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Algebras of Terms

K. Denecke and P. Glubudom

Abstract : Two elements a, b of a monoid M are related with respect to Green’s
relation L if there are elements c, d ∈ M such that a = cb and b = da. The
first equation a = cb defines Green’s quasiorder ≤L on M . This quasiorder and
Green’s relations can also be defined for Menger algebras. After this definition we
formulate some elementary propositions for Green’s quasiorder ≤L and then we
consider ≤L in several concrete Menger algebras: n-ary operations, terms and tree
languages. In any case we give a characterization of L and of ≤L.

Keywords : Operation, term, tree language, superposition, Menger algebra,
Green’s quasiorder, Green’s relations.
2000 Mathematics Subject Classification : 08A35, 08A40, 08A70.

1 Introduction

An algebra M = (M ;Sn, e1, . . . , en) with an (n + 1)-ary operation Sn and
with n nullary operations e1, . . . , en, i.e. an algebra of type τ = (n + 1, 0, . . . , 0),
satisfying the identities

(C1) S̃n(Z̃, S̃n(Ỹ1, X̃1, . . . , X̃n), . . . , S̃n(Ỹn, X̃1, . . . , X̃n))
≈ S̃n(S̃n(Z̃, Ỹ1, . . . , Ỹn), X̃1, . . . , X̃n),

(C2) S̃n(λi, X̃1, . . . , X̃n) = X̃i for 1 ≤ i ≤ n,

(C3) S̃n(X̃i, λ1, . . . , λn) = X̃i, for 1 ≤ i ≤ n,

where S̃n is an (n + 1)−ary operation symbol, where λ1, . . . , λn are nullary
operation symbols and where Z̃, Ỹ1, . . . , Ỹn, X̃1, . . . , X̃n are new variables, is called
a unitary Menger algebra of rank n. Such algebras were introduced by K. Menger
(see e.g. [9]) and considered by B. M. Schein, V. S. Trokhimenko (see [10], [12])
and other authors.

We want to mention some important examples of unitary Menger algebras of
rank n.

1. Let f : An → A be an n-ary operation defined on the non-empty set A and
let O

(n)
A be the set of all n-ary operations defined on A. We define an (n + 1)-ary
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superposition operation Sn,A : (O(n)
A )n+1 → O

(n)
A as follows

Sn,A(g, f1, . . . , fn)(a1, . . . , an) := g(f1(a1, . . . , an), . . . , fn(a1, . . . , an)).

We denote the n−ary projections defined on A by en,A
1 , . . . , en,A

n , i.e. en,A
i (a1, . . . , an)

:= ai. Then O(n)
A := (O(n)

A ; Sn,A, en,A
1 , . . . , en,A

n ) satisfies (C1), (C2), (C3) and is a
unitary Menger algebra of rank n.

If A = (A; (fAi )i∈I) with ni−ary operations fAi : Ani → A is an algebra of
type τ , then the set T (n)(A) of all n-ary operations generated from {fAi | i ∈ I}
by using the superposition operations and the projections, is the universe of a
subalgebra of O(n)

A .
2. Let Xn = {x1, . . . , xn} be an n−element alphabet of variables and let

(fi)i∈I be an indexed set of operation symbols. Each operation symbol fi has
arity ni and let τ := (ni)i∈I be the sequence of all these arities. Then the set
Wτ (Xn) of all n−ary terms of type τ is defined inductively in the following way:

(i) xi ∈ Xn are n−ary terms of type τ for all 1 ≤ i ≤ n,

(ii) if t1, . . . , tni are n−ary terms of type τ and if fi is an ni−ary operation
symbol of type τ , then fi(t1, . . . , tni) is an n−ary term of type τ .

On the set Wτ (Xn) we define an (n + 1)−ary operation Sn,T : Wτ (Xn)n+1 →
Wτ (Xn) as follows.

(i) Sn,T (xi, t1, . . . , tn) := ti for 1 ≤ i ≤ n,

(ii) Sn,T (fi(s1, . . . , sni), t1, . . . , tn)
:= fi(Sn,T (s1, t1, . . . , tn), . . . , Sn,T (sni , t1, . . . , tn)).

Then n−clone τ := (Wτ (Xn); Sn,T , x1, . . . , xn) is a unitary Menger algebra of rank
n. (see e.g. [6]).

