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1 Introduction

The concept of a Generalized Almost Distributive Lattice (GADL) was in-
troduced by Rao et al. [1] as a generalization of an Almost Distributive Lattice
(ADL) [2]. The class of GADLSs inherit almost all the properties of a distributive
lattice except possibly the commutativity of A, V, the right distributivity of either
of the operations V or A over the other. The class of GADLs include the class of
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ADLs properly and retain many important properties of ADLs. In section 3, we
introduce the concept of an annihilator preserving homomorphism from a GADL
L into a GADL L’ and study some basic properties of these homomorphisms. We
derive a sufficient condition for a homomorphism to be annihilator preserving ho-
momorphism. In section 4, we define the notion of a dense element in a GADL and
the concept of a disjunctive GADL and we prove that, in a GADL L, every left
identity element is a dense element and the converse holds when L is disjunctive.
We introduce the concept of a normal ideal in a GADL L and prove that the set
N (L) of all normal ideals of L forms a Boolean algebra.

2 Preliminaries

First, we recall certain definitions and properties of GADLs from [1-3] that
are required in the paper.

Definition 2.1 ([2]). An Almost Distributive Lattice (ADL) is an algebra (L, V, A)
of type (2, 2) satisfying

1) (xvVy)Az=(xAz2)V(yAz);

2) xA(yVz)=(xAy)V(xAz);
3) (zVy) ANy =y

4) (xVy) ANz =u;

)

If there is an element 0 € L such that 0 Aa = 0 for all a € L, then (L, V, A, 0)
is called an ADL with 0.

Definition 2.2 ([2]). Let X be a non-empty set. Fix some element 2o € X. Then,
for any z,y € X define V and A on X by,

:C\/y:{x’ if x # xg x/\y:{y’ if x # xg

y, if x =z, ro, if x = xq.

Then (X, V,A,x0) is an ADL, with xg as its zero element. This ADL is called a
discrete ADL.

Definition 2.3 ([1]). An algebra (L,V,A) of type (2,2) is called a Generalized
Almost Distributive Lattice if it satisfies the following axioms:

(AsA) (x Ay)ANz=x A (yAz2);
(LDAN) 2 A(yV z)=(xAy) V(T A 2);
(LDV) 2V (yAz)=(xVy)A(xV2);
(A1) A (zVy) =
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(A2) (zVy) AN =ux;
(A3) (zAy) Vy =y.

Example 2.4. Let L = {a,b,c}. Define two binary operations V and N\ on L as
follows:

ol <
Q| o o o
o|loe >

S AN RN Nel

ISERSA SRR

(SRR ESHES]
Q[
ISERSEESEES]

Hence the algebra (L,V, ) is a Generalized Almost Distributive Lattice.

For brevity, we will refer to this Generalized Almost Distributive Lattice as
GADL. The GADL (L, V, A) in Example 2.4 is not an ADL for (¢V b) Ab # b. Let
(L,V,A) be a GADL. For any a,b € L define a < b if and only if a Ab = a or,
equivalently, a Vb = b. Then < is a partial ordering on L. In this section, L stands
for a GADL unless otherwise mentioned.

Lemma 2.5 ([1]). Let L be a GADL with 0. For any a,b € L, the followings hold:
(1) aVa=a;
(2) aNa=a;
(3) aV(aAb)=a;
(4) aV (bAa)=a;
(5) aAnb=b=aVb=a;
(6) aVb=b< aAb=a;
(7) aV (aVb)=aVb;
(8) bA(aAb)=aAb;
(9) an(bAa)=bAa;
(10) a <c,b<cifand only ifaNb=bAa andaVb=">bV a;
(11) aANbAc=bAaAc;
(12) anb=0<bAa=0;
(18) avO0=a=0Va and aN0=0;

(14) For any m € L,m is mazimal with respect partial ordering ¢ <’ if and only
ifmVa=m foralzelL.

Definition 2.6 ([1]). Let L be a GADL. An element e € L is said to be left
identity element in L if e Az =z for all x € L.
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Note that every left identity element is maximal element but converse need not
to be true. In Example 2.4, we observe that ¢ is maximal but not a left identity
element.

