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1 Introduction

The concept of a Generalized Almost Distributive Lattice (GADL) was in-
troduced by Rao et al. [1] as a generalization of an Almost Distributive Lattice
(ADL) [2]. The class of GADLs inherit almost all the properties of a distributive
lattice except possibly the commutativity of ∧,∨, the right distributivity of either
of the operations ∨ or ∧ over the other. The class of GADLs include the class of
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ADLs properly and retain many important properties of ADLs. In section 3, we
introduce the concept of an annihilator preserving homomorphism from a GADL
L into a GADL L′ and study some basic properties of these homomorphisms. We
derive a sufficient condition for a homomorphism to be annihilator preserving ho-
momorphism. In section 4, we define the notion of a dense element in a GADL and
the concept of a disjunctive GADL and we prove that, in a GADL L, every left
identity element is a dense element and the converse holds when L is disjunctive.
We introduce the concept of a normal ideal in a GADL L and prove that the set
N (L) of all normal ideals of L forms a Boolean algebra.

2 Preliminaries

First, we recall certain definitions and properties of GADLs from [1–3] that
are required in the paper.

Definition 2.1 ([2]). An Almost Distributive Lattice (ADL) is an algebra (L,∨,∧)
of type (2, 2) satisfying

1) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z);

2) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

3) (x ∨ y) ∧ y = y;

4) (x ∨ y) ∧ x = x;

5) x ∨ (x ∧ y) = x.

If there is an element 0 ∈ L such that 0∧ a = 0 for all a ∈ L, then (L,∨,∧, 0)
is called an ADL with 0.

Definition 2.2 ([2]). Let X be a non-empty set. Fix some element x0 ∈ X. Then,
for any x, y ∈ X define ∨ and ∧ on X by,

x ∨ y =

{

x, if x 6= x0

y, if x = x0,
x ∧ y =

{

y, if x 6= x0

x0, if x = x0.

Then (X,∨,∧, x0) is an ADL, with x0 as its zero element. This ADL is called a
discrete ADL.

Definition 2.3 ([1]). An algebra (L,∨,∧) of type (2, 2) is called a Generalized
Almost Distributive Lattice if it satisfies the following axioms:

(As∧) (x ∧ y) ∧ z = x ∧ (y ∧ z);

(LD∧) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

(LD∨) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);

(A1) x ∧ (x ∨ y) = x;
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(A2) (x ∨ y) ∧ x = x;

(A3) (x ∧ y) ∨ y = y.

Example 2.4. Let L = {a, b, c}. Define two binary operations ∨ and ∧ on L as
follows:

∨ a b c
a a b a
b b b b
c c c c

∧ a b c
a a a c
b a b c
c a a c

Hence the algebra (L,∨,∧) is a Generalized Almost Distributive Lattice.

For brevity, we will refer to this Generalized Almost Distributive Lattice as
GADL. The GADL (L,∨,∧) in Example 2.4 is not an ADL for (c∨ b)∧ b 6= b. Let
(L,∨,∧) be a GADL. For any a, b ∈ L define a ≤ b if and only if a ∧ b = a or,
equivalently, a∨ b = b. Then ≤ is a partial ordering on L. In this section, L stands
for a GADL unless otherwise mentioned.

Lemma 2.5 ([1]). Let L be a GADL with 0. For any a, b ∈ L, the followings hold:

(1) a ∨ a = a;

(2) a ∧ a = a;

(3) a ∨ (a ∧ b) = a;

(4) a ∨ (b ∧ a) = a;

(5) a ∧ b = b ⇒ a ∨ b = a;

(6) a ∨ b = b ⇔ a ∧ b = a;

(7) a ∨ (a ∨ b) = a ∨ b;

(8) b ∧ (a ∧ b) = a ∧ b;

(9) a ∧ (b ∧ a) = b ∧ a;

(10) a ≤ c, b ≤ c if and only if a ∧ b = b ∧ a and a ∨ b = b ∨ a;

(11) a ∧ b ∧ c = b ∧ a ∧ c;

(12) a ∧ b = 0 ⇔ b ∧ a = 0;

(13) a ∨ 0 = a = 0 ∨ a and a ∧ 0 = 0;

(14) For any m ∈ L, m is maximal with respect partial ordering ‘ ≤’ if and only
if m ∨ x = m for all x ∈ L.

