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1 Introduction

We say that two nonconstant meromorphic functions f and g share the finite
value a I M (ignoring multiplicities), if f —a and g —a have the same zeros. If f—a
and g — a have the same zeros with the same multiplicities, we say that f and g
share the value a CM (counting multiplicities). If f — a and g — a have the same
zeros with the different multiplicities, we say that f and g share the value a DM
(different multiplicities). In this paper the term “meromorphic” will always mean
meromorphic in the complex plane. We use the standard notations and results of
the Nevanlinna theory (see [2], for example). In particular, S(r, f) denotes any
quantity satisfying S(r, f) = o(T(r, f)) as r — 00, except possibly for a set F of r
of finite linear measure. Let k be a positive integer, we denote by Ny (r, j%a) the

counting function of zeros of f —a with multiplicity < k and by N1 (r, ﬁ) the
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counting function of zeros of f —a with multiplicity > k . Definitions of the terms
Niy(r, f) and N4 (r, f) can be similarly formulated. Finally Na(r, %) denotes
the counting function of zeros of f where a zero of multiplicity % is counted with
multiplicity min{k, 2}.

Rubel and Yang [3] proved the following result:

Theorem 1.1. If a nonconstant entire function f and its derivative f' share two
finite values CM, then f = f'.

Mues and Steinmetz [4] have shown that “CM” can be replaced by “IM”
in Theorem 1.1 and Gundersen [5] have shown that “entire” can be replaced by
“meromorphic” in Theorem 1.1.

On the other hand, the meromorphic function [4]

flz)= [% - ?imn (?zz)} (1.1)

shares 0 by DM and 1 by IM (neither CM nor DM) with f’, while the mero-
morphic function [6]
2a
1z) = 1—ce2?
shares 0 CM and a DM with f’, where ¢ and a are nonzero constants. It imme-
diately yields from (1.1) and (1.2) that f # f'.
Zhang [1] proved the following theorem:

(1.2)

Theorem 1.2. Let f be a nonconstant meromorphic function, a be a nonzero
finite complex constant. If f and f' share 0 CM, and share a IM, then f = [’ or
f is given as (1.2).

From example (1.2) we also see that N (r, %) = N(r,

2 Main Results

The purpose of this paper is to prove:

Theorem 2.1. Let f be a nonconstant meromorphic function. Suppose that f
and f' share the value a (£ 0,00) DM. Then either

~all+b+ (b—1)ce?]

f(2) T oot , (2.1)
where b, ¢, £ are nonzero constants and b = —1, or
- 1
T(r, f') <12N (r, —/> + S(r, f) (2.2)

and

T(r, f) < 12—1N2 (T, %) + S(r, f)- (2.3)
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Proof. Suppose that a = 1 (the general case follows by considering % f instead of
f). We counsider the following function

2f/ 3 3f// ﬂ B f_//
R VA 24

From the fundamental estimate of logarithmic derivative it follows that

m(r,) = S(r, f). (2.5)

Since f and f’ share 1 DM, all zeros of f — 1 are simple and all zeros of f/ — 1
with multiplicities not less than two. And so

N <r, ﬁ) — N, (r, ﬁ) (2.6)
N (r, ﬁ) - N <r, ﬁ) ~ N <r, ﬁ) . 2.7)

Suppose that 2o is a zero of f’ —1 with multiplicity 2. Since f and f’ share 1 DM,
we see from (2.6) and (2.4) that

P =

and

¥(z2) = 0. (2.8)
If 2z is a simple pole of f, then an elementary calculation gives that
¥(200) = O(1). (2.9)

It follows from (2.6) - (2.9) that the poles of 9 can only occur at zeros of f’, or
zeros of f” which are not zeros of f/(f’ — 1), zeros of f/ — 1 with multiplicities not
less than three and multiple poles of f. Thus
- 1 - 1 - - 1
N(r,¢) <N (r, 7) + N3 (r, ﬁ) + Na(r, f) + No <T, 7> , (2.10)
where Ny(r, #) denotes the counting function corresponding to the zeros of f”
that are not zeros of f/(f’ — 1), each zero in this counting function is counted only
once.

We distinguish the following two cases

Case 1. ¢y = 0. Then, by integrating two sides of (2.4) we obtain

(=0 _ (Y
g =) 210

where c is a nonzero constant. If z, is a zero of f’ — 1 with multiplicity ¢ (> 3),
then from (2.6) and (2.11) we see that

O((z — zq)2_q) =c.
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This implies that ¢ = 2, a contradiction. Therefore

1
Also if 2z, is a pole of f with multiplicity p (> 2), then from (2.11) we find that

O((z — %) ") =c.

