation*}
\|x\|=\inf \left\{\alpha>0: \sigma_{p}\left(\frac{x}{\alpha}\right) \leq 1\right\} \tag{4.1}
\end{equation*}
$$

Now, we may establish some basic properties for modular σ_{p}.
Theorem 4.1. The modular σ_{p} on the sequence space $\widehat{\ell}_{\infty}(p)$ satisfies the following properties:
(i) If $0<\alpha \leq 1$, then $\alpha^{M} \sigma_{p}(x / \alpha) \leq \sigma_{p}(x)$ and $\sigma_{p}(\alpha x) \leq \alpha \sigma_{p}(x)$.
(ii) If $\alpha \geq 1$, then $\sigma_{p}(x) \leq \alpha^{M} \sigma_{p}(x / \alpha)$.
(iii) If $\alpha \geq 1$, then $\sigma_{p}(x) \geq \alpha \sigma_{p}(x / \alpha)$.
(iv) The modular σ_{p} is continuous on the sequence space $\widehat{\ell}_{\infty}(p)$.

Proof. (i) We have for any $x \in \widehat{\ell}_{\infty}(p)$ and $\alpha \in(0,1]$ that

$$
\begin{aligned}
\sigma_{p}(x) & =\sup _{k \in \mathbb{N}}\left|s x_{k-1}+r x_{k}\right|^{p_{k}} \\
& =\sup _{k \in \mathbb{N}}\left|\frac{\alpha\left(s x_{k-1}+r x_{k}\right)}{\alpha}\right|^{p_{k}} \\
& \geq \alpha^{M} \sup _{k \in \mathbb{N}}\left|\frac{\left(s x_{k-1}+r x_{k}\right)}{\alpha}\right|^{p_{k}}=\alpha^{M} \sigma_{p}\left(\frac{x}{\alpha}\right) .
\end{aligned}
$$

Since $p_{k} \geq 1$ for all k and $0<\alpha \leq 1$, we have $\alpha^{p_{k}} \leq \alpha$ for all k, hence $\sigma_{p}(\alpha x) \leq$ $\alpha \sigma_{p}(x)$.
(ii) If $\alpha \geq 1$, then $1 / \alpha \leq 1$. From (i), we have

$$
\left(\frac{1}{\alpha}\right)^{M} \sigma_{p}(x)=\left(\frac{1}{\alpha}\right)^{M} \sigma_{p}\left(\frac{x / \alpha}{1 / \alpha}\right) \leq \sigma_{p}\left(\frac{x}{\alpha}\right)
$$

and hence $\sigma_{p}(x) \leq \alpha^{M} \sigma_{p}(x / \alpha)$.
(iii) If we apply the second part of (i) with $\beta=1 / \alpha \leq 1$, then it is immediate that

$$
\alpha \sigma_{p}\left(\frac{x}{\alpha}\right)=\alpha \sigma_{p}(\beta x) \leq \alpha \beta \sigma_{p}(x)=\sigma_{p}(x)
$$

as expected.
(iv) By (ii) and (iii) of the present theorem, we have for $\alpha>1$ that

$$
\begin{equation*}
\sigma_{p}(x) \leq \alpha \sigma_{p}(x) \leq \sigma_{p}(\alpha x) \leq \alpha^{M} \sigma_{p}(x) \tag{4.2}
\end{equation*}
$$

By passing to limit as $\alpha \rightarrow 1^{+}$in (4.2), we have $\lim _{\alpha \rightarrow 1^{+}} \sigma_{p}(\alpha x)=\sigma_{p}(x)$. Hence, σ_{p} is right continuous. If $0<\alpha<1$, by (i) of the present theorem, we have

$$
\begin{equation*}
\alpha^{M} \sigma_{p}(x) \leq \sigma_{p}(\alpha x) \leq \alpha \sigma_{p}(x) \tag{4.3}
\end{equation*}
$$

Also by letting $\alpha \rightarrow 1^{-}$in (4.3), we observe that $\lim _{\alpha \rightarrow 1^{-}} \sigma_{p}(\alpha x)=\sigma_{p}(x)$ and hence σ_{p} is left continuous. These two consequences give us the desired fact that σ_{p} is continuous.

Now, we may give some relationship between the modular σ_{p} and the Luxemburg norm on the sequence space $\widehat{\ell}_{\infty}(p)$.

Theorem 4.2. Let $x \in \widehat{\ell}_{\infty}(p)$. Then, the following statements hold:
(i) If $\|x\|<1$, then $\sigma_{p}(x) \leq\|x\|$.
(ii) If $\|x\|>1$, then $\sigma_{p}(x) \geq\|x\|$.
(iii) $\|x\|=1$ if and only if $\sigma_{p}(x)=1$.
(iv) $\|x\|<1$ if and only if $\sigma_{p}(x)<1$.
(v) $\|x\|>1$ if and only if $\sigma_{p}(x)>1$.