Definition 2.6 ([1]). Let L be a GADL. An element e ∈ L is said to be left
identity element in L if e ∧ x = x for all x ∈ L.
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Note that every left identity element is maximal element but converse need not
to be true. In Example 2.4, we observe that c is maximal but not a left identity
element.

Definition 2.7 ([3]). A non-empty subset I of L is said to be an ideal of L if (i)
a, b ∈ I implies a ∨ b ∈ I and (ii) a ∈ I, x ∈ L implies a ∧ x ∈ I.

Theorem 2.8 ([3]). Let (L,∨,∧, 0) be a GADL with 0 and I an ideal of L then
for any a, b ∈ L, the followings hold:

(i) a ∧ b ∈ I ⇔ b ∧ a ∈ I;

(ii) The set S = {a ∧ x | x ∈ L} is the smallest ideal of L containing a. We
denote by S = (a];

(iii) (a] ∩ (b] = (a ∧ b] and a ∈ (b] ⇔ b ∧ a = a.

3 Annihilator Preserving Homomorphisms

In this section, we introduce the concept of an annihilator preserving homo-
morphism from a GADL L into a GADL L′ and study some basic properties of
these homomorphisms. We derive a sufficient condition for a homomorphism to be
annihilator preserving homomorphism. In the following we give the definition of a
homomorphism between two GADLs with zero and the Kernel of a homomorphism
in a natural way.

Definition 3.1. Let L and L′ be two GADLs with zeros. Then a mapping f :
L → L′ is called a homomorphism if it satisfies the following:

(1) f(a ∨ b) = f(a) ∨ f(b);

(2) f(a ∧ b) = f(a) ∧ f(b);

(3) f(0) = 0′ (where 0′ is the zero element of L′);

and the set

Kerf = {x ∈ L | f(x) = 0′}

is called the Kernel of the homomorphism f.

We first prove the following lemma which is useful in the forth coming results.

Lemma 3.2. Let L and L′ be two GADLs with 0 and 0′, respectively, and f :
L → L′ a homomorphism. Then we have the followings:

(1) For any ideal J of L′, f−1(J) is an ideal of L containing Kerf .

(2) If f is onto, then for any ideal I of L, f(I) is an ideal of L′.
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Proof. (1) Let J be an ideal of L′. Since f(0) = 0′ ∈ J , we obtain 0 ∈ f−1(J).
Let a, b ∈ f−1(J) where a, b ∈ L. Then f(a), f(b) ∈ J . Since J is an ideal in
L′, we obtain that f(a ∨ b) = f(a) ∨ f(b) ∈ J . Therefore a ∨ b ∈ f−1(J). Again,
let x ∈ f−1(J) and r ∈ L. Then f(x) ∈ J . Now f(x ∧ r) = f(x) ∧ f(r) ∈ J .
Hence x ∧ r ∈ f−1(J). Therefore f−1(J) is an ideal of L. Since 0′ ∈ J , we obtain
Kerf = f−1({0′}) ⊆ f−1(J).

(2) Since f is a homomorphism and 0 ∈ I, we obtain that 0′ = f(0) ∈ f(I).
Let f(a), f(b) ∈ f(I), where a, b ∈ I. Since I is an ideal, a ∨ b ∈ I and hence
f(a ∨ b) ∈ f(I). Therefore f(a) ∨ f(b) ∈ f(I). Again, let f(a) ∈ f(I) and r ∈ L′,
where a ∈ I. Since f is onto, there exists s ∈ L such that f(s) = r. Now
f(a) ∧ r = f(a) ∧ f(s) = f(a ∧ s) ∈ f(I). Therefore f(I) is an ideal in L′.

Definition 3.3. For any non-empty subset A of a GADL L with 0, define

A∗ = {x ∈ L | x ∧ a = 0, for all a ∈ A}.

This A∗ is an ideal of L and is called the annihilator ideal of A. For any a ∈ L,

we write [a]∗ for {a}∗ and is called annulet of L.

It can be easily observed that, for any subset A of L, A ∩ A∗ = {0}. In the
following we prove some properties of annihilator ideals.

Lemma 3.4. For any ideals I, J of a GADL L with 0, we have the following:

(1) I∗ =
⋂

a∈I
[a]∗;

(2) If I ⊆ J then J∗ ⊆ I∗;

(3) I ⊆ I∗∗;

(4) I∗∗∗ = I∗;

(5) I ∩ J = (0] ⇔ I ⊆ J∗.