Hence p = 1, a contradiction. Therefore

Ne(r, f) = 0. (2.13)
It follows from f and f’ share 1 DM, (2.6), (2.7), (2.12) and (2.13) that
fr-1
=e“, 2.14
(717 21
where « is some entire function. Combining (2.11) and (2.14) we get
f// f// f// o
<? o1 = ce?®, (2.15)
Consequently,
T(r,e*) = S(r, f). (2.16)
Also we know from (2.15) that
N (r, %) =5(r, f). (2.17)

Suppose that z; is a simple zero of f — 1. Then by (2.7) and (2.12) we have
f(2)=1=(2—2z1)+az(z—2)>+-- ,az #0 (2.18)
Substituting (2.18) into (2.11) and (2.14) we find that
3asc=4 and 3az= eo‘(zl),

which implies

4
a(z1) — =
e - (2.19)
If e* # 2, then we have from (2.6) and (2.16) that
1 1 .
N < ﬁ) <N ( - é) <T(nen)+0() =S(rf).  (220)

c

By (2.7), (2.17), (2.20) and the second fundamental theorem we have

T(r,f')<N (r, %) +N (r, ﬁ) + N(r, f) + S(r, f)
< N(r, f) + S(r, f).
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Since

T(r, f') =m(r, f') + N(r, f)
=m(r, ')+ N(r, f) + N(r, f),

it follows from the last inequality that
m(r, f')+ N(r, f) = S(r, f),

2.17) and (2.14) we get T'(r, f) = S(r, f)
Together with (2.14) we arrive at the

and so T(r, f') = S(r, f). From this,
which is impossible. Therefore e* =
conclusion (2.1).

Case 2. ¢ £ 0. Then from (2.8), (2.5) and (2.10) we conclude that

—~

[N

N (r, ﬁ) — N (r, ﬁ) <N (r, %) <T(r,9) +0(1)
< N(r¢) +m(r, ) + O(1)
<N <r, i/) + N <r, 7 1> + Neo(r, f)
+ Ny (r, %) + S(r, f). (2.21)

Since N(r, f') = N(r, f) + N(r, f), from the second fundamental theorem for f’

) +N <r, ﬁ) + N(r, f) — No (r, %) +S(r, f), (2.22)

(oL
T(r,f)szv<,f,

we ha.\/e
) — T? £r T? £r ] 0 T? £11 T? . .

Also, we know from (2.22) that

N (r, ﬁ) <N (r, i/> +N (r, ﬁ) + N(r, f) — No <r, %) +8(r, f).
Combining this with (2.23) we obtain
N@ﬁ_Nmﬁ+N<n7§J-QNG¢%7>+thﬁa
fr—1 =1 f
< 2N (r, —

Obviously,
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N (r, ﬁ) — 2N (r, ﬁ) > N (r, ﬁ) ) (2.26)

by (2.7). Thus from (2.24) - (2.26) we obtain

and

J\_f(g(r, ) +N(3 (r, ﬁ) + 2N, (r, %) < 2N (r, %) + S(r, f).

From this and (2.21) we deduce that

_ 1 - 1
N(2 (T,ﬁ) §5N (T,7> +S(T,f)
Together with (2.7) we have

_ 1 - 1
From (2.27) and (2.23), it follows that
N(r,f) < 6N (r, %) +5(r, f). (2.28)

Finally, Combining (2.22), (2.27) and (2.28) we find that

T(r, ') < 12N (7‘, %) + S(r, f).

This is the conclusion (2.2).

We set . ,
G—%< / -2 / ) (2.29)

Then

6 =n (v () +n (7m) ow

<2m (r, f7/) +m (r,?—t) +m (r, f/fj 1) +m (r, ff_/ 1) +0(1)

= S(r, f). (2.30)

Suppose z3 be a zero of f’ — 1 with multiplicity 2. Since f and f’ share 1 DM,
we see from (2.29), (2.6) and (2.7) that

G(z) = O(1). (2.31)

If 2z is a pole of f with multiplicity p (> 1), then an elementary calculation gives
that
G(2) =0((z — 20)), if p=1 (2.32)
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G(2) = O0((z — 200)P™Y), if p>2. (2.33)

It follows from (2.6), (2.7), (2.31), (2.32) and (2.33) that the pole of G can only
occur at zeros of f/ —1 with multiplicities not less than three and zeros of f. Thus

N(r,G) < Ny (r, %) + N (ﬁ) .

Together with (2.30) we have

T(r,G) < Ny (r, %) + N (f, 1_ 1) +S(r, f). (2.34)

We consider two cases:

Case I. G =0. Then (2.29) becomes

" !
/ -2 / =0.
fl—1 f-1
By integration, we get f’ — 1 = £(f — 1)2. We rewrite this in the form
f f
— = 2b( 2.35
f—-1-b f—1+b ’ (2.35)
where b?¢ = —1. Integrating this once we arrive at the conclusion (2.1).

