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Melikşah University, 38280 Kayseri, Turkey

e-mail : muhammedaltun@gmail.com

Abstract : In this article we focus on the multiplier sequence spaces which are
Banach spaces. We show that the characterization of a random matrix operator
A = (ank) ∈ (E(λ), F (µ)), where E(λ) and F (µ) are multiplier sequence spaces
with multiplier sequences λ and µ, depends on the characterization of the matrix
B = (bnk) ∈ (E, F ), with bnk = µnankλ−1

k . By this way, the necessary and
sufficient conditions for the matrix operators between multipliers of the classical
sequence spaces can be found. We also give some applications of these results.
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1 Introduction and Preliminaries

Let ω denote the set of all complex sequences. Any subspace of ω is called
as a sequence space. We shall write ℓ∞, c and c0 for the spaces of all bounded,
convergent and null sequences, respectively. By ℓp, we denote the space of all
p-absolutely summable sequences, where 1 ≤ p < ∞.

The studies on sequence spaces was extended by using the notion of asso-
ciated multiplier sequences. Goes et al. [1] defined the differentiated sequence
space dE and integrated sequence space

∫

E for a given sequence space E, using
the multiplier sequences (k−1) and (k) respectively. Kamthan [2] used the multi-
plier sequence (k!). Recently, Tripathy and Sen [3] examined some vector valued
paranormed multiplier sequence spaces.
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Let λ = (λk)k∈N be a sequence of nonzero scalars, where N = {1, 2, . . .}. For
any z = (zk) ∈ ω let λz = (λkzk). Then, for a sequence space E, the multiplier
sequence space E(λ), associated with the multiplier sequence λ is defined as

E(λ) = {z ∈ ω : λz ∈ E}.

For example c0((1/k)∞k=1) is a sequence space which includes ℓ∞ and includes some

unbounded sequences such as (
√

k).

Let E and F be two sequence spaces and A = (ank) be an infinite matrix of
real or complex numbers ank , where n, k ∈ N. Then, we say that A defines a
matrix mapping from E into F , and we denote it by writing A : E → F , if for
every sequence x = (xk) ∈ E the sequence Ax = {(Ax)n}, the A-transform of x,
is in F ; where

(Ax)n =
∑

k

ankxk (n ∈ N). (1.1)

By (E, F ), we denote the class of all matrices A such that A : E → F . Thus,
A ∈ (E, F ) if and only if the series on the right side of (1.1) converges for each
n ∈ N and every x ∈ E, and we have Ax = {(Ax)n}n∈N ∈ F for all x ∈ E.

Let X and Y be Banach spaces. Then B(X, Y ) is the set of all continuous
linear operators L : X → Y , a Banach space with the operator norm defined by

‖L‖ = sup{ ‖L(x)‖
‖x‖ : 0 6= x ∈ X} (L ∈ B(X, Y )).

A BK space is a Banach sequence space with continuous coordinates. The
sequence spaces c0, c, ℓp, ℓ∞ are the well-known examples of BK spaces. A BK
space with uniformly continuous coordinates will be called as a UBK space. It can
be seen that the sequence spaces c0, c, ℓp, ℓ∞ are also UBK spaces.

Theorem 1.1 ([4, Theorem 4.2.8]). Matrix operators between BK spaces are con-
tinuous.

Theorem 1.2. If E is a normed sequence space with the norm ‖ · ‖, then E(λ) is
a normed sequence space with norm ‖z‖λ = ‖λz‖.

Proof. Let α ∈ C and z ∈ E(λ). Then

‖αz‖λ = ‖λ(αz)‖ = ‖αλz‖ = |α|‖λz‖ = |α|‖z‖λ.

Secondly, for y, z ∈ E(λ) we have

‖y + z‖λ = ‖λ(y + z)‖ = ‖λy + λz‖ ≤ ‖λy‖ + ‖λz‖ = ‖y‖λ + ‖z‖λ,

so the triangle inequality holds.

Now, suppose ‖z‖λ = 0. Then ‖λz‖ = 0 and since ‖ · ‖ is a norm we have
λkzk = 0 for each k. Since λk are nonzero, we have z = θ.
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2 Main Results

Lemma 2.1. Let E be a normed sequence space with norm ‖·‖. Then E is a UBK
space if and only if there exists C > 0 such that for all z = (zk) ∈ E, |zk| ≤ C‖z‖
for all k ∈ N.

