Meromorphic Functions That Share One Finite Value DM with Their First Derivative

Amer H. H. Al-Khaladi
Department of Mathematics, College of Science
Diyala University, Baquba, Iraq
e-mail : ameralkhaladi@yahoo.com

Abstract

This paper has studied the uniqueness of meromorphic functions that share one finite value DM (different multiplicities) with first derivatives and obtains some results which improve a result given by Zhang [1].

Keywords : Nevanlinna theory; uniqueness theorem; share $D M$; meromorphic function.
2010 Mathematics Subject Classification : 30D35.

1 Introduction

We say that two nonconstant meromorphic functions f and g share the finite value $a I M$ (ignoring multiplicities), if $f-a$ and $g-a$ have the same zeros. If $f-a$ and $g-a$ have the same zeros with the same multiplicities, we say that f and g share the value $a C M$ (counting multiplicities). If $f-a$ and $g-a$ have the same zeros with the different multiplicities, we say that f and g share the value a $D M$ (different multiplicities). In this paper the term "meromorphic" will always mean meromorphic in the complex plane. We use the standard notations and results of the Nevanlinna theory (see [2], for example). In particular, $S(r, f)$ denotes any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$, except possibly for a set E of r of finite linear measure. Let k be a positive integer, we denote by $N_{k)}\left(r, \frac{1}{f-a}\right)$ the counting function of zeros of $f-a$ with multiplicity $\leq k$ and by $N_{(k+1}\left(r, \frac{1}{f-a}\right)$ the
counting function of zeros of $f-a$ with multiplicity $>k$. Definitions of the terms $N_{k)}(r, f)$ and $N_{(k+1}(r, f)$ can be similarly formulated. Finally $N_{2}\left(r, \frac{1}{f}\right)$ denotes the counting function of zeros of f where a zero of multiplicity k is counted with multiplicity $\min \{k, 2\}$.

Rubel and Yang [3] proved the following result:
Theorem 1.1. If a nonconstant entire function f and its derivative f^{\prime} share two finite values $C M$, then $f \equiv f^{\prime}$.

Mues and Steinmetz [4] have shown that " $C M$ " can be replaced by " $I M$ " in Theorem 1.1 and Gundersen [5] have shown that "entire" can be replaced by "meromorphic" in Theorem 1.1.

On the other hand, the meromorphic function [4]

$$
\begin{equation*}
f(z)=\left[\frac{1}{2}-\frac{\sqrt{5}}{2} i \tan \left(\frac{\sqrt{5}}{4} i z\right)\right]^{2} \tag{1.1}
\end{equation*}
$$

shares 0 by $D M$ and 1 by $I M$ (neither $C M$ nor $D M$) with f^{\prime}, while the meromorphic function [6]

$$
\begin{equation*}
f(z)=\frac{2 a}{1-c e^{-2 z}} \tag{1.2}
\end{equation*}
$$

shares $0 C M$ and $a D M$ with f^{\prime}, where c and a are nonzero constants. It immediately yields from (1.1) and (1.2) that $f \not \equiv f^{\prime}$.

Zhang [1] proved the following theorem:
Theorem 1.2. Let f be a nonconstant meromorphic function, a be a nonzero finite complex constant. If f and f^{\prime} share $0 C M$, and share a $I M$, then $f \equiv f^{\prime}$ or f is given as (1.2).

From example (1.2) we also see that $N\left(r, \frac{1}{f}\right)=N\left(r, \frac{1}{f^{\prime}}\right)=0$.