Proof. (1) Clearly I∗ ⊆
⋂

a∈I
[a]∗. Let x ∈ [a]∗ for all a ∈ I. Let b ∈ I. Then

x ∈ [b]∗ and hence x ∧ b = 0. Therefore x ∈ I∗.

(2) Let I ⊆ J . Let a ∈ J∗ and b ∈ I. Then b ∈ J and a∧ b = 0. Hence a ∈ I∗.
Therefore J∗ ⊆ I∗.

(3) Let x ∈ I and a ∈ I∗. Then x ∧ a ∈ I and x ∧ a ∈ I∗. So that x ∧ a ∈
I ∩ I∗ = {0}. Hence x ∧ a = 0 for all a ∈ I∗. We get x ∈ I∗∗. Therefore I ⊆ I∗∗.

(4) Since I ⊆ I∗∗, we have, by (2), I∗∗∗ ⊆ I∗. Now, let x ∈ I∗ and a ∈ I∗∗.
Then x ∧ a ∈ I∗ ∩ I∗∗ = {0}. Hence x ∧ a = 0 for all a ∈ I∗∗. Therefore x ∈ I∗∗,
we get I∗ ⊆ I∗∗∗. Thus I∗∗∗ = I∗.

(5) Suppose I ∩ J = (0]. Let x ∈ I and a ∈ J . Then x ∧ a ∈ I and x ∧ a ∈ J

and hence x ∧ a ∈ I ∩ J = (0]. Therefore x ∧ a = 0, we get x ∈ J∗. Thus I ⊆ J∗.

Conversely, assume that I ⊆ J∗. Let x ∈ I ∩ J. Then x ∈ I implies that x ∈ J∗

and hence x = x ∧ x = 0. Therefore I ∩ J = (0].

The following lemma can be verified easily.
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Lemma 3.5. Let L be a GADL with 0. For any x, y ∈ L, we have the following:

(1) [x ∧ y]∗ = [y ∧ x]∗;

(2) x ≤ y ⇒ [y]∗ ⊆ [x]∗;

(3) [x ∧ y]∗∗ = [x]∗∗ ∩ [y]∗∗;

(4) [x]∗∗∗ = [x]∗;

(5) [x ∨ y]∗ = [x]∗ ∩ [y]∗ = [y]∗ ∩ [x]∗ = [y ∨ x]∗.

Now we prove the following.

Lemma 3.6. Let L and L′ be two GADLs with 0, 0′, respectively. If f : L → L′

is a homomorphism, then for any non-empty subset A of L, we have

f(A∗) ⊆ {f(A)}∗.

Proof. Let x ∈ f(A∗) and y ∈ f(A). Then there exists a ∈ A∗ and b ∈ A such
that x = f(a) and y = f(b). Now x∧y = f(a)∧f(b) = f(a∧b) = f(0) (∵ a ∈ A∗

and b ∈ A)= 0′. That is x∧y = 0′ for all y ∈ f(A). Hence x ∈ {f(A)}∗. Therefore
f(A∗) ⊆ {f(A)}∗.

If L is a GADL with 0, then for any A ⊆ L, {f(A)}∗ = f(A∗) is not true in
general. Consider the following example.

Example 3.7. Let L = {0, a, b, c} be a discrete ADL. Define a mapping f : L −→
L by f(x) = 0 for all x ∈ L. Then clearly f is a homomorphism on L. Now
take A = {a, b}. Then clearly A∗ = {0} and f(A) = {0}. Hence f(A∗) = {0} and
{f(A)}∗ = L. Therefore {f(A)}∗ 6= f(A∗).

This motivates us to introduce the concept of annihilator preserving homo-
morphism in the following.

Definition 3.8. Let L and L′ be two GADLs with 0 and 0′, respectively. Then a
homomorphism f : L → L′ is called annihilator preserving if

f(A∗) = {f(A)}∗

for any set A such that (0] ⊂ A ⊂ L.