Proof. Let E be a UBK space and suppose such a C > 0 does not exist. Then,
there exists a sequence (z(s)) in E with ‖z(s)‖ = 1 such that for an index set (ks)

we have |z(s)
ks

| > s2 for s ∈ N. Now let y(s) = 1
s
z(s) for s ∈ N. Then y(s) → θ as

s → ∞, but

lim
s→∞

|y(s)
ks

| = ∞.

So, we get to the contradiction, coordinates are not uniformly continuous. The
inverse implication is straightforward.

Theorem 2.2. If (E, ‖ · ‖) is a Banach sequence space and λ be a sequence of
nonzero terms, then (E(λ), ‖ · ‖λ) is a Banach space.

Proof. Let (E, ‖ · ‖) be a Banach sequence space. Then, (E(λ), ‖ · ‖λ) is a normed
space by the previous theorem. Now, let (xn) be a Cauchy sequence in E(λ). Let
yn = λxn. Then (yn) is a sequence in E and is Cauchy in E since

‖xn − xm‖λ = ‖λ(xn − xm)‖ = ‖λxn − λxm‖ = ‖yn − ym‖.

Let y ∈ E such that lim yn = y in E. Let x = λ−1y. Then

‖xn − x‖λ = ‖λ(xn − x)‖ = ‖yn − y‖ → 0.

Corollary 2.3. The multiplier of a BK space is a BK space.

Corollary 2.4. Let λ and µ be sequences with nonzero terms, and let E and F
be BK spaces. Then any matrix operator A ∈ (E(λ), F (µ)) is continuous.

Corollary 2.5. Let λ, γ, µ and δ be sequences with nonzero terms. Then the
matrix operators between ℓp(λ), c0(γ), c(µ) and ℓ∞(δ) are continuous.

Remark 2.6. The multiplier of a UBK space is not a UBK space, in general. For
example, the sequence (k) ∈ c((1/k)) has norm 1 according to the norm given by

sup
x=(xk)

{

1

k
|xk|

}

,

which is the corresponding norm of c((1/k)) according to Theorem 1.2. So the
space c((1/k)) is not UBK by Lemma 2.1.
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For a sequence λ = (λ1, λ2, . . .) of nonzero terms, define λ−1 = ( 1
λ1

, 1
λ2

, . . .).
Let Dλ be the diagonal matrix where the diagonal entries are the entries of the
sequence λ, i.e.

Dλ =











λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
...

. . .











.

Let e = (1, 1, . . .). So, De is the identity operator. For any two sequences
µ = (µk) and λ = (λk) and a matrix operator A = (ank), we can see that the
operator DµADλ is represented by the matrix A(µ, λ) = (αnk) where

αnk = µnankλk.

Theorem 2.7. Let E and F be two sequence spaces, λ and µ be two sequences of
nonzero terms. Then for a matrix A, A ∈ (E(λ), F (µ)) if and only if A(µ, λ−1) ∈
(E, F ).

Proof. Suppose A ∈ (E(λ), F (µ)) and let z = (zk) ∈ E. Then, clearly λ−1z ∈
E(λ). Hence, we have Aλ−1z ∈ F (µ), and so µAλ−1z ∈ F , which is equivalent to
saying DµADλ−1z ∈ F .

For the inverse implication, suppose DµADλ−1 ∈ (E, F ) and let z ∈ E(λ).
Then λz ∈ E and so DµADλ−1λz ∈ F . This is equivalent to saying µAλ−1λz ∈ F ,
and so µAz ∈ F and Az ∈ F (µ).

Corollary 2.8. Let E and F be two normed sequence spaces, λ and µ be two
sequences of nonzero terms. Then for a matrix A, A ∈ B(E(λ), F (µ)) if and only
if A(µ, λ−1) ∈ B(E, F ). In this case, we have

‖A‖(E(λ),F (µ)) = ‖A(µ, λ−1)‖(E,F ).

Proof. It is enough to show the equality:

‖A‖(E(λ),F (µ)) = sup
θ 6=z∈E(λ)

‖Az‖F (µ)

‖z‖E(λ)
= sup

θ 6=λz∈E

‖µAz‖F

‖λz‖E

= sup
θ 6=λz∈E

‖µAλ−1λz‖F

‖λz‖E

= sup
θ 6=λz∈E

‖A(µ, λ−1)λz‖F

‖λz‖E

= ‖A(µ, λ−1)‖(E,F ).