3. Let A = (A; (fAi )i∈I) be an algebra of type τ with fundamental operations
(fAi )i∈I indexed by a set I where fAi is ni−ary and τ = (ni)i∈I is the type of
A. Let V be a variety of algebras of type τ and let IdnV := IdV

⋂
Wτ (Xn)2

be the set of all identities of V built up by n−ary terms. Clearly IdnV is a
congruence relation on the Menger algebra n− cloneτ (see e.g. [6]) and therefore
n− cloneV := n− cloneτ/IdnV is also a unitary Menger algebra of rank n.

4. For every algebra A = (A; (fAi )i∈I) every term t ∈ Wτ (Xn) defines an n-ary
operation tA : An → A. These induced term operations are defined inductively in
the following way:

If t = xi ∈ Xn, then xAi := en,A
i is the i−th n−ary projection. Assume that t =

fi(t1, . . . , tni) is a compound term and assume that tA1 , . . . , tAni
are already defined.

Then we define tA := Sn,A(fA, tA1 , . . . , tAni
). Let Wτ (Xn)A be the set of all these

induced term operations. Then n−cloneA := (Wτ (Xn)A;Sn,A, en,A
1 , . . . , en,A

n ) is a
subalgebra of O(n)

A and it is not difficult to see that Wτ (Xn)A agrees with T (n)(A).
This means that the set of all induced n-ary term operations is equal to the set
of all n−ary operations which can be produced from the fundamental operations
{fAi | i ∈ I} of the algebra A = (A; (fAi )i∈I) together with all projections.
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We recall that s ≈ t ∈ IdV iff sA = tA for the induced term operations. If
V = V (A) is a variety generated by a single algebra A, then IdnV = IdnA and
n − clone V (A) is isomorphic to n-clone A. This isomorphism is given by the
mapping

ϕ : Wτ (Xn)/IdnV → Wτ (Xn)A

defined by [t]IdnA 7→ tA for every t ∈ Wτ (Xn).
Indeed, this mapping is well-defined since from [s]IdnA = [t]IdnA, i.e. from

s ≈ t ∈ IdnA we get sA = tA. Conversely sA = tA implies [s]IdnA = [t]IdnA.
Thus ϕ is injective. Clearly, ϕ is also surjective. The mapping ϕ is compatible
with the operations since

ϕ(Sn,T ([t]IdnA,[t1]IdnA, . . . , [tn]IdnA))

= ϕ([Sn,T (t, t1, . . . , tn)]IdnA)

= Sn,T (t, t1, . . . , tn)A

= Sn,A(tA, tA1 , . . . , tAn )

= Sn,A(ϕ([t]IdnA), ϕ([t1]IdnA), . . . , ϕ([tn]IdnA)).

Moreover, we have ϕ([xi]IdnA) = xAi = en,A
i , for every 1 ≤ i ≤ n.

5. In [2], the following (n + 1)−ary superposition operation Ŝn on elements,
B, B1, . . . , Bn of the power set P(Wτ (Xn)) was inductively defined by

(i) If B := {xi} for 1 ≤ i ≤ n, then Ŝn({xi}, B1, . . . , Bn) := Bi if Bj 6= ∅ for
1 ≤ j ≤ n.

(ii) If B = {fi(t1, . . . , tni)} and if we assume that Ŝn({tk}, B1, . . . , Bn) for
1 ≤ k ≤ ni are already defined, then Ŝn({fi(t1, . . . , tni)}, B1, . . . , Bn) :=
{fi(r1, . . . , rni) | rk ∈ Ŝn({tk}, B1, . . . , Bn) for 1 ≤ k ≤ ni} when Bj 6= ∅
for 1 ≤ j ≤ n.

(iii) If B is an arbitrary non-empty subset of Wτ (Xn), then

Ŝn(B,B1, . . . , Bn) :=
⋃

b∈B

Ŝn({b}, B1, . . . , Bn).

(iv) If one of the sets B, B1, . . . , Bn is empty, then

Ŝn(B, B1, . . . , Bn) := ∅.

We notice that elements of P(Wτ (Xn)) are also called tree languages and
therefore Ŝn is an operation on tree languages (see e.g. [4]). In [2] was proved
that Pn− clone τ := (P(Wτ (Xn)); Ŝn, {x1}, . . . {xn}) is a unitary Menger algebra
of rank n. Of course, similarly a superposition operation Ŝn,A on sets of n-ary
operations defined on the same set A can be considered and we obtain one more
example of a unitary Menger algebra of rank n.
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2 Green’s Quasiorder

Green’s relations are special equivalence relations which can be defined on
any semigroup or monoid, using the idea of mutual divisibility of elements. But
Green’s relations can also be defined on Menger algebras (see e.g. [3]). We define
Green’s relation L using the following relation ≤M ′ .