Definition 2.7 ([3]). A non-empty subset I of L is said to be an ideal of L if (i)
a,b € I impliesaVbe T and (ii) a € I,z € L implies a Ax € 1.

Theorem 2.8 ([3]). Let (L,V,A,0) be a GADL with 0 and I an ideal of L then
for any a,b € L, the followings hold:

(i) anbel<bAa€el;

(ii)) The set S = {a ANz | x € L} is the smallest ideal of L containing a. We
denote by S = (a];

(i1i) (a]N (] = (aAb] and a € (b] = bAa=a.

3 Annihilator Preserving Homomorphisms

In this section, we introduce the concept of an annihilator preserving homo-
morphism from a GADL L into a GADL L’ and study some basic properties of
these homomorphisms. We derive a sufficient condition for a homomorphism to be
annihilator preserving homomorphism. In the following we give the definition of a
homomorphism between two GADLs with zero and the Kernel of a homomorphism
in a natural way.

Definition 3.1. Let L and L’ be two GADLs with zeros. Then a mapping f :
L — L' is called a homomorphism if it satisfies the following:

(1) flavb)=fla)V f(b);
(2) fland)=fla) A f(b);
(3) f(0) =0" (where 0/ is the zero element of L');

and the set
Kerf={zeL]| f(z)=0"}

is called the Kernel of the homomorphism f.
We first prove the following lemma which is useful in the forth coming results.

Lemma 3.2. Let L and L' be two GADLs with 0 and 0, respectively, and f :
L — L' a homomorphism. Then we have the followings:

(1) For any ideal J of L', f~Y(J) is an ideal of L containing Kerf.
(2) If f is onto, then for any ideal I of L, f(I) is an ideal of L'.
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Proof. (1) Let J be an ideal of L’. Since f(0) = 0’ € J, we obtain 0 € f~1(J).
Let a,b € f~(J) where a,b € L. Then f(a), f(b) € J. Since J is an ideal in
L', we obtain that f(a Vv b) = f(a) V f(b) € J. Therefore a Vb € f~1(J). Again,
let z € f71(J) and r € L. Then f(z) € J. Now f(z A1) = f(z) A f(r) € J.
Hence z A7 € f~1(J). Therefore f~1(J) is an ideal of L. Since 0’ € J, we obtain
Kerf = f~1({0'}) € f71(J).

(2) Since f is a homomorphism and 0 € I, we obtain that 0’ = f(0) € f(I).
Let f(a), f(b) € f(I), where a,b € I. Since I is an ideal, a Vb € I and hence
flaVvb) € f(I). Therefore f(a) Vv f(b) € f(I). Again, let f(a) € f(I) and r € L',
where a € I. Since f is onto, there exists s € L such that f(s) = r. Now
flaynr = fla)A f(s)= flaAs)e f(I). Therefore f(I)is anideal in L’. O

Definition 3.3. For any non-empty subset A of a GADL L with 0, define
A*={zeL|xzNa=0, forall a € A}.

This A* is an ideal of L and is called the annihilator ideal of A. For any a € L,
we write [a]* for {a}* and is called annulet of L.

It can be easily observed that, for any subset A of L, AN A* = {0}. In the
following we prove some properties of annihilator ideals.

Lemma 3.4. For any ideals I1,J of a GADL L with 0, we have the following:
(1) I" = ﬂael[a]*;
(2) If I C J then J* C I*;
(5) INJ=(0]<1ICJ*

Proof. (1) Clearly I* C (), [a]*. Let x € [a]* for all @ € I. Let b € I. Then
x € [b]* and hence x A b = 0. Therefore x € I'*.

(2) Let I CJ. Letae J*and be I. Then b € J and a Ab= 0. Hence a € I'*.
Therefore J* C I*.

(3) Let x € T and a € I*. Then xt Aa € I and z Aa € I*. So that x Aa €
INI*={0}. Hence x Aa =0 for all a € I'*. We get x € I**. Therefore I C I**.

(4) Since I C I**, we have, by (2), I*** C I*. Now, let x € I* and a € I**.
Then  Aa € I* N I** = {0}. Hence x Aa =0 for all a € I**. Therefore x € I**,
we get [* C I***. Thus I"** = I*.