3 Examples and Applications

Example 3.1. The matrix

T =











1 0 0 · · ·
1 1 0 · · ·
1 1 1 · · ·
...

...
...

. . .











∈ (c, c(n−1)),



Matrix Mappings on Multiplier Sequence Spaces 63

since the Cesàro operator C = T ((n−1), e) ∈ (c, c). The space c(n−1) = {(zn) ∈
ω : limn

zn

n
exists} is a Banach space by Theorem 2.2.

Example 3.2. A lower triangular matrix A = (ank) is said to be factorable if there
exists sequences (an) and (bn) such that ank = anbk for all k, n ∈ N. If A = (anbk)
is factorable, then A = T ((an), (bn)) where T is the matrix in Example 3.1. So, if
(an) and (bn) have nonzero terms, we have T = A((a−1

n )(b−1
n )) ∈ (c, c(n−1)) and

A ∈ (c(bn), c( 1
nan

)).

Theorem 3.3. Let E be a UBK space and let A = (ank) be a matrix operator
with rows in ℓ1. Then, there exists a Banach space F such that A ∈ B(E, F ).

Proof. Let ‖ · ‖ denote the norm of E and ‖ · ‖∞ be the norm of ℓ∞. Let Mn =
∑∞

k=1 |ank|, and let An ∈ (E, C) be the operator corresponding to the n-th row of
A, i.e. for z = (zk) ∈ E we have Anz =

∑∞
k=1 ankzk ∈ C. Then, since E is a UBK

space, there exists C > 0 such that |zk| ≤ C‖z‖ for all k and all z ∈ E, and so

‖An‖ = sup
θ 6=z∈E

|Anz|
‖z‖ = sup

θ 6=z∈E

|∑∞
k=1 ankzk|
‖z‖ ≤ CMn < ∞.

Then A ∈ (E, ω). Now define the sequence µ = (µk) by

µk =

{

1
Mk

if Mk 6= 0

1 if Mk = 0
.

Then, for the matrix A(µ, e) we have

sup
θ 6=z∈E

‖A(µ, e)z‖∞
‖z‖ = sup

θ 6=z∈E

sup
n

|µn

∑∞
k=1 ankzk|
‖z‖

≤ C sup
n

µn

∞
∑

k=1

|ank|

≤ C sup
n

µnMn ≤ C.

Hence A(µ, e) ∈ B(E, ℓ∞), and by Corollary 2.8 we have A ∈ B(E(e−1), ℓ∞(µ)) =
B(E, ℓ∞(µ)) and ℓ∞(µ) is a Banach space by Theorem 2.2.

Corollary 3.4. If A ∈ (E, ω) where E is one of the sequence spaces c0, c or ℓ∞.
Then there exists a Banach sequence space F such that A ∈ B(E, F ).

Proof. c0, c and ℓ∞ are UBK spaces. If A is in (c0, ω), in (c, ω) or in (ℓ∞, ω), then
rows of A are in ℓ1 and so the theorem can be applied.

Let us list the following conditions:

lim
n→∞

µnank exists for each k (3.1)

lim
n→∞

µnank = 0 for each k (3.2)
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lim
n→∞

µn

∞
∑

k=1

ank

λk

exists (3.3)

sup
n

|µn|
∞
∑

k=1

∣

∣

∣

∣

ank

λk

∣

∣

∣

∣

< ∞ (3.4)

lim
n→∞

µn

∞
∑

k=1

ank

λk

= 0 (3.5)

∞
∑

k=1

∣

∣

∣

∣

µnank

λk

∣

∣

∣

∣

converges uniformly in n (3.6)

lim
n→∞

|µn|
∞
∑

k=1

∣

∣

∣

∣

ank

λk

∣

∣

∣

∣

= 0 (3.7)

sup
n,k

∣

∣

∣

∣

µnank

λk

∣

∣

∣

∣

< ∞ (3.8)

sup
k

∞
∑

n=1

∣

∣

∣

∣

µnank

λk

∣

∣

∣

∣

p

< ∞ (3.9)

sup
N∈f(N)

∞
∑

k=1

∣

∣

∣

∣

∣

1

λk

∑

n∈N

µnank

∣

∣

∣

∣

∣

< ∞ (3.10)

where f(N) in (3.10) denotes the collection of all finite subsets of N.
Theorem 2.7 has many applications. As an example we give the following the-

orem, which characterizes the matrix operators between multipliers of the classical
sequence spaces. We give this theorem without proof, since the results are direct
applications of Theorem 2.7 to the well known characterizations of the matrix
mappings between the classical sequence spaces (see e.g. [4–6]).