2 Main Results

The purpose of this paper is to prove:
Theorem 2.1. Let f be a nonconstant meromorphic function. Suppose that f and f^{\prime} share the value a $(\neq 0, \infty) D M$. Then either

$$
\begin{equation*}
f(z)=\frac{a\left[1+b+(b-1) c e^{2 b \ell z}\right]}{1-c e^{2 b \ell z}}, \tag{2.1}
\end{equation*}
$$

where b, c, ℓ are nonzero constants and $b^{2} \ell=-1$, or

$$
\begin{equation*}
T\left(r, f^{\prime}\right) \leq 12 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
T(r, f) \leq \frac{11}{2} N_{2}\left(r, \frac{1}{f}\right)+S(r, f) . \tag{2.3}
\end{equation*}
$$

Proof. Suppose that $a=1$ (the general case follows by considering $\frac{1}{a} f$ instead of $f)$. We consider the following function

$$
\begin{equation*}
\psi=\frac{2 f^{\prime}}{f-1}-\frac{3 f^{\prime \prime}}{2\left(f^{\prime}-1\right)}+\frac{f^{\prime \prime \prime}}{f^{\prime \prime}}-\frac{f^{\prime \prime}}{f^{\prime}} \tag{2.4}
\end{equation*}
$$

From the fundamental estimate of logarithmic derivative it follows that

$$
\begin{equation*}
m(r, \psi)=S(r, f) \tag{2.5}
\end{equation*}
$$

Since f and f^{\prime} share $1 D M$, all zeros of $f-1$ are simple and all zeros of $f^{\prime}-1$ with multiplicities not less than two. And so

$$
\begin{equation*}
N\left(r, \frac{1}{f-1}\right)=N_{1)}\left(r, \frac{1}{f-1}\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
N\left(r, \frac{1}{f-1}\right)=\bar{N}\left(r, \frac{1}{f^{\prime}-1}\right)=\bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-1}\right) . \tag{2.7}
\end{equation*}
$$

Suppose that z_{2} is a zero of $f^{\prime}-1$ with multiplicity 2 . Since f and f^{\prime} share $1 D M$, we see from (2.6) and (2.4) that

$$
\begin{equation*}
\psi\left(z_{2}\right)=0 . \tag{2.8}
\end{equation*}
$$

If z_{∞} is a simple pole of f, then an elementary calculation gives that

$$
\begin{equation*}
\psi\left(z_{\infty}\right)=O(1) . \tag{2.9}
\end{equation*}
$$

It follows from (2.6) - (2.9) that the poles of ψ can only occur at zeros of f^{\prime}, or zeros of $f^{\prime \prime}$ which are not zeros of $f^{\prime}\left(f^{\prime}-1\right)$, zeros of $f^{\prime}-1$ with multiplicities not less than three and multiple poles of f. Thus

$$
\begin{equation*}
N(r, \psi) \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}_{(3}\left(r, \frac{1}{f^{\prime}-1}\right)+\bar{N}_{(2}(r, f)+\bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right), \tag{2.10}
\end{equation*}
$$

where $\bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right)$ denotes the counting function corresponding to the zeros of $f^{\prime \prime}$ that are not zeros of $f^{\prime}\left(f^{\prime}-1\right)$, each zero in this counting function is counted only once.

We distinguish the following two cases
Case 1. $\psi \equiv 0$. Then, by integrating two sides of (2.4) we obtain

$$
\begin{equation*}
\frac{(f-1)^{4}}{\left(f^{\prime}-1\right)^{3}}=c\left(\frac{f^{\prime}}{f^{\prime \prime}}\right)^{2} \tag{2.11}
\end{equation*}
$$

where c is a nonzero constant. If z_{q} is a zero of $f^{\prime}-1$ with multiplicity $q(\geq 3)$, then from (2.6) and (2.11) we see that

$$
O\left(\left(z-z_{q}\right)^{2-q}\right)=c
$$

This implies that $q=2$, a contradiction. Therefore

$$
\begin{equation*}
N_{(3}\left(r, \frac{1}{f^{\prime}-1}\right)=0 \tag{2.12}
\end{equation*}
$$