Example 3.9. Let A = {0, a} and B = {0, b1, b2} be two discrete ADLs. Write
L = A × B = {(0, 0), (0, b1), (0, b2), (a, 0), (a, b1), (a, b2)}. Then (L,∨,∧, 0̄) is an
GADL with 0̄ = (0, 0), under point-wise operations. Let L′ = {0′, a′, b′, c′} be
another GADL in which the operations ∨′,∧′ are defined as follows:

∨′ 0′ a′ b′ c′

0′ 0′ a′ b′ c′

a′ a′ a′ c′ c′

b′ b′ c′ b′ c′

c′ c′ c′ c′ c′

∧′ 0′ a′ b′ c′

0′ 0′ 0′ 0′ 0′

a′ 0′ a′ 0′ a′

b′ 0′ 0′ b′ b′

c′ 0′ a′ b′ c′
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Now, define the mapping f : L −→ L′ as follows:

f((0, 0)) = 0′; f((a, 0)) = a′

f((0, b1)) = f((0, b2)) = b′; f((a, b1)) = f((a, b2)) = c′.

It can be easily verified that f is a homomorphism from L onto L′.

(i) For A = {(0, 0)}, clearly we get f(A∗) = L′ = {f(A)}∗.
(ii) For A = {(a, 0)}, we get A∗ = {(0, 0), (0, b1), (0, b2)} and f(A) = {a′}.

Hence f(A∗) = {0′, b′} = {f(A)}∗.
(iii) For A = {(0, bi)}, i = 1, 2, we get A∗ = {(0, 0), (a, 0)} and f(A) = {b′}.

Hence f(A∗) = {0′, a′} = {f(A)}∗.
Similarly, for A = {(0, 0), (a, 0)} and A = {(0, 0), (0, bi)}, we get f(A∗) =

{f(A)}∗. In the remaining cases, f(A∗) = {0′} = {f(A)}∗. Therefore f is an
annihilator preserving homomorphism.

If f is a homomorphism of a GADL L with 0 into another GADL L′ with 0′

such that Kerf = {0} and f is onto, then f need not be an isomorphism. It may
be seen in the following example.

Example 3.10. Let L = {0, a, b} and L′ = {0′, c} be two discrete ADLs. Define
a mapping f : L −→ L′ by f(0) = 0′ and f(a) = f(b) = c. Then clearly f is a
homomorphism from L into L′ and also f is onto. Also Kerf = {0}. But f is
not one-one. Hence f is not an isomorphism.

However, we have the following.

Theorem 3.11. Let L and L′ be two GADLs with zeroes 0 and 0′ respectively and
f : L −→ L′ a homomorphism. If Kerf = {0} and f is onto, then f is annihilator
preserving.

Proof. Assume that f is onto and Ker f = {0}. Let A be a non-empty subset
of L. We have always f(A∗) ⊆ {f(A)}∗. Let x ∈ {f(A)}∗ ⊆ L′. Since f is
onto, there exists y ∈ L such that f(y) = x. By knowing that f(y) ∈ {f(A)}∗.
Then f(y) ∧ m = 0 for all m ∈ f(A). Let a ∈ A. Then f(y) ∧ f(a) = 0′. That is
f(y ∧ a) = 0′ which means y ∧ a ∈ Ker f = {0}. Then y ∧ a = 0. Hence y ∈ A∗.

Therefore {f(A)}∗ ⊆ f(A∗). Thus {f(A)}∗ = f(A∗). Therefore f is annihilator
preserving.

Theorem 3.12. Let L and L′ be two GADLs with 0 and 0′, respectively and
f : L → L′ an epimorphism. If Kerf = {0}, then

A∗ = B∗ ⇔ {f(A)}∗ = {f(B)}∗

for any two non-empty subsets A, B of L.
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Proof. Since f is an epimorphism and Ker f = {0}, by Theorem 3.11, f is annihi-
lator preserving. Let A, B be two non-empty subsets of L. Assume that A∗ = B∗.
Then clearly f(A∗) = f(B∗). Hence {f(A)}∗ = {f(B)}∗. Conversely, assume that
{f(A)}∗ = {f(B)}∗. Let t ∈ A∗ and b ∈ B. Then t ∧ a = 0 for all a ∈ A. Now,

t ∈ A∗ ⇒ f(t) ∈ f(A∗)

⇒ f(t) ∈ {f(A)}∗ (by Theorem 3.11)

⇒ f(t) ∈ {f(B)}∗ (since f(A∗) = f(B∗))

⇒ f(t) ∧ f(b) = 0′ (since f(b) ∈ f(B))

⇒ f(t ∧ b) = 0′

⇒ t ∧ b ∈ Kerf = {0}

⇒ t ∧ b = 0

⇒ t ∈ B∗.

Hence A∗ ⊆ B∗. Similarly, we can obtain that B∗ ⊆ A∗. Therefore A∗ = B∗.