Theorem 3.5. Let λ and µ be two sequences of nonzero terms, and A = (ank).
Then

A ∈ (ℓ∞(λ), ℓ∞(µ)) if and only if (3.4) holds, (3.11)

A ∈ (c(λ), ℓ∞(µ)) if and only if (3.4) holds, (3.12)

A ∈ (c0(λ), ℓ∞(µ)) if and only if (3.4) holds, (3.13)

A ∈ (ℓ∞(λ), c(µ)) if and only if (3.1) and (3.6) hold, (3.14)

A ∈ (c(λ), c(µ)) if and only if (3.1), (3.3) and (3.4) hold, (3.15)

A ∈ (c0(λ), c(µ)) if and only if (3.1) and (3.4) hold, (3.16)

A ∈ (ℓ∞(λ), c0(µ)) if and only if (3.7) holds, (3.17)

A ∈ (c(λ), c0(µ)) if and only if (3.2), (3.4) and (3.5) hold, (3.18)

A ∈ (c0(λ), c0(µ)) if and only if (3.2) and (3.4) hold, (3.19)
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A ∈ (ℓ1(λ), ℓ∞(µ)) if and only if (3.8) holds, (3.20)

A ∈ (ℓ1(λ), ℓp(µ)) for (1 ≤ p < ∞) if and only if (3.9) holds, (3.21)

A ∈ (ℓ∞(λ), ℓ1(µ)) if and only if (3.10) holds. (3.22)

Moreover, all the matrix mappings in (3.11)-(3.22) are continuous.

Theorem 3.6. Let A = (ank) ∈ (c, ω) be a matrix satisfying the conditions:

(i) limn→∞

∑∞
k=1 |ank| = ∞,

(ii) ak := limn→∞
ankP

∞

k=1
|ank|

exists for each k ∈ N and

(iii) a0 := limn→∞

P
∞

k=1
ankP

∞

k=1
|ank|

exists

with (a0, a1, . . .) 6= θ. Then there exists a convergent sequence z = (zn) such that
limn |(Az)n| = ∞.

Proof. Since A ∈ (c, ω), the rows of A are in ℓ1. Define µ = (µn) by

µn =

{
∑∞

k=1 |ank| if
∑∞

k=1 |ank| 6= 0
1 if

∑∞
k=1 |ank| = 0

.

So the sequence (µn) has nonzero terms and µn → ∞ by condition (i). Then, using
conditions (ii) and (iii) we get A ∈ (c, c(µ−1)) by (3.15), and A /∈ (c, c0(µ

−1)) by
(3.18). So, there exists z = (zn) ∈ c such that y = (yn) = Az ∈ c(µ−1)\c0(µ

−1).
Hence the sequence (yn/µn) ∈ c\c0, and so there exists α ∈ C \ {0} such that
limn

yn

µn

= α. Then, since limn µn = ∞, we have limn |yn| = ∞.

Remark 3.7. The characterization of a matrix A ∈ (c, ω) that guarantees at least
one convergent sequence is sent to a sequence that goes to infinity, is an important
open problem. Theorem 3.6 gives some sufficient conditions for such matrices.

Finally we give a theorem which is a c0 version of Theorem 3.6.

Theorem 3.8. Let A = (ank) ∈ (c0, ω) be a matrix satisfying the conditions:

(i) limn→∞

∑∞
k=1 |ank| = ∞and

(ii) ak := limn→∞
ankP

∞

k=1
|ank|

exists for each k ∈ N

with (a1, a2, . . .) 6= θ. Then there exists a sequence z = (zn) ∈ c0 such that
limn |(Az)n| = ∞.

Proof. Since A ∈ (c0, ω), the rows of A are in ℓ1. Let µ = (µn) be defined as
in the proof of Theorem 3.6. Using condition (ii) we get A ∈ (c0, c(µ

−1)) by
(3.16), and A /∈ (c0, c0(µ

−1)) by (3.19). So, there exists z = (zn) ∈ c0 such that
y = (yn) = Az ∈ c(µ−1)\c0(µ

−1). Hence the sequence (yn/µn) ∈ c\c0, and so
there exists α ∈ C\ {0} such that limn

yn

µn
= α. Then, since limn µn = ∞, we have

limn |yn| = ∞.
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