Also if z_{p} is a pole of f with multiplicity $p(\geq 2)$, then from (2.11) we find that

$$
O\left(\left(z-z_{p}\right)^{1-p}\right)=c
$$

Hence $p=1$, a contradiction. Therefore

$$
\begin{equation*}
N_{(2}(r, f)=0 \tag{2.13}
\end{equation*}
$$

It follows from f and f^{\prime} share $1 D M,(2.6),(2.7),(2.12)$ and (2.13) that

$$
\begin{equation*}
\frac{f^{\prime}-1}{(f-1)^{2}}=e^{\alpha} \tag{2.14}
\end{equation*}
$$

where α is some entire function. Combining (2.11) and (2.14) we get

$$
\begin{equation*}
\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)\left(\frac{f^{\prime \prime}}{f^{\prime}-1}-\frac{f^{\prime \prime}}{f^{\prime}}\right)=c e^{2 \alpha} \tag{2.15}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
T\left(r, e^{\alpha}\right)=S(r, f) \tag{2.16}
\end{equation*}
$$

Also we know from (2.15) that

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{f^{\prime}}\right)=S(r, f) \tag{2.17}
\end{equation*}
$$

Suppose that z_{1} is a simple zero of $f-1$. Then by (2.7) and (2.12) we have

$$
\begin{equation*}
f(z)-1=\left(z-z_{1}\right)+a_{3}\left(z-z_{1}\right)^{3}+\cdots, a_{3} \neq 0 \tag{2.18}
\end{equation*}
$$

Substituting (2.18) into (2.11) and (2.14) we find that

$$
3 a_{3} c=4 \quad \text { and } \quad 3 a_{3}=e^{\alpha\left(z_{1}\right)}
$$

which implies

$$
\begin{equation*}
e^{\alpha\left(z_{1}\right)}=\frac{4}{c} \tag{2.19}
\end{equation*}
$$

If $e^{\alpha} \not \equiv \frac{4}{c}$, then we have from (2.6) and (2.16) that

$$
\begin{equation*}
N\left(r, \frac{1}{f-1}\right) \leq N\left(r, \frac{1}{e^{\alpha}-\frac{4}{c}}\right) \leq T\left(r, e^{\alpha}\right)+O(1)=S(r, f) \tag{2.20}
\end{equation*}
$$

By (2.7), (2.17), (2.20) and the second fundamental theorem we have

$$
\begin{aligned}
T\left(r, f^{\prime}\right) & \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}-1}\right)+\bar{N}(r, f)+S(r, f) \\
& \leq \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

Since

$$
\begin{aligned}
T\left(r, f^{\prime}\right) & =m\left(r, f^{\prime}\right)+N\left(r, f^{\prime}\right) \\
& =m\left(r, f^{\prime}\right)+N(r, f)+\bar{N}(r, f)
\end{aligned}
$$

it follows from the last inequality that

$$
m\left(r, f^{\prime}\right)+N(r, f)=S(r, f)
$$

and so $T\left(r, f^{\prime}\right)=S(r, f)$. From this, (2.17) and (2.14) we get $T(r, f)=S(r, f)$ which is impossible. Therefore $e^{\alpha} \equiv \frac{4}{c}$. Together with (2.14) we arrive at the conclusion (2.1).

Case 2. $\psi \not \equiv 0$. Then from (2.8), (2.5) and (2.10) we conclude that

$$
\begin{align*}
\bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-1}\right)-\bar{N}_{(3}\left(r, \frac{1}{f^{\prime}-1}\right) \leq & N\left(r, \frac{1}{\psi}\right) \leq T(r, \psi)+O(1) \\
\leq & N(r, \psi)+m(r, \psi)+O(1) \\
\leq & \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}_{(3}\left(r, \frac{1}{f^{\prime}-1}\right)+\bar{N}_{(2}(r, f) \\
& +\bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) \tag{2.21}
\end{align*}
$$

Since $N\left(r, f^{\prime}\right)=N(r, f)+\bar{N}(r, f)$, from the second fundamental theorem for f^{\prime}

$$
\begin{equation*}
T\left(r, f^{\prime}\right) \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}-1}\right)+\bar{N}(r, f)-\bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) \tag{2.22}
\end{equation*}
$$

we have

$$
\begin{equation*}
N(r, f) \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}-1}\right)-\bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) \tag{2.23}
\end{equation*}
$$