Definition 2.1 Let (M ; Sn, e1, . . . , en) be a unitary Menger algebra of rank n and
let M ′ ⊆ M be a subset. Then we define for a, b ∈ M

a ≤M ′ b :⇐⇒ ∃s1, . . . , sn ∈ M ′ (a = Sn(b, s1, . . . , sn)).

In the case M ′ = M we write ≤L. Moreover we define aLb iff a ≤L b and b ≤L a.

Then we have :

Proposition 2.2 If M ′ is the universe of a subalgebra of (M ;Sn, e1, . . . , en), then
≤M ′ is a quasiorder on M, i.e. reflexive and transitive. Especially ≤L is a qua-
siorder on M.

Proof. From (C3), we have that a = Sn(a, e1, . . . , en) for all a ∈ M . This means
≤M ′ is reflexive. If a ≤M ′ b and b ≤M ′ c, then there are s1, . . . , sn, t1, . . . , tn ∈ M ′

such that
a = Sn(b, s1, . . . , sn) and b = Sn(c, t1, . . . , tn).

Therefore from (C1) we have

a = Sn(b, s1, . . . , sn)
= Sn(Sn(c, t1, . . . , tn), s1, . . . , sn)
= Sn(c, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)).

Since M ′ is a subalgebra, then a ≤M ′ c. Thus ≤M ′ is transitive. ¤

But the converse is also true and we have :

Theorem 2.3 The set M ′ is the universe of a subalgebra of (M ; Sn, e1, . . . , en) if
and only if ≤M ′ is a quasiorder on M.

Proof. Because of Proposition 2.2 we have only to prove the opposite direction.
We show at first that all nullary operations e1, . . . , en belong to M ′. Suppose that
there exists ej 6∈ M ′ for some 1 ≤ j ≤ n. Since ≤M ′ is reflexive, there exist
elements a1, . . . , an ∈ M ′ such that

ej = Sn(ej , a1, . . . , an) = aj ∈ M ′, by (C2).

This gives a contradiction to ej 6∈ M ′. Thus e1, . . . , en ∈ M ′. Now we prove that
M ′ is closed under Sn. Let a1, a2, . . . , an+1 ∈ M ′. Then by definition of ≤M ′ ,
we have

Sn(a1, a2, . . . , an+1) ≤M ′ a1 = Sn(e1, a1, . . . , an) ≤M ′ e1.
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From transitivity and the definition of ≤M ′ , we obtain elements m1, . . . ,mn ∈ M ′

such that

Sn(a1, a2, . . . , an+1) = Sn(e1,m1, . . . , mn) = m1 ∈ M ′.

This means M ′ is closed under application of Sn. ¤

Further, it is easy to check that for subalgebras M1,M2 of a unitary Menger
algebra M with M1 ⊆M2 ⊆M we have ≤M1⊆≤M2 .

Green’s relation R (see [3]) is defined by aRb if there are elements s, t ∈ M
such that

Sn(s, a, . . . , a) = b and Sn(t, b, . . . , b) = a.

In a similar way as ≤L we can define ≤R by the first equation.

3 Menger Algebras of Operations

In [7], for a class C ⊆ OA of functions on A the author defined the concept
of a C−subfunction of a given function as follows :

Definition 3.1 Let f, g ∈ O
(n)
A and let C ⊆ O

(n)
A . Then f is called a C−subfunction

of g if there are functions h1, . . . , hn ∈ C such that

f = Sn,A(g, h1, . . . , hn).

In this case we write f ≤C g.

Since O(n)
A is a unitary Menger algebra of rank n, we may apply Theorem 2.3

and obtain that C is a universe of a subalgebra of O(n)
A iff ≤C is a quasiorder on

O
(n)
A .

Using the relation ≤C one can define an equivalence relation ≡C on O
(n)
A .

For C = O(n)
A the relation ≡C agrees with Green’s relation L. It is clear that

Imf ⊆ Img for any f ≤C g and any C. Therefore, if f ≡C g, then Imf = Img.
For a semigroup S and for any a, b ∈ S Green’s relations are defined as follows

aLb ⇔ ∃c, d ∈ S(a = cb and b = da)
aRb ⇔ ∃c, d ∈ S(a = bc and b = ad).