(5) Suppose INJ =(0]. Let z € T anda € J. ThenxAa el andzAha € J
and hence x Aa € I'NJ = (0]. Therefore z Aa =0, we get © € J*. Thus I C J*.
Conversely, assume that I C J*. Let x € I N J. Then = € [ implies that z € J*
and hence x = z Az = 0. Therefore I N J = (0]. O

The following lemma can be verified easily.
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Lemma 3.5. Let L be a GADL with 0. For any x,y € L, we have the following:
(1) [z Ayl" =y Aal™;
(2) v <y=[yl" C[a]";
(3) le Ayl™ = [z]™ O [y]™;
(4) lal™ = [2]";
(5) [eVyl" =" O lyl" = )" 0[] = [y v 2]".
Now we prove the following.

Lemma 3.6. Let L and L' be two GADLs with 0, 0, respectively. If f : L — L’
is a homomorphism, then for any non-empty subset A of L, we have

A7) S{f( A}
Proof. Let © € f(A*) and y € f(A). Then there exists a € A* and b € A such
that z = f(a) and y = f(b). Now zAy = f(a)Af(b) = f(anb) = f(0) (.- a € A*
and b € A)=0". Thatis z Ay = 0 for all y € f(A). Hence z € {f(A)}*. Therefore
FA") S{f(A)} O

If L is a GADL with 0, then for any A C L, {f(A)}* = f(A*) is not true in
general. Consider the following example.

Example 3.7. Let L = {0,a,b,c} be a discrete ADL. Define a mapping f: L —
L by f(x) =0 forall x € L. Then clearly f is a homomorphism on L. Now
take A = {a,b}. Then clearly A* = {0} and f(A) = {0}. Hence f(A*) = {0} and
{F(A)} = L. Therefore {f(A)}* # f(A").

This motivates us to introduce the concept of annihilator preserving homo-
morphism in the following.

Definition 3.8. Let L and L’ be two GADLSs with 0 and 0’, respectively. Then a
homomorphism f : L — L' is called annihilator preserving if

FAT) = {1 (A}
for any set A such that (0] C A C L.
Example 3.9. Let A = {0,a} and B = {0,b1,b2} be two discrete ADLs. Write
L =Ax B ={(0,0),(0,b1),(0,bs), (a,0), (a,b1), (a,b2)}. Then (L,V,A,0) is an

GADL with 0 = (0,0), under point-wise operations. Let L' = {0',a',b',c'} be
another GADL in which the operations V', N are defined as follows:

\// | O/ a/ b/ Cl /\/ | O/ a/ b/ C/
O/ O/ a/ b/ C/ O/ O/ O/ O/ O/
a a d Jd a’ o o 0 d
v v o v v o o v v
c d Jd Jd c 0 d b
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Now, define the mapping f : L — L' as follows:

£((0,0)) =05 f((a,0)) =d’
£((0,01)) = f((0,b2)) = V5 f((a,b1)) = f((a,b2)) ="

It can be easily verified that f is a homomorphism from L onto L'.

(i) For A= {(0,0)}, clearly we get f(A*) =L = {f(A)}*.

(i) For A = {(a,0)}, we get A* = {(0,0),(0,b1),(0,b2)} and f(A) = {a'}.
Hence f(A") = {00} = {f(A)}".

(i1i) For A = {(0,b;)},7 = 1,2, we get A* = {(0,0), (a,0)} and f(A) = {b'}.
Hence f(A*) = {0/,a'} = {/(4)}""

Similarly, for A = {(0,0),(a,0)} and A = {(0,0),(0,b;)}, we get f(A*) =
{f(A)}*. In the remaining cases, f(A*) = {0’} = {f(A)}*. Therefore f is an
annthilator preserving homomorphism.

If f is a homomorphism of a GADL L with 0 into another GADL L’ with 0’
such that Kerf = {0} and f is onto, then f need not be an isomorphism. It may
be seen in the following example.

Example 3.10. Let L = {0,a,b} and L' = {0, ¢} be two discrete ADLs. Define
a mapping f : L — L' by f(0) = 0 and f(a) = f(b) = c. Then clearly f is a
homomorphism from L into L' and also f is onto. Also Kerf = {0}. But f is
not one-one. Hence f is not an isomorphism.