Also, we know from (2.22) that

$$
N\left(r, \frac{1}{f^{\prime}-1}\right) \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}-1}\right)+\bar{N}(r, f)-\bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f)
$$

Combining this with (2.23) we obtain

$$
\begin{align*}
& N(r, f)-\bar{N}(r, f)+N\left(r, \frac{1}{f^{\prime}-1}\right)-2 \bar{N}\left(r, \frac{1}{f^{\prime}-1}\right)+2 \bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right) \\
& \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{2.24}
\end{align*}
$$

Obviously,

$$
\begin{equation*}
N(r, f)-\bar{N}(r, f) \geq \bar{N}_{(2}(r, f) \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
N\left(r, \frac{1}{f^{\prime}-1}\right)-2 \bar{N}\left(r, \frac{1}{f^{\prime}-1}\right) \geq \bar{N}_{(3}\left(r, \frac{1}{f^{\prime}-1}\right), \tag{2.26}
\end{equation*}
$$

by (2.7). Thus from (2.24) - (2.26) we obtain

$$
\bar{N}_{(2}(r, f)+\bar{N}_{(3}\left(r, \frac{1}{f^{\prime}-1}\right)+2 \bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right) \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) .
$$

From this and (2.21) we deduce that

$$
\bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-1}\right) \leq 5 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) .
$$

Together with (2.7) we have

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{f^{\prime}-1}\right) \leq 5 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) . \tag{2.27}
\end{equation*}
$$

From (2.27) and (2.23), it follows that

$$
\begin{equation*}
\bar{N}(r, f) \leq 6 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) . \tag{2.28}
\end{equation*}
$$

Finally, Combining (2.22), (2.27) and (2.28) we find that

$$
T\left(r, f^{\prime}\right) \leq 12 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) .
$$

This is the conclusion (2.2).
We set

$$
\begin{equation*}
G=\frac{1}{f}\left(\frac{f^{\prime \prime}}{f^{\prime}-1}-2 \frac{f^{\prime}}{f-1}\right) . \tag{2.29}
\end{equation*}
$$

Then

$$
\begin{align*}
m(r, G) & \leq m\left(r, \frac{f^{\prime}}{f}\left(\frac{f^{\prime \prime}}{f^{\prime}\left(f^{\prime}-1\right)}\right)\right)+m\left(r, \frac{f^{\prime}}{f(f-1)}\right)+O(1) \\
& \leq 2 m\left(r, \frac{f^{\prime}}{f}\right)+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-1}\right)+m\left(r, \frac{f^{\prime}}{f-1}\right)+O(1) \\
& =S(r, f) . \tag{2.30}
\end{align*}
$$

Suppose z_{2} be a zero of $f^{\prime}-1$ with multiplicity 2 . Since f and f^{\prime} share $1 D M$, we see from (2.29), (2.6) and (2.7) that

$$
\begin{equation*}
G\left(z_{2}\right)=O(1) . \tag{2.31}
\end{equation*}
$$

If z_{∞} is a pole of f with multiplicity $p(\geq 1)$, then an elementary calculation gives that

$$
\begin{equation*}
G(z)=O\left(\left(z-z_{\infty}\right)\right), \text { if } p=1 \tag{2.32}
\end{equation*}
$$

$$
\begin{equation*}
G(z)=O\left(\left(z-z_{\infty}\right)^{p-1}\right), \quad \text { if } \quad p \geq 2 \tag{2.33}
\end{equation*}
$$

It follows from $(2.6),(2.7),(2.31),(2.32)$ and (2.33) that the pole of G can only occur at zeros of $f^{\prime}-1$ with multiplicities not less than three and zeros of f. Thus

$$
N(r, G) \leq N_{2}\left(r, \frac{1}{f}\right)+\bar{N}_{(3}\left(\frac{1}{f^{\prime}-1}\right)
$$

Together with (2.30) we have

$$
\begin{equation*}
T(r, G) \leq N_{2}\left(r, \frac{1}{f}\right)+\bar{N}_{(3}\left(\frac{1}{f^{\prime}-1}\right)+S(r, f) \tag{2.34}
\end{equation*}
$$