Green’s relation R can also be defined on O
(n)
A . Clearly, for Green’s relation R we

can also consider the quasiorder a ≤R b corresponding to a ≤L b. It is well-known
(see [5]) that for transformations f, g ∈ O

(1)
A there holds

fLg ⇔ Imf = Img

fRg ⇔ Kerf = Kerg.
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To transfer these results to n−ary operations for any n−ary operation f : An → A
we consider the unary operation f⊗n : An → An defined by

f⊗n(a1, . . . , an) := (f(a1, . . . , an), f(a1, . . . , an), . . . , f(a1, . . . , an))

for every (a1, . . . , an) ∈ An. Let (O(1)
An ; ◦) be the semigroup of all unary operations

(transformations) defined on An. (Remark that the composition of two operations
h1, h2 ∈ O

(1)
An , i.e. h1 ◦ h2 is equal to S1,An

(h2, h1).) For different operations
f1, . . . , fn ∈ O

(n)
A we define an operation f1 ⊗ · · · ⊗ fn ∈ O

(1)
An by

(f1 ⊗ · · · ⊗ fn)(a1, . . . , an) := (f1(a1, . . . , an), . . . , fn(a1, . . . , an)).

If conversely h ∈ O
(1)
An , then we can find n uniquely determined operations h1, . . . , hn

such that h = h1 ⊗ · · · ⊗ hn. If πj : An → A, 1 ≤ j ≤ n, are the canonical
projections, then hj = πj ◦ h for 1 ≤ j ≤ n, i.e. each element f ∈ O

(1)
An can

be represented as (f1 ⊗ · · · ⊗ fn) when f1, . . . , fn ∈ O
(n)
A . Now we show that

the composition in the semigroup (O(1)
An ; ◦) corresponds to the operation Sn,A in

(O(n)
A ; Sn,A, en,A

1 , . . . , en,A
n ).

Lemma 3.2 Let f = f1⊗· · ·⊗fn and g = g1⊗· · ·⊗gn be elements of O
(1)
An . Then

(f1 ⊗ · · · ⊗ fn) ◦ (g1 ⊗ · · · ⊗ gn) = Sn,A(g1, f1, . . . , fn)⊗ · · · ⊗ Sn,A(gn, f1, . . . , fn).

Proof. Let ā := (a1, . . . , an) ∈ An. Then

(f1 ⊗ . . .⊗ fn) ◦ (g1 ⊗ · · · ⊗ gn)(ā)
= (g1 ⊗ · · · ⊗ gn)((f1 ⊗ · · · ⊗ fn)(ā))
= (g1 ⊗ · · · ⊗ gn)(f1(ā), . . . , fn(ā))
= (g1(f1(ā), . . . , fn(ā)), . . . , gn(f1(ā), . . . , fn(ā)))

= (Sn,A(g1, f1, . . . , fn)(ā), . . . , Sn,A(gn, f1, . . . , fn)(ā))

= (Sn,A(g1, f1, . . . , fn)⊗ · · · ⊗ Sn,A(gn, f1, . . . , fn))(ā).

¤

In particular for g1 = · · · = gn, i.e. if the second operation from O
(1)
An has the

form g⊗n, then (f1 ⊗ · · · ⊗ fn) ◦ g⊗n = (Sn,A(g, f1, . . . fn))⊗n. Now we are able to
prove :

Lemma 3.3 Let f, g ∈ O
(n)
A . Then

(i) fLg if and only if f⊗nLg⊗n and,

(ii) fRg if and only if f⊗nRg⊗n.



Green’s Quasiorder on Menger Algebras of Terms 55

Proof. (i) Let fLg, then there are operations f1, . . . , fn, g1, . . . , gn ∈ O
(n)
A such

that

f = Sn,A(g, g1, . . . , gn) and g = Sn,A(f, f1, . . . , fn).

But then we have also f⊗n = Sn,A(g, g1, . . . , gn)⊗n and g⊗n = Sn,A(f, f1, . . . , fn)⊗n

and by Lemma 3.2,

f⊗n = (g1 ⊗ · · · ⊗ gn) ◦ g⊗n and g⊗n = (f1 ⊗ · · · ⊗ fn) ◦ f⊗n

and this means f⊗nLg⊗n. If we conversely assume that f⊗nLg⊗n then there are
operations g1⊗ · · · ⊗ gn, f1⊗ · · · ⊗ fn ∈ O

(1)
An and g1, . . . , gn, f1, . . . , fn ∈ O

(n)
A such

that

f⊗n = (g1 ⊗ · · · ⊗ gn) ◦ g⊗n and g⊗n = (f1 ⊗ · · · ⊗ fn) ◦ f⊗n

and by Lemma 3.2, f⊗n = Sn,A(g, g1, . . . , gn)⊗n and g⊗n = Sn,A(f, f1, . . . , fn)⊗n.
Application of one of the projections πj , 1 ≤ j ≤ n, gives f = Sn,A(g, g1, . . . , gn),
g = Sn,A(f, f1, . . . , fn) and thus fLg.