4 Normal Ideals

In this section we introduce the concept of a dense element in a GADL, disjunc-
tive GADL and normal ideal in a GADL and we prove that the set of all normal
ideals of a GADL forms a Boolean algebra. First we begin with the following.

Definition 4.1. An element a of L is called dense element if [a]∗ = {0}.

Theorem 4.2. In a GADL, every left identity element is a dense element.

Proof. Let m be a maximal element in L and x ∈ [m]∗. Then x ∧ m = 0. So that
0 = x∧m = x. Hence x = 0. Therefore [m]∗ = {0}. Thus m is a dense element.

In the following example we show that a dense element needs not to be a left
identity element.

Example 4.3. Let L = {0, a, b, c} and define ∨ and ∧ on L as follows:

∨ 0 a b c

0 0 a b c

a a a a a

b b a b b

c c c c c

∧ 0 a b c

0 0 0 0 0
a 0 a b c

b 0 b b c

c 0 b b c

Then clearly (L,∨,∧, 0) is a GADL with 0. Clearly a, b, c are dense elements but
b and c are not left identity elements.

Now we define the notion of a disjunctive GADL.
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Definition 4.4. A GADL L with 0, is called disjunctive iff for all a, b ∈ L,
[a]∗ = [b]∗ implies a = b.

Example 4.5. Let L = {0, a, b, c} be a set. Define ∨ and ∧ on L as follows:

∨ 0 a b c

0 0 a b c

a a a a a

b b a b a

c c a a c

∧ 0 a b c

0 0 0 0 0
a 0 a b c

b 0 b b 0
c 0 c 0 c

Then clearly (L,∨,∧, 0) is a GADL with 0. Now, [a]∗ = [0], [b]∗ = {0, c} and
[c]∗ = {0, b}. We can see that x 6= y and [x]∗ 6= [y]∗ for all x, y ∈ L. Hence L is
disjunctive.

In a GADL L with 0, we know that a left identity element is always a dense
element (Theorem 4.2). Now we prove the converse in disjunctive GADL.

Theorem 4.6. If L is a disjunctive GADL, then every dense element of L is a
left identity element.

Proof. Assume that L is disjunctive. Let m be a dense element of L. That is
[m]∗ = {0}. For any x ∈ L, [m∧ x]∗∗ = [m]∗∗ ∩ [x]∗∗ = L∩ [x]∗∗ = [x]∗∗ and hence
[m ∧ x]∗∗∗ = [x]∗∗∗. So that [m ∧ x]∗ = [x]∗. Since L is disjunctive, we get that
m ∧ x = x. Therefore m is a left identity element of L.

Now we define the concept of a normal ideal in a GADL.

Definition 4.7. Let L be a GADL with 0. An ideal I of L is called a normal ideal
if I = I∗∗, or equivalentlty, I = S∗ = {y ∈ L | y ∧ s = 0, for all s ∈ S} for some
non-empty subset S of L. We denote the set of all normal ideals of L by N (L).

Example 4.8. Let L = {0, a, b, c} and define ∨ and ∧ on L as follows:

∨ 0 a b c

0 0 a b c

a a a a a

b b a b a

c c a a c

∧ 0 a b c

0 0 0 0 0
a 0 a b c

b 0 b b 0
c 0 c 0 c

Then clearly (L,∨,∧, 0) is a GADL with 0. Consider the set I = {0, b} ⊆ L. Then
clearly I is an ideal in L. Now I∗ = {0, c} and also I∗∗ = {0, b} = I. Thus I is
normal ideal in L. Similarly, the ideal J = {0, c} of L, is another normal ideal in
L.

Now, we prove the following

Theorem 4.9. Let L and L′ be two GADLs with zeroes 0 and 0′, respectively and
f : L → L′ a homomorphism. Then we have the following:



44 Thai J. Math. 11 (2013)/ G.C. Rao et al.

(1) If f is annihilator preserving and onto, then f(I) is a normal ideal of L′ for
every normal ideal I of L.

(2) If in addition Kerf = {0}, then f−1(J) is a normal ideal of L, for every
normal ideal J of L′.

Proof. (1) Let I be a normal ideal of L. Then by Lemma 3.2(2), f(I) is an ideal
of L′. Since f is annihilator preserving, {f(I)}∗∗ = f(I∗∗) = f(I). Therefore f(I)
is a normal ideal in L′.