We consider two cases:
Case I. $G \equiv 0$. Then (2.29) becomes

$$
\frac{f^{\prime \prime}}{f^{\prime}-1}-2 \frac{f^{\prime}}{f-1}=0
$$

By integration, we get $f^{\prime}-1=\ell(f-1)^{2}$. We rewrite this in the form

$$
\begin{equation*}
\frac{f^{\prime}}{f-1-b}-\frac{f^{\prime}}{f-1+b}=2 b \ell \tag{2.35}
\end{equation*}
$$

where $b^{2} \ell=-1$. Integrating this once we arrive at the conclusion (2.1).
Case II. $G \not \equiv 0$. From $(2.32),(2.33)$ and (2.34) we see that

$$
\begin{align*}
N(r, f)-\bar{N}_{(2}(r, f) & \leq N\left(r, \frac{1}{G}\right) \leq-m\left(r, \frac{1}{G}\right)+T(r, G)+O(1) \\
& \leq-m\left(r, \frac{1}{G}\right)+N_{2}\left(r, \frac{1}{f}\right)+\bar{N}_{(3}\left(r, \frac{1}{f^{\prime}-1}\right)+S(r, f) \tag{2.36}
\end{align*}
$$

By rewriting (2.29) we have

$$
f=\frac{1}{G}\left(\frac{f^{\prime \prime}}{f^{\prime}-1}-2 \frac{f^{\prime}}{f-1}\right)
$$

Therefore

$$
\begin{aligned}
m(r, f) & \leq m\left(r, \frac{1}{G}\right)+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-1}\right)+m\left(r, \frac{f^{\prime}}{f-1}\right)+O(1) \\
& \leq m\left(r, \frac{1}{G}\right)+S(r, f)
\end{aligned}
$$

Combining this with (2.36) we have

$$
\begin{equation*}
T(r, f) \leq N_{2}\left(r, \frac{1}{f}\right)+\bar{N}_{(3}\left(\frac{1}{f^{\prime}-1}\right)+\bar{N}_{(2}(r, f)+S(r, f) \tag{2.37}
\end{equation*}
$$

From (2.37) and (2.36), we obtain

$$
\begin{align*}
N\left(r, \frac{1}{f^{\prime}-1}\right) & \leq T\left(r, f^{\prime}\right)+O(1)=m\left(r, f^{\prime}\right)+N\left(r, f^{\prime}\right)+O(1) \\
& \leq m\left(r, \frac{f^{\prime}}{f}\right)+m(r, f)+N(r, f)+\bar{N}(r, f)+O(1) \\
& \leq T(r, f)+\bar{N}(r, f)+S(r, f) \\
& \leq 2 N_{2}\left(r, \frac{1}{f}\right)+2 \bar{N}_{(3}\left(\frac{1}{f^{\prime}-1}\right)+\bar{N}_{(2}(r, f)+S(r, f) \tag{2.38}
\end{align*}
$$

Set

$$
\begin{equation*}
W=\frac{1}{f}\left(\frac{f^{\prime \prime}}{f^{\prime}-1}-3 \frac{f^{\prime}}{f-1}\right) \tag{2.39}
\end{equation*}
$$

Proceeding as above, we have

$$
\begin{gather*}
m(r, W)=S(r, f) \tag{2.40}\\
W\left(z_{3}\right)=O(1) \tag{2.41}\\
W(z)=O\left(\left(z-z_{\infty}\right)^{p-1}\right), \tag{2.42}
\end{gather*}
$$

where z_{3} is a zero of $f^{\prime}-1$ with multiplicity 3 and z_{∞} is a pole of f with multiplicity $p(\geq 1)$. Thus

$$
N(r, W) \leq N_{2}\left(r, \frac{1}{f}\right)+\bar{N}_{2)}\left(\frac{1}{f^{\prime}-1}\right)+\bar{N}_{(4}\left(\frac{1}{f^{\prime}-1}\right)
$$