(ii) If fRg, then there are operations s, t ∈ O
(n)
A such that f = Sn,A(t, g, . . . , g)

and g = Sn,A(s, f, . . . , f). From these equations we obtain

f⊗n = Sn,A(t, g, . . . , g)⊗n and g⊗n = Sn,A(s, f, . . . , f)⊗n

and by Lemma 3.2, f⊗n = g⊗n ◦ t⊗n and g⊗n = f⊗n ◦ s⊗n; i.e. f⊗nRg⊗n.
If conversely f⊗nRg⊗n, then there are h = h1⊗· · ·⊗hn and k = k1⊗· · ·⊗kn

and h1, . . . , hn, k1, . . . , kn ∈ O
(n)
A such that

f⊗n = g⊗n ◦ (h1 ⊗ · · · ⊗ hn) and g⊗n = f⊗n ◦ (k1 ⊗ · · · ⊗ kn).

By Lemma 3.2, we get f⊗n = Sn,A(h1, g, . . . , g) ⊗ · · · ⊗ Sn,A(hn, g, . . . , g) and
applying π1 on both sides we have f = Sn,A(h1, g, . . . , g). Similarly we get g =
Sn,A(k1, f, . . . , f). This shows fRg. ¤

As a Corollary we get

Corollary 3.4 Let f, g ∈ O
(n)
A . Then

(i) fLg if and only if Im f = Im g and,

(ii) fRg if and only if Ker f = Ker g.

If for C ⊆ O
(n)
A we define C⊗n := {f1 ⊗ . . . ,⊗fn | fj ∈ C} and if for h, k ∈ O

(1)
An

we set h ≤C⊗n k iff there is a unary function f ∈ C⊗n ⊆ O
(1)
An such that h = f ◦ g,

then we have already f ≤C g iff f⊗n ≤C⊗n g⊗n.
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4 Menger Algebras of Terms

Let Wτ (Xn) be the set of all n−ary terms of type τ and let n − clone τ =
(Wτ (Xn), Sn,T , x1, . . . , xn) be the Menger algebra defined in section 1. Then we
define :

Definition 4.1 Let A ⊆ Wτ (Xn) be a set of n−ary terms. Then for f, g ∈
Wτ (Xn) we define

f ≤A g :⇔ ∃ t1, . . . , tn ∈ A (f = Sn,T (g, t1, . . . , tn)).

Since n−clone τ is a unitary Menger algebra of rank n, we may apply Theorem
2.3 and obtain that A is the universe of a subalgebra of n − clone τ iff ≤A is a
quasiorder on Wτ (Xn).

For A = Wτ (Xn) we write again for short ≤L. There are different methods to
measure the complexity of a term. The inductive definition of terms is based on
the number op(t) of occurrences of operation symbols in the term t. The operation
symbol count op(t) is inductively defined by

(i) op(xi) := 0 if xi ∈ Xn and

(ii) op(fi(t1, . . . , tni)) :=
ni∑

j=1

op(tj) + 1.

Let vbj(s) be the number of occurrences of the variable xj in the term s. If
s, t1, . . . , tn ∈ Wτ (Xn), then from [1] we obtain that

op(Sn,T (s, t1, . . . , tn)) =
n∑

j=1

op(s) + vbj(s)op(tj).

Therefore we have, if s ≤L t, then there are t1, . . . , tn ∈ Wτ (Xn) such that
s = Sn,T (t, t1, . . . , tn) and then op(s) ≥ op(t).

Using this fact, we prove

Proposition 4.2 Assume that the type τ contains at least one at least unary op-
eration symbol f. Then Wτ (Xn) contains an infinite descending chain with respect
to the quasiorder ≤L.

Proof. We assume at first that the type τ contains at least one at least unary
operation symbol f . We consider the sequence

t0 := f(x1, . . . , xni)

tk+1 := Sn,T (tk, t0, x2, . . . , xn)

where k ∈ N. This gives an infinite sequence in Wτ (Xn), since tk+1 ≤L tk for any
k ∈ N and because of op(tk) 6= op(tk+1) we have tk 6= tk+1 for any k ∈ N. ¤
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For any subcloneM⊆ n−clone τ we have t = Sn,T (xi, t1, . . . , ti−1, t, ti+1, . . . , tn).
Thus t ≤M xi for all t ∈ M . For M = n − clone τ we have t ≤L xi for all
t ∈ Wτ (Xn). Therefore every variable xi ∈ Xn is a maximal element.