(2) Let J be a normal ideal of L′. Then by Lemma 3.2(1), f−1(J) is an ideal of
L. Let x ∈ {f−1(J)}∗∗ and y ∈ J∗. Then y = f(t) for some t ∈ L. Let s ∈ f−1(J).
Then f(s) ∈ J and hence y ∧ f(s) = 0. Therefore t ∧ s = 0. Hence t ∈ (f−1(J))∗.
Therefore x ∧ t = 0 and hence f(x) ∧ f(t) = 0′. Thus f(x) ∈ J∗∗ = J . Hence
x ∈ f−1(J). Therefore f−1(J) is a normal ideal in L.

Corollary 4.10. Let L and L′ be two GADLs with zeros 0 and 0′ respectively and
f : L → L′ is annihilator preserving homomorphism. Assume that Kerf = {0}
and f is onto. Then J is normal ideal of L′ if and only if f−1(J) is a normal
ideal of L.

Theorem 4.11. Let L be a GADL with 0. Then the set N (L) of all normal ideals
of L forms a Boolean algebra.

Proof. For I, J ∈ N (L), define I ∧ J = I ∩ J and I∨ J = (I∗ ∩ J∗)∗. Let I, J ∈
N (L). Then I∗∗ = I and J∗∗ = J. Hence (I∩J)∗∗ = I∗∗∩J∗∗ = I∩J. Thus I∩J ∈
N (L). We have also I∨ J ∈ N (L). It can be easily observed that (N (L),∧,∨) is
a lattice. Since [0]∗ = L and L∗ = (0], we get that (0], L ∈ N (L) are the least and
the greatest elements of N (L), respectively. Therefore, (N (L),∧,∨) is a bounded
lattice. Let I ∈ N (L). Then clearly I∗ ∈ N (L) and I ∧ I∗ = I ∩ I∗ = (0], I∨ I∗ =
(I∗ ∩ I∗∗)∗ = (I∗ ∩ I)∗ = {0}∗ = [0]∗ = L. Thus I∗ is the complement of I for
any I ∈ N (L). Therefore (N (L),∧,∨, ∗, (0], L) is a complemented lattice. Let
I, J, K ∈ N (L). We prove that I∨ (J ∧ K) = (I∨ J) ∧ (I∨ K). We first prove
that (I∨ J) ∧ K ⊆ I∨ (J ∧ K). We have I ∩ K ∩ [I∗ ∩ (J ∩ K)∗] = (0], so
that K ∩ I∗ ∩ (J ∩ K)∗ ⊆ I∗. Similarly J ∩K ∩ [I∗ ∩ (J ∩ K)∗] = (0] implies that
K∩I∗∩(J∩K)∗ ⊆ J∗. Hence K∩I∗∩(J∩K)∗ ⊆ I∗∩J∗. Thus, by Lemma 3.4, we
get that [K∩I∗∩(J∩K)∗]∩(I∗∩J∗)∗ = (0]. That is I∗∩(J∩K)∗∩[K∩(I∗∩J∗)∗] =
(0]. Thus K ∩ (I∗ ∩ J∗)∗ ⊆ [I∗ ∩ (J ∩ K)∗]∗. Hence (I∨ J) ∧ K ⊆ I∨ (J ∧ K).

We prove the distributivity. (I∨ J)∩(I∨ K) ⊆ I∨[J∩(I∨ K)] = I∨ [(I∨ K)∩
J ] ⊆ I∨ [I∨ (K ∩J)] = I∨ (J ∩K). Clearly, I∨ (J ∩K) ⊆ (I∨ J)∩ (I∨ K). Thus
(N (L),∧,∨, ∗, (0], L) is a Boolean algebra.

It can be easily observed that every annulet, for any x ∈ L, [x]∗ is a normal
ideal in L. We denote the set of all annulets of L by N0(L). That is, N0(L) =
{[x]∗|x ∈ L}. Annulets have many important properties. We give some of them in
the following lemma which can be easily verified.

Lemma 4.12. Let L be a GADL with 0 and x, y ∈ L. Then we have:
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(1) x ≤ y ⇒ [y]∗ ⊆ [x]∗;

(2) [x ∧ y]∗ = [y ∧ x]∗;

(3) [x ∨ y]∗ = [y ∨ x]∗;

(4) [x ∨ y]∗ = [x]∗ ∩ [y]∗.