Proof. (i) Let $\varepsilon>0$ such that $0<\varepsilon<1-\|x\|$. By the definition of $\|\cdot\|$, there exists an $\alpha>0$ such that $\|x\|+\varepsilon>\alpha$ and $\sigma_{p}(x) \leq 1$. From Theorem 4.1 (i) and (ii), we have

$$
\sigma_{p}(x) \leq \sigma_{p}\left[(\|x\|+\varepsilon) \frac{x}{\alpha}\right] \leq(\|x\|+\varepsilon) \sigma_{p}\left(\frac{x}{\alpha}\right) \leq\|x\|+\varepsilon .
$$

Since ε is arbitrary, we have (i).
(ii) If we choose $\varepsilon>0$ such that $0<\varepsilon<1-1 /\|x\|$, then $1<(1-\varepsilon)\|x\|<\|x\|$. Combining the definition of the Luxemburg norm given by (4.1) and Theorem 4.1(i), we have

$$
1<\sigma_{p}\left[\frac{x}{(1-\varepsilon)\|x\|}\right] \leq \frac{1}{(1-\varepsilon)\|x\|} \sigma_{p}(x),
$$

so $(1-\varepsilon)\|x\|<\sigma_{p}(x)$ for all $\varepsilon \in(0,1-1 /\|x\|)$. This implies that $\|x\|<\sigma_{p}(x)$.
Since σ_{p} is continuous, (iii) directly follows from Theorem 1.4 of [26].
(iv) follows from (i) and (iii).
(v) follows from (iii) and (iv).

Acknowledgement : The authors express their gratitude to the referee for making some useful comments on the first draft of the manuscript which improved the presentation of the paper.

References

[1] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. 18 (1967) 345-355.
[2] S. Simons, The sequence spaces $\ell\left(p_{v}\right)$ and $m\left(p_{v}\right)$, Proc. London Math. Soc. 15 (1965) 422-436.
[3] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (2) (1951) 508-512.
[4] M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. 60 (5) (2010) 1299-1309.
[5] B. Choudhary, S.K. Mishra, On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math. 24 (5) (1993) 291-301.
[6] F. Başar, B. Altay, Matrix mappings on the space $b s(p)$ and its α-, β - and γ-duals, Aligarh Bull. Math. 21 (1) (2002) 79-91.
[7] F. Başar, Infinite matrices and almost boundedness, Boll. Un. Mat. Ital. A 6 (7) (1992) 395-402.
[8] C. Aydın, F. Başar, Some generalisations of the sequence space a_{p}^{r}, Iran. J. Sci. Technol. A Sci. 30 (A2) (2006) 175-190.
[9] B. Altay, F. Başar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26 (5) (2002) 701-715.
[10] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_{p} and ℓ_{∞} I, Inform. Sci. 176 (10) (2006) 1450-1462.
[11] M. Mursaleen, F. Başar, B. Altay, On the Euler sequence spaces which include the spaces ℓ_{p} and ℓ_{∞} II, Nonlinear Anal. 65 (3) (2006) 707-17.
[12] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336 (1) (2007) 632-645.
[13] B. Altay, F. Başar, Generalisation of the sequence space $\ell(p)$ derived by weighted mean, J. Math. Anal. Appl. 330 (1) (2007) 174-185.
[14] B. Altay, F. Başar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl. 319 (2) (2006) 494-508.
[15] C. Aydın, F. Başar, On the new sequence spaces which include the spaces c_{0} and c, Hokkaido Math. J. 33 (2) (2004) 383-398.
[16] C. Aydın, F. Başar, Some new paranormed sequence spaces, Inform. Sci. 160 (1-4) (2004) 27-40.
[17] C. Aydın, F. Başar, Some new difference sequence spaces, Appl. Math. Comput. 157 (3) (2004) 677-693.
[18] M. Mursaleen, Generalized spaces of difference sequences, J. Math. Anal. Appl. 203 (3) (1996) 738-745.
[19] E. Malkowsky, M. Mursaleen, S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta Math. Sin. (Engl. Ser.) 23 (3) (2007) 521-532.
[20] I.J. Maddox, Elements of Functional Analysis, The University Press, $2{ }^{\text {nd }}$ ed., Cambridge, 1988.
[21] I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Comb. Phil. Soc. 64 (1968) 335-340.
[22] C.G. Lascarides, I.J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68 (1970) 99-104.
[23] K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180 (1993) 223-238.
[24] S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996) 1-224.
[25] J. Diestel, Geometry of Banach spaces- Selected Topics, Springer-Verlag, 1984.
[26] L. Maligranda, Orlicz Spaces and Interpolation, Inst. Math. Polish Academy of Sciences, Poznan, 1985.
(Received 20 August 2011)
(Accepted 20 March 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2013 by the Mathematical Association of Thailand. All rights reserved.