Together with (2.40) we find

$$
\begin{equation*}
T(r, W) \leq N_{2}\left(r, \frac{1}{f}\right)+\bar{N}_{2)}\left(\frac{1}{f^{\prime}-1}\right)+\bar{N}_{(4}\left(\frac{1}{f^{\prime}-1}\right)+S(r, f) \tag{2.43}
\end{equation*}
$$

If $W \equiv 0$, then

$$
\frac{f^{\prime \prime}}{f^{\prime}-1}-3 \frac{f^{\prime}}{f-1}=0
$$

Therefore, we get $f^{\prime}-1=c(f-1)^{3}$. This imply that

$$
\begin{equation*}
N(r, f)=0 \tag{2.44}
\end{equation*}
$$

and $m\left(r, f^{\prime}\right)=3 m(r, f)+O(1)$. Hence $m(r, f)=S(r, f)$. This together with (2.44) gives the contradiction $T(r, f)=S(r, f)$. Therefore $W \not \equiv 0$. From this, (2.42) and (2.43) we see that

$$
\begin{align*}
\bar{N}_{(2}(r, f) & \leq N\left(r, \frac{1}{W}\right) \leq T(r, W)+O(1) \\
& \leq N_{2}\left(r, \frac{1}{f}\right)+\bar{N}_{2)}\left(r, \frac{1}{f^{\prime}-1}\right)+\bar{N}_{(4}\left(r, \frac{1}{f^{\prime}-1}\right)+S(r, f) \tag{2.45}
\end{align*}
$$

It follows from (2.7), (2.38) and (2.45) that

$$
\begin{equation*}
N\left(r, \frac{1}{f-1}\right)=\bar{N}\left(r, \frac{1}{f^{\prime}-1}\right) \leq 3 N_{2}\left(r, \frac{1}{f}\right)+S(r, f) \tag{2.46}
\end{equation*}
$$

Also, from (2.37), (2.45) and (2.7) we find that

$$
\begin{equation*}
m\left(r, \frac{1}{f-1}\right) \leq 2 N_{2}\left(r, \frac{1}{f}\right)+\bar{N}_{(4}\left(r, \frac{1}{f^{\prime}-1}\right)+S(r, f) \tag{2.47}
\end{equation*}
$$

Set

$$
\begin{equation*}
L=\frac{f^{\prime \prime}}{f(f-1)} \tag{2.48}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
m(r, L) \leq m\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\left(\frac{f^{\prime}}{f(f-1)}\right)\right)=S(r, f) \tag{2.49}
\end{equation*}
$$

If z_{∞} is a pole of f with multiplicity $p(\geq 1)$, then from (2.48) we see that

$$
\begin{equation*}
L(z)=O\left(\left(z-z_{\infty}\right)^{p-2}\right) \tag{2.50}
\end{equation*}
$$

Also, if z_{q} is a zero of $f^{\prime}-1$ with multiplicity $q(\geq 2)$, then from (2.48) we get

$$
\begin{equation*}
L(z)=O\left(\left(z-z_{q}\right)^{q-2}\right) \tag{2.51}
\end{equation*}
$$

Therefore from (2.48), (2.50) and (2.51) we conclude that

$$
N(r, L) \leq N_{2}\left(r, \frac{1}{f}\right)+N_{1)}(r, f)
$$

Together with (2.49) we have

$$
\begin{equation*}
T(r, L) \leq N_{2}\left(r, \frac{1}{f}\right)+N_{1)}(r, f)+S(r, f) \tag{2.52}
\end{equation*}
$$

If $L \equiv 0$, then f is a linear function. So f and f^{\prime} can not share $1 D M$ which contradicts the condition of Theorem 2.1. Next we assume that $L \not \equiv 0$. From this, (2.51) and (2.52) we see that

$$
\begin{aligned}
N_{(3}\left(r, \frac{1}{f^{\prime}-1}\right)-2 \bar{N}_{(3}\left(r, \frac{1}{f^{\prime}-1}\right) & \leq N\left(r, \frac{1}{L}\right) \leq T(r, L)+O(1) \\
& \leq N_{2}\left(r, \frac{1}{f}\right)+N_{1)}(r, f)+S(r, f)
\end{aligned}
$$