Since each annulet is a normal ideal, we can have the following:

[x]∗∨[y]∗ = [[x]∗∗ ∩ [y]∗∗]
∗

= [(x ∧ y)∗∗]
∗

= [x ∧ y]∗

[x]∗ ∧ [y]∗ = [x]∗ ∩ [y]∗ = [x ∨ y]∗.

Then we prove in the following theorem that the set N0(L) of all annulets of a
GADL L forms a distributive lattice.

Theorem 4.13. Let L be a GADL with 0. Then (N0(L),∩,∨) is a sublattice of
the Boolean algebra 〈N (L),∩,∨,∗ , (0], L〉 of normal ideals of L and hence it is a
distributive lattice. N0(L) has the same greatest element L = [0]∗ as N (L). N0(L)
has the smallest element if and only if L possesses a dense element.

Proof. Let [x]∗, [y]∗ ∈ N0(L), where x, y ∈ L. Then
1. [x]∗ ∧ [y]∗ = [x]∗ ∩ [y]∗ = [x ∨ y]∗ ∈ N0(L) and
2. [x]∗∨ [y]∗ = [x ∧ y]∗ ∈ N0(L).
Hence N0(L) is a sublattice of N (L). Since N (L) is distributive, we have that

N0(L) is also distributive. Clearly, [0]∗ is the greatest element of N (L). Now for
any [x]∗ ∈ N0(L), we get [x]∗∩[0]∗ = [x∨0]∗ = [x]∗ and [x]∗∨ [0]∗ = [x∧0]∗ = [0]∗.
It shows that [0]∗ is the greatest element in N0(L). Now, it remains to prove the
final condition of the theorem. Assume N0(L) has the smallest element, say [d]∗

where d ∈ L. Suppose x ∈ [d]∗. Then x ∧ d = 0. Since [d]∗ is the least element,
we get [x]∗ = [x]∗∨ [d]∗ = [x ∧ d]∗ = [0]∗ = L. Hence x = 0. Thus [d]∗ = (0].
Therefore d is a dense element in L.

Conversely, suppose that L possesses a dense element, say d. So [d]∗ = (0].
Clearly, [d]∗ ∈ N0(L). Now for any x ∈ L, consider [x]∗ ∩ [d]∗ = [x]∗ ∩ (0] =
[x]∗∩ (0] = (0]. Also [x]∗∨ [d]∗ = {[x]∗∗∩ [d]∗∗}∗ = {[x]∗∗∩ [0]∗}∗ = {[x]∗∗∩L}∗ =
[x]∗∗∗ = [x]∗. Hence [d]∗ is the smallest element in N0(L).

In general, the mapping x 7→ [x]∗ of L into N0(L) is a dual onto homomor-
phism. In fact, we have the following result.

Theorem 4.14. A disjunctive GADL L is dually isomorphic to N0(L).

Proof. Let L be a disjunctive GADL. Define a mapping Φ : L −→ N0(L) by
Φ(x) = [x]∗, for all x ∈ L. Clearly, Φ is well-defined. Let x, y ∈ L such that
Φ(x) = Φ(y). Then [x]∗ = [y]∗. Since L is disjunctive, we obtain that x = y.
Therefore Φ is one to one. Let I ∈ N0(L). Then I = [x]∗, for some x ∈ L. Hence
Φ(x) = [x]∗ = I. Therefore Φ is onto.

Let[x]∗, [y]∗ ∈ N0(L), where x, y ∈ L. Then Φ(x∧ y) = [x∧ y]∗ = [x]∗∨ [y]∗ =
Φ(x)∨ Φ(y) and Φ(x∨ y) = [x∨ y]∗ = [x]∗ ∩ [y]∗ = Φ(x)∩Φ(y). Hence Φ is a dual
isomorphism.
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Conclusion and Future Work

In this paper we have introduced the concept of an annihilator preserving
homomorphism and studied some basic properties of these homomorphisms. We
derived a sufficient condition for a homomorphism to be annihilator preserving
homomorphism. We introduced the concept of a normal ideal in a GADL L and
proved that the set N (L) of all normal ideals of L forms a Boolean algebra. In
[3], we have proved that the set of all ideals of a GADL with 0 forms a complete
lattice under set inclusion but we were unable to characterize the nature of the
supremum of the ideals in this lattice. Also, the ideal generated by any nonempty
subset S of a GADL, except the case when S contains only one element, was
not characterized. Investigations in this direction are going on in order to give a
topological characterization and sheaf representation of a GADL.
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