Case II. G £ 0. From (2.32), (2.33) and (2.34) we see that

N(r, f) = Ne(r, f) < ( )g ( )+T( G)+0(1)
1
G

< m( )+N2( }>+N(3( f,1_1)+5(7“7f)-

(2.36)
By rewriting (2.29) we have
1 fl/ fl
=5 (7o)
Therefore
1 fl/ fl
m(r, f) Sm( 5) +m< f’—1> +m<r,f_1> +0(1)
1
<m ( 5) +S(r, f).
Combining this with (2.36) we have
T(r,f) < N2 <r, %) + N3 <ﬁ> + Neo(r, f) + S(r, f). (2.37)
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From (2.37) and (2.36), we obtain
N (n 5 ) ST+ 0() = m )+ (o, )+ O()

< m< f/> +m(r, f)+ N(r, f) + N(r, f) + O(1)

"7
ST(r f)+N(r, )+ S(r, f)

N
1 - 1
S 2N2 r,— + 2N(3 ﬁ
Set

W(z) = O((z = 20)" 1),

) + N(g(’l”, f) + S(T, f)

(2.38)

(2.39)

(2.40)

(2.41)
(2.42)

where z3 is a zero of f/—1 with multiplicity 3 and 2z is a pole of f with multiplicity

p (> 1). Thus

1 - 1 - 1
N(T,W) < N2 (T, ?) +N2) (—f/— 1) +N(4 (—f/— 1) .
Together with (2.40) we find

1 _ 1 _ 1
T(T, W) S N2 (T‘, ?> +N2) (ﬁ) + N(4 (ﬁ) + S(T‘, f)
If W =0, then

" !
o 3 o
ff=1 f-1
Therefore, we get f' — 1 = ¢(f — 1)3. This imply that

0.

(2.43)

(2.44)

and m(r, f') = 3m(r, f) + O(1). Hence m(r, f) = S(r, f). This together with
(2.44) gives the contradiction T'(r, f) = S(r, f). Therefore W # 0. From this,

(2.42) and (2.43) we see that
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It follows from (2.7), (2.38) and (2.45) that

N (r > < > <3N, <r, %) + S0 ). (2.46)

Also, from (2.37), (2.45) and ( we find that

2.7)
m <r, > < 2N, < > ( ﬁ) +5(r, f). (2.47)

Set Y
It is clear that
PV s
m(r,L)gm(r, 7 (f(f_1)>)—5(,f) (2.49)
If 2z is a pole of f with multiplicity p (> 1), then from (2.48) we see that
L(2) = O((z — 200)P7?). (2.50)

Also, if z4 is a zero of f' — 1 with multiplicity ¢ (> 2), then from (2.48) we get
L(2) = O((z — 2,)T?%). (2.51)
Therefore from (2.48), (2.50) and (2.51) we conclude that

1
N(D) < Ny (13 ) + N ).
Together with (2.49) we have

T(r,L) < Ny <T, l) + Nyy(r, f) + S(r, f). (2.52)

f

If L = 0, then f is a linear function. So f and f’ can not share 1 DM which
contradicts the condition of Theorem 2.1. Next we assume that L # 0. From this,
(2.51) and (2.52) we see that

N (T, ﬁ) - 2]\7(3 <7"7 ﬁ) <N (7”, %) <T(r,L)+0(1)
< Ve (77 )+ M )+ S0 )
That is

N (r, ﬁ) + Nea(r, f) < Na (r, %) 12N, (T’ ﬁ)
+N(r, f)+8(r, f). (2.53)
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Hence from this and (2.36) we obtain

N(4 <T, ﬁ) + N(Q(T, f) < 2N2 (T, %) + S(T, f),

and eliminating N(»(r, f) between this and (2.37) gives

1 . 1 1
m <r, = 1> + Ny <r, ﬁ) < 3N, <T, ?> + S(r, f), (2.54)

and eliminating N (r, ﬁ) between (2.54) and (2.47) leads to

m(r,fi1> < gNz (T,%) +S(r, f)-

Combining this with (2.46) we will arrive at the conclusion (2.3). This completes
the proof of Theorem 2.1. O

Remark 2.2. From (2.1) we find that

(1) If¢=—1, then b= +1. Hence (2.1) becomes f(z) = 1—2%w. This is (1.2).
(2) If ¢ =1, then f(z) = a[l — b coth(blz)].

(3) If ¢ = —1, then f(z) = a[l — b tanh(blz)].

(4) Ifb# £1, then T(r, f) = N(r, 3) + S(r, f).

(5) N(r, ) =0.

From Theorem 2.1 and Remarks 2.2 (3), we deduce readily the following
corollaries:

Corollary 2.3. Let f be a nonconstant meromorphic function. If f and I share
the value a (# 0,00) DM and if N(r, %) = S(r, f), then f is given as (2.1).

Corollary 2.4. Let f be a nonconstant meromorphic function. If f and 1! share
the value a (# 0,00) DM and if N(r, %) = S(r, f), then f is given as (1.2).

It is obvious that Corollary 2.3 is extension and improvement for Theorem 1.2
and Corollary 2.4 is improvement for Theorem 1.2.
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