Now we ask when s ≤L t and t ≤L s, i.e. when sLt. The answer is given in
[3] Theorem 4.5.

Theorem 4.3 Let s, t ∈ Wτ (Xn). Then sLt if and only if there exists a permu-
tation r on the set {1, 2, . . . , n} such that t = Sn,T (s, xr(1), . . . , xr(n)).

The relation ≤M can also be applied to hypersubstitutions. A hypersubstitu-
tion σ of type τ is a mapping σ : {fi | i ∈ I} → Wτ (X) which preserves the arity,
i.e. such that σ(fi) is ni−ary. Every hypersubstitution σ can be extended to a
mapping σ̂ : Wτ (X) → Wτ (X) by the following inductive definition:

(i) σ̂[x] := x for variables

(ii) σ̂[fi(t1, . . . , tni)] := Sni,T (σ(fi), σ̂[t1], . . . , σ̂[tn]) for compound terms.

Let Hyp(τ) be the set of all hypersubstitutions of type τ . With the product
σ1 ◦h σ2 := σ̂1 ◦ σ2 and the identity hypersubstitution σid defined by σid(fi) =
fi(x1, . . . , xni) we get the monoid (Hyp(τ) : ◦h, σid).

Definition 4.4 Let M be a subset of n− clone τ . Then we define the following
binary relation on Hyp(τ):

σ1 ≤M σ2 iff σ1(fi) ≤M σ2(fi) for all i ∈ I.

Then we have:

Proposition 4.5 Let M be a subalgebra of n−clone τ . Then ≤M is a quasiorder
on Hyp(τ).

Proof. Going back to the quasiorder ≤M on Wτ (Xn) we prove reflexivity and
transitivity of ≤M on Hyp(τ). ¤

Clearly, by σ1 ≤M σ2 and σ2 ≤M σ1 we define an equivalence relation ≡M on
Hyp(τ). The relation ≤M is connected with the multiplication on Hyp(τ).

Proposition 4.6 Let M be a subalgebra of n − clone τ . Then ≤M is left-
compatible quasiorder on Hyp(τ).

Proof. We show that the relation ≤M is left compatible. Assume that σ1 ≤M σ2

and σ ∈ Hyp(τ). Then for all i ∈ I we have σ1(fi) ≤M σ2(fi). This means, there
are terms t1, . . . , tn ∈ M such that σ1(fi) = Sn,T (σ2(fi), t1, . . . , tn). The extension
of the hypersubstitution σ is an endomorphism of the Menger algebra n− clone τ
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and its restriction to M is an endomorphism of M ([6]). Therefore for each i ∈ I
we have

(σ ◦h σ1)(fi) = (σ̂ ◦ σ1)(fi) = σ̂(σ1(fi))

= σ̂(Sn,T (σ2(fi), t1, . . . , tn))

= Sn,T (σ̂[σ2(fi)], σ̂[t1], . . . , σ̂[tn])

and therefore (σ ◦h σ1)(fi) ≤M (σ ◦h σ2)(fi). This means, σ ◦h σ1 ≤M σ ◦h σ2. ¤

Using the relation ≤M for every subalgebra M of n− clone τ we may define
an equivalence relation on Hyp(τ) by

σ1 ≡M σ2 :⇔ σ1 ≤M σ2 and σ2 ≤M σ1.

5 Menger Algebras of Tree Languages

In section 1, we introduced the unitary Menger algebra Pn − clone τ =
(P(Wτ (Xn)); Ŝn, {x1}, . . . , {xn}). Subsets of Wτ (Xn) are also called tree lan-
guages. Therefore we can speak of a Menger algebra of tree languages. Now we
define

Definition 5.1 Let T ⊆ P(Wτ (Xn)) be a collection of sets of n−ary terms of
type τ . For B1, B2 ⊆ Wτ (Xn) we define

B1 ≤T B2 :⇔ ∃A1, . . . , An ∈ T (B1 = Ŝn(B2, A1, . . . , An)).

The relation ≤T is a quasiorder and we may define the equivalence relation
≡T by B1 ≡T B2 :⇔ B1 ≤T B2 and B2 ≤T B1. For T = P(Wτ (Xn)) we write
B1 ≤L B2 and obtain Green’s relation L on Pn− clone τ . To characterize Green’s
relation L on (P(Wτ (Xn)); Ŝn) we define the concept of a near homomorphism.