However, we have the following.

Theorem 3.11. Let L and L' be two GADLs with zeroes 0 and 0 respectively and
f: L — L' a homomorphism. If Kerf = {0} and f is onto, then f is annihilator
PTeServing.

Proof. Assume that f is onto and Ker f = {0}. Let A be a non-empty subset
of L. We have always f(A*) C {f(A)}*. Let =z € {f(A)}* C L'. Since f is
onto, there exists y € L such that f(y) = . By knowing that f(y) € {f(A4)}*.
Then f(y) Am =0 for all m € f(A). Let a € A. Then f(y) A f(a) = 0'. That is
f(yAa) =0 which means y Aa € Ker f = {0}. Then y Aa = 0. Hence y € A*.
Therefore {f(A)}* C f(A*). Thus {f(A)}* = f(A*). Therefore f is annihilator
preserving. O

Theorem 3.12. Let L and L' be two GADLs with 0 and 0/, respectively and
f:L— L' an epimorphism. If Kerf = {0}, then

A" =B <« {f(A} ={/(B)}

for any two non-empty subsets A, B of L.
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Proof. Since f is an epimorphism and Ker f = {0}, by Theorem 3.11, f is annihi-
lator preserving. Let A, B be two non-empty subsets of L. Assume that A* = B*.
Then clearly f(A*) = f(B*). Hence {f(A)}* = {f(B)}*. Conversely, assume that
{f(A)}={f(B)}*. Let t € A* and b€ B. Thent Aa =0 for all a € A. Now,

te A" = f(t) e f(A")
= f(t) € {f(A)}" (by Theorem 3.11)
= () € {f(B)}" (since f(A") = f(B"))
= F)AT(B) =0 (since [(5) € f(B))
= ftAb) =0
=tAbe Kerf={0}
=tAb=0
= teB".

Hence A* C B*. Similarly, we can obtain that B* C A*. Therefore A* = B*. O

4 Normal Ideals

In this section we introduce the concept of a dense element in a GADL, disjunc-
tive GADL and normal ideal in a GADL and we prove that the set of all normal
ideals of a GADL forms a Boolean algebra. First we begin with the following.

Definition 4.1. An element a of L is called dense element if [a]* = {0}.
Theorem 4.2. In a GADL, every left identity element is a dense element.

Proof. Let m be a maximal element in L and = € [m]*. Then x A m = 0. So that
0 = 2Am = z. Hence x = 0. Therefore [m]* = {0}. Thus m is a dense element. [

In the following example we show that a dense element needs not to be a left
identity element.

Example 4.3. Let L = {0,a,b,c} and define V and A on L as follows:

\/|0abc /\|Oabc
010 a b c 00 0 0 O
ala a a a al0 a b ¢
blb a b b b0 b b c
clc ¢ ¢ c c|0 b b ¢

Then clearly (L,V,A,0) is a GADL with 0. Clearly a,b,c are dense elements but
b and c are not left identity elements.

Now we define the notion of a disjunctive GADL.
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Definition 4.4. A GADL L with 0, is called disjunctive iff for all a,b € L,
[a]* = [b]* implies a = b.

Example 4.5. Let L ={0,a,b,c} be a set. DefineV and A on L as follows:

\/|Oabc /\|Oabc
0|0 a b c 00 0 0 O
ala a a a al0 a b c
blb a b a b0 b b O
clc a a c c|0 ¢ 0 c

Then clearly (L,V,A,0) is a GADL with 0. Now, [a]* = [0], [b]* = {0,c} and
[c]* = {0,b}. We can see that x # y and [x]* # [y]* for all x,y € L. Hence L is
disjunctive.

In a GADL L with 0, we know that a left identity element is always a dense
element (Theorem 4.2). Now we prove the converse in disjunctive GADL.

Theorem 4.6. If L is a disjunctive GADL, then every dense element of L is a
left identity element.

Proof. Assume that L is disjunctive. Let m be a dense element of L. That is
[m]* = {0}. For any « € L, [m Az]™ = [m]** N [z]** = LN [z]** = [«]** and hence
[m A z]*** = [2]***. So that [m A z]* = [z]*. Since L is disjunctive, we get that
m A x = x. Therefore m is a left identity element of L. O

Now we define the concept of a normal ideal in a GADL.