That is

$$
\begin{gather*}
N_{(3}\left(r, \frac{1}{f^{\prime}-1}\right)+\bar{N}_{(2}(r, f) \leq N_{2}\left(r, \frac{1}{f}\right)+2 \bar{N}_{(3}\left(r, \frac{1}{f^{\prime}-1}\right) \\
+\bar{N}(r, f)+S(r, f) \tag{2.53}
\end{gather*}
$$

Hence from this and (2.36) we obtain

$$
\bar{N}_{(4}\left(r, \frac{1}{f^{\prime}-1}\right)+\bar{N}_{(2}(r, f) \leq 2 N_{2}\left(r, \frac{1}{f}\right)+S(r, f),
$$

and eliminating $\bar{N}_{(2}(r, f)$ between this and (2.37) gives

$$
\begin{equation*}
m\left(r, \frac{1}{f-1}\right)+\bar{N}_{(4}\left(r, \frac{1}{f^{\prime}-1}\right) \leq 3 N_{2}\left(r, \frac{1}{f}\right)+S(r, f) \tag{2.54}
\end{equation*}
$$

and eliminating $\bar{N}_{(4}\left(r, \frac{1}{f^{\prime}-1}\right)$ between (2.54) and (2.47) leads to

$$
m\left(r, \frac{1}{f-1}\right) \leq \frac{5}{2} N_{2}\left(r, \frac{1}{f}\right)+S(r, f) .
$$

Combining this with (2.46) we will arrive at the conclusion (2.3). This completes the proof of Theorem 2.1.

Remark 2.2. From (2.1) we find that
(1) If $\ell=-1$, then $b= \pm 1$. Hence (2.1) becomes $f(z)=\frac{2 a}{1-c e^{-2 z}}$. This is (1.2).
(2) If $c=1$, then $f(z)=a[1-b \operatorname{coth}(b \ell z)]$.
(3) If $c=-1$, then $f(z)=a[1-b \tanh (b \ell z)]$.
(4) If $b \neq \pm 1$, then $T(r, f)=N\left(r, \frac{1}{f}\right)+S(r, f)$.
(5) $N\left(r, \frac{1}{f^{\prime}}\right)=0$.

From Theorem 2.1 and Remarks 2.2 (3), we deduce readily the following corollaries:

Corollary 2.3. Let f be a nonconstant meromorphic function. If f and f^{\prime} share the value a $(\neq 0, \infty) D M$ and if $\bar{N}\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$, then f is given as (2.1).

Corollary 2.4. Let f be a nonconstant meromorphic function. If f and f^{\prime} share the value a $(\neq 0, \infty) D M$ and if $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$, then f is given as (1.2).

It is obvious that Corollary 2.3 is extension and improvement for Theorem 1.2 and Corollary 2.4 is improvement for Theorem 1.2.

Acknowledgement : I am grateful to the referees for valuable suggestion and comments.

References

[1] Q.C. Zhang, Uniqueness of meromorphic functions with their derivative, Acta Math. Sci. 45 (2002) 871-876.
[2] W.K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[3] L.A. Rubel, C.C. Yang, Values shared by an entire function and its derivative, Lecture Notes in Mathematics, Springer-Verlag, New York 599 (1977) 101103.
[4] E. Mues, N. Steinmetz, Meromorphe funktionen die mit ihrer ableitung werte teilen, Manuscripta Math. 29 (1979) 195-206.
[5] G.G. Gundersen, Meromorphic functions that share two finite values with their derivative, Pacific J. Math. 105 (1983) 299-309.
[6] G.G. Gundersen, Meromorphic functions that share finite values with their derivative, J. Math. Anal. Appl. 75 (1980) 441-446.
(Received 26 February 2011)
(Accepted 20 March 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