Definition 5.2 A mapping α : P(Wτ (Xn)) → P(Wτ (Xn)) is called a near homo-
morphism of (P(Wτ (Xn)); Ŝn) if

α(Ŝn(A,B1, . . . , Bn)) = Ŝn(A,α(B1), . . . , α(Bn))

for all A,B1, . . . , Bn ⊆ Wτ (Xn).

Now we consider a mapping α : {{xi} | xi ∈ Xn} → P(Wτ (Xn)) \ {∅} and
extend this mapping to a mapping ᾱ : P(Wτ (Xn)) → P(Wτ (Xn)) using the
following inductive definition :

Definition 5.3

(i) ᾱ({xi}) := α({xi}) for all xi ∈ Xn.
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(ii) ᾱ({fi(t1, . . . , tni
)}) := {fi(r1, . . . , rni

) | rj ∈ ᾱ({tj}) for 1 ≤ j ≤ ni}
assuming that ᾱ({tj}) for 1 ≤ j ≤ ni are already defined.

(iii) For any nonempty set A ∈ P(Wτ (Xn)) we set ᾱ(A) :=
⋃

a∈A

ᾱ({a}) and if A

is empty, we define ᾱ(A) := ∅.

Lemma 5.4 Let α : {{xi} | xi ∈ Xn} → P(Wτ (Xn)) \ {∅} be a mapping. Then
the extension ᾱ of α is a near homomorphism.

Proof. We shall prove by induction on the complexity of terms in A that

ᾱ(Ŝn(A,B1, . . . , Bn)) = Ŝn(A, ᾱ(B1), . . . , ᾱ(Bn)).

Let A = {xi} then we have that

ᾱ(Ŝn({xi}, B1, . . . , Bn)) = ᾱ(Bi) = Ŝn({xi}, ᾱ(B1), . . . , ᾱ(Bn)).

If a = fi(t1, . . . , tni
) and if we assume that ᾱ(Ŝn({tj}, B1, . . . , Bn)) =

Ŝn({tj}, ᾱ(B1), . . . , ᾱ(Bn)) for all 1 ≤ j ≤ n, then

ᾱ(Ŝn({fi(t1, . . . , tni)}, B1, . . . , Bn))

= ᾱ({fi(r1, . . . , rni) | rj ∈ Ŝn({tj}, B1, . . . , Bn) for 1 ≤ j ≤ ni})
=

⋃
{ᾱ(fi(r1, . . . , rni)) | rj ∈ Ŝn({tj}, B1, . . . , Bn) for 1 ≤ j ≤ ni}

=
⋃
{fi(u1, . . . , uni) | uj ∈ ᾱ(rj) and rj ∈ Ŝn({tj}, B1, . . . , Bn) for 1 ≤ j ≤ ni}

=
⋃
{fi(u1, . . . , uni) | uj ∈ ᾱ(Ŝn({tj}, B1, . . . , Bn) for 1 ≤ j ≤ ni}

=
⋃
{fi(u1, . . . , uni) | uj ∈ Ŝn({tj}, ᾱ(B1), . . . , ᾱ(Bn)) for 1 ≤ j ≤ ni}

= Ŝn({fi(t1, . . . , tni)}, ᾱ(B1), . . . , ᾱ(Bn)).

If A is an arbitrary non-empty subset of Wτ (Xn) then

ᾱ(Ŝn(A, B1, . . . , Bn)) = ᾱ(
⋃

a∈A

Ŝn({a}, B1, . . . , Bn))

=
⋃

a∈A

ᾱ(Ŝn({a}, B1, . . . , Bn))

=
⋃

a∈A

Sn({a}, ᾱ(B1), . . . , ᾱ(Bn))

= Ŝn(A, ᾱ(B1), . . . , ᾱ(Bn)).

If A is the empty set, then

ᾱ(Ŝn(A,B1, . . . , Bn)) = ∅ = Ŝn(A, ᾱ(B1), . . . , ᾱ(Bn)).

Thus ᾱ is a near homomorphism. ¤
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Theorem 5.5 Let A,B ∈ P(Wτ (Xn)) be nonempty. Then A ≤L B if and only if
there is near homomorphism α : P(Wτ (Xn)) → P(Wτ (Xn)) such that α(B) = A.

Proof. Assume that A ≤L B, then there are B1, . . . , Bn ∈ P(Wτ (Xn)) such that

A = Ŝn(B,B1, . . . , Bn).