Definition 4.7. Let L be a GADL with 0. An ideal I of L is called a normal ideal
if I =I*, or equivalentlty, I = S*={y € L|yAs=0, for all s € S} for some
non-empty subset S of L. We denote the set of all normal ideals of L by N (L).

Example 4.8. Let L ={0,a,b,c} and define V and A\ on L as follows:

\/|Oabc /\|Oabc
00 a b c 0j]0 0 O O
ala a a a al0 a b c
blb a b a b0 b b 0
clc a a c c|0 ¢ 0 c

Then clearly (L,V,A,0) is a GADL with 0. Consider the set I = {0,b} C L. Then
clearly I is an ideal in L. Now I* = {0,c} and also I** = {0,b} = I. Thus I is
normal ideal in L. Similarly, the ideal J = {0, c} of L, is another normal ideal in

L.
Now, we prove the following

Theorem 4.9. Let L and L' be two GADLs with zeroes 0 and 0, respectively and
f:L— L' a homomorphism. Then we have the following:
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(1) If f is annihilator preserving and onto, then f(I) is a normal ideal of L' for
every normal ideal I of L.

(2) If in addition Kerf = {0}, then f~1(J) is a normal ideal of L, for every
normal ideal J of L'.

Proof. (1) Let I be a normal ideal of L. Then by Lemma 3.2(2), f(I) is an ideal
of L'. Since f is annihilator preserving, {f(I)}** = f(I**) = f(I). Therefore f(I)
is a normal ideal in L'.

(2) Let J be a normal ideal of L’. Then by Lemma 3.2(1), f~1(J) is an ideal of
L. Letz € {f~1(J)}** and y € J*. Then y = f(t) for some t € L. Let s € f~1(J).
Then f(s) € J and hence y A f(s) = 0. Therefore t A s = 0. Hence t € (f~1(J))*.
Therefore x At = 0 and hence f(x) A f(t) = 0'. Thus f(z) € J** = J. Hence
x € f~1(J). Therefore f~1(J) is a normal ideal in L. O

Corollary 4.10. Let L and L' be two GADLs with zeros 0 and 0’ respectively and
f: L — L' is annihilator preserving homomorphism. Assume that Kerf = {0}
and f is onto. Then J is normal ideal of L' if and only if f~(J) is a normal
ideal of L.

Theorem 4.11. Let L be a GADL with 0. Then the set N (L) of all normal ideals
of L forms a Boolean algebra.

Proof. For I,J € N(L), define INJ =1INJand IV J = (I*NJ*)*. Let I,J €
N(L). Then I** = I and J** = J. Hence (INJ)** = I**NJ** = INJ. Thus INJ €
N(L). We have also IV J € N(L). It can be easily observed that (M (L), A,V) is
a lattice. Since [0]* = L and L* = (0], we get that (0], L € N/(L) are the least and
the greatest elements of A(L), respectively. Therefore, (N (L), A, V) is a bounded
lattice. Let I € N(L). Then clearly I* € N(L) and INI* =INT* = (0],IV I* =
(I*nr*)* = {I*NnI)* ={0}* = [0]* = L. Thus I* is the complement of I for
any I € N(L). Therefore (N(L),A,V,*,(0],L) is a complemented lattice. Let
I,J,K € N(L). We prove that IV (JAK) = (IV. J) A (IV K). We first prove
that (IV. J)AK C IV (JAK). We have INK N [I*N (JNK)*] = (0], so
that KN I*N(JNK)* C I*. Similarly JN K N [I*N(J N K)*] = (0] implies that
KNnI*N(JNK)* C J*. Hence KNI*N(JNK)* C I*NJ*. Thus, by Lemma 3.4, we
get that [KNI*N(JNK)*IN(I*NJ*)* = (0]. That is I*N(JNK)*N[KNI*NJ*)*] =
(0]. Thus K N (I* N J*)* C [I* 0 (J N K)*]*. Hence (IV. J)AK C IV (J A K).
We prove the distributivity. (IV J)N(IV K) C IV[JN(IVv K)] = IV [(IV K)N
JIC IV IV (KNJ)] = IV (JNK). Clearly, IV (JNK) C (Iv J)N (IV K). Thus
(N(L), A, V, *,(0], L) is a Boolean algebra. O

It can be easily observed that every annulet, for any = € L, [x]* is a normal
ideal in L. We denote the set of all annulets of L by No(L). That is, No(L) =
{[z]*|x € L}. Annulets have many important properties. We give some of them in
the following lemma which can be easily verified.