We consider the mapping α : {{xi} | xi ∈ Xn} → P(Wτ (Xn)) defined by α :
{xi} 7→ Bi for xi ∈ Xn. Thus by Lemma 5.4 this mapping can be extended to a
near homomorphism ᾱ : P(Wτ (Xn)) → P(Wτ (Xn)) such that

A = Ŝn(B, B1, . . . , Bn) = ᾱ(B).

Conversely, let α : P(Wτ (Xn)) → P(Wτ (Xn)) be a near homomorphism such
that α(B) = A. Since A,B are non-empty, thus α({xi}) 6= ∅. We put Bi = α({xi})
for all 1 ≤ i ≤ n, then

Ŝn(B, B1, . . . , Bn) = Ŝn(B, α({x1}), . . . , α({x1}))
= α(Ŝn(B, {x1}, . . . , {xn})) = α(B) = A.

This means A ≤L B. ¤

¿From the relation ≤L, Green’s relation L can be obtained by A ≡L B iff
A ≤L B and B ≤L A. Thus by Theorem 5.5 A ≡L B if and only if there are
near homomorphisms α, β : P(Wτ (Xn)) → P(Wτ (Xn)) such that α(B) = A and
β(A) = B.

Remark 5.6 (i) Let A ⊆ Wτ (Xn) be a subset, let B ⊆ Xn and let

α : {{xi} | xi ∈ Xn} → P(Wτ (Xn))

be a mapping defined by α({xi}) = A for all xi ∈ Xn. Then by Lemma 5.4
we can extend α to a near homomorphism ᾱ : P(Wτ (Xn)) → P(Wτ (Xn)).
Then ᾱ maps B to A because of ᾱ(B) =

⋃
xi∈B

ᾱ({xi}) =
⋃

xi∈B

A = A. Thus

A ≤L B.

(ii) If A,B ⊆ Xn, then A ≤L B and B ≤L A and so ALB.

(iii) Let A = {a} and B = {b} be singleton sets. Then ALB if and only if
the mapping ᾱ from Theorem 5.5 is the extension of a bijective mapping
α : {{xi} | xi ∈ var(a)} → {{xi} | xi ∈ var(b)} (see [3], Theorem 4.5)

References

[1] K. Denecke and S. L. Wismath, Universal Algebra and Applications in Theo-
retical Computer Science, Chapman & Hall/CRC, Boca Raton, London, New
York, Washington, D.C., 2002.



Green’s Quasiorder on Menger Algebras of Terms 61

[2] K. Denecke, P. Glubudom and J. Koppitz, Power Clones and Non-
Deterministic Hypersubstitutions, preprint 2005.

[3] K. Denecke, P. Jampachon, Regular Elements and Green’s Relations in
Menger Algebras of Terms, Discussiones Mathematicae, General Algebra and
Applications, 26(2006), 85 – 109.

[4] F. Gécseg, M. Steinby, Tree Languages, in: Handbook of Formal Languages,
Vol. 3, Chapter 1, Tree Languages, pp. 1-68, Springer-Verlag 1997.

[5] J. M. Howie, Fundamentals of Semigroup Theory, Oxford Science Publica-
tions, 1995.

[6] K. Denecke and J. Koppitz, M-solid Varieties of Algebras, Springer-Verlag,
2006.

[7] E. Lehtonen, Descending chains and antichains of the unary, linear, and
monotone subfunction relations, preprint 2006.

[8] S. Leeratanavalee, Weak hypersubstitutions, Thesis, University of Potsdam,
2002.

[9] K. Menger, The algebra of functions: past, present, future, Rend. Mat., 20
(1961), 409–430.

[10] B. M. Schein and V. S. Trohimenko, Algebras of multiplace functions, Semi-
group Forum, 17(1979), 1–64.

[11] W. Taylor, Abstract Clone Theory, Algebras and Orders, Kluwer Academic
Publishers, Dordrecht, Boston, London, 1993, 507–530.

[12] V. S. Trokhimenko, V-regular Menger algebras, Algebra Universalis,
38(1997), 150–164.

(Received 10 December 2005)

K. Denecke
Universität Potsdam
Fachbereich Mathematik
Postfach 601553, 14415 Potsdam, Germany.
e-mail : kdenecke@rz.uni-potsdam.de

P. Glubudom
Department of Mathematics
Chiang Mai University
Chiang Mai 50200, Thailand.
e-mail : puprisana@yahoo.com