Lemma 4.12. Let L be a GADL with 0 and x,y € L. Then we have:
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Since each annulet is a normal ideal, we can have the following:

2" Vly]" = [[2]" 0[] = [(z Ay)™]" = [z A y]"
[ ATyl" = [2]" N [y)" = [ vyl™

Then we prove in the following theorem that the set MVy(L) of all annulets of a
GADL L forms a distributive lattice.

Theorem 4.13. Let L be a GADL with 0. Then (No(L),N,V) is a sublattice of
the Boolean algebra (N(L),N,V,*, (0], L) of normal ideals of L and hence it is a
distributive lattice. No(L) has the same greatest element L = [0]* as N'(L). Ny(L)
has the smallest element if and only if L possesses a dense element.

Proof. Let [z]*,[y]* € No(L), where z,y € L. Then

L [z]* Aly]* = [z]* N [y]* = [z Vy]* € No(L) and

2. [V o] = [z A 9]* € No(D).

Hence Ny(L) is a sublattice of N'(L). Since N (L) is distributive, we have that
MNo(L) is also distributive. Clearly, [0]* is the greatest element of N'(L). Now for
any [z]* € No(L), we get [z]*N[0]* = [zVO0]* = [2]* and [z]*V [0]* = [xAO]* = [0]*.
It shows that [0]* is the greatest element in No(L). Now, it remains to prove the
final condition of the theorem. Assume Ny(L) has the smallest element, say [d]*
where d € L. Suppose z € [d]*. Then x Ad = 0. Since [d]* is the least element,
we get [z]* = [z]*V [d]* = [z Ad]* = [0]* = L. Hence z = 0. Thus [d]* = (0].
Therefore d is a dense element in L.

Conversely, suppose that L possesses a dense element, say d. So [d]* = (0].
Clearly, [d]* € No(L). Now for any z € L, consider [z]* N [d]* = [z]* N (0] =
(2" (0] = (O], Also [2]*V [d]* = {[z]** N[d]**}* = {[z]"* N[0]"}* = {[&]* NL}* =
[#]*** = [z]*. Hence [d]* is the smallest element in Ny(L). O

In general, the mapping x — [z]* of L into Ny(L) is a dual onto homomor-
phism. In fact, we have the following result.

Theorem 4.14. A disjunctive GADL L is dually isomorphic to No(L).

Proof. Let L be a disjunctive GADL. Define a mapping ® : L — Ny(L) by
®(z) = [x]*, for all z € L. Clearly, ® is well-defined. Let x,y € L such that
®(x) = ®(y). Then [z]* = [y|*. Since L is disjunctive, we obtain that x = y.
Therefore ® is one to one. Let I € Ny(L). Then I = [z]*, for some x € L. Hence
®(x) = [z]* = I. Therefore ® is onto.

Let[z]*, [y]* € No(L), where z,y € L. Then ®(z Ay) = [z Ay]* = [z]*V [y]* =
O(z)V O(y) and ®(zVy) = [z Vy]* = [z]" N[y]* = ®(x) NP(y). Hence P is a dual
isomorphism. [l
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Conclusion and Future Work

In this paper we have introduced the concept of an annihilator preserving
homomorphism and studied some basic properties of these homomorphisms. We
derived a sufficient condition for a homomorphism to be annihilator preserving
homomorphism. We introduced the concept of a normal ideal in a GADL L and
proved that the set N'(L) of all normal ideals of L forms a Boolean algebra. In
[3], we have proved that the set of all ideals of a GADL with 0 forms a complete
lattice under set inclusion but we were unable to characterize the nature of the
supremum of the ideals in this lattice. Also, the ideal generated by any nonempty
subset S of a GADL, except the case when S contains only one element, was
not, characterized. Investigations in this direction are going on in order to give a
topological characterization and sheaf representation of a GADL